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Shot-Noise-Limited Perfor 
of Optical Neural Netw 

Majeed M. Hayat, Member, IEEE, Bahaa E. A. Saleh, Fellow, IEEE, and John A. Gubner, Member, IEEE 

Abstruct- The performance of neural networks for which 
weights and signals are modeled by shot-noise processes is con- 
sidered. Examples of such networks are optical neural networks 
and biological systems. We develop a theory that facilitates 
the computation of the average probability of error in binary- 
inputhinary-output multistage and recurrent networks. We ex- 
press the probability of error in terms of two key parameters: 
the computing-noise parameter and the weight-recording-noise 
parameter. The former is the average number of particles per 
clock cycle per signal and it represents noise due the particle 
nature of the signal. The latter represents noise in the weight- 
recording process and is the average number of particles per 
weight. For a fixed computing-noise parameter, the probability 
of error decreases with the increase in the recording-noise pa- 
rameter and saturates at a level limited by the computing-noise 
parameter. A similar behavior is observed when the role of the 
two parameters is interchanged. As both parameters increase, 
the probability of error decreases to zero exponentially fast at 
a rate that is determined using large deviations. We show that 
the performance can be optimized by a selective choice of the 
nonlinearity threshold levels. For recurrent networks, as the 
number of iterations increases, the probability of error increases 
initially and then saturates at a level determined by the stationary 
distribution of a Markov chain. 

I. INTRODUCTION 

OISE plays an important role in determining the per- 
formance of neural networks. Noise takes the form 

of fluctuations of the signals involved in the computation, 
and uncertainty of the weights and other parameters of the 
network. This inaccuracy accumulates as the signals propagate 
through multistage or recurrent networks, so that the actual 
final output may become different from the desired output, 
resulting in errors. Previous studies that have been concemed 
with the sensitivity of neural networks to signal fluctuations 
and weight uncertainty employed various Gaussian and other 
approximations [16], [2], [6], [17], [8]. Such Gaussian and 
signal-independent noise models are inadequate for optical and 
biological networks in which the noise described by shot-noise 
processes which arise as a result of the underlying particle 
nature of the signals, e.g., photons in optical beams or neural 
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spikes in biological systems [3], [I l l .  A shot-noise process is a 
filtered Poisson point process whose rate may also be random. 

While this particle noise has particularly deleterious effects 
at low particle fluxes [3], [12], which are associated with 
weak signals, its signal-dependent nature has an important 
effect on the errors, even if strong signals are used, if very 
low error rates are to be accomplished. In this paper, we 
provide an analysis of the performance of such networks in an 
attempt to determine how strong the signals must be to achieve 
desired levels of accuracy. This is important in networks with 
very large number of inputs since the total signal power is 
constrained. In this analysis, we ignore other sources of noise 
and uncertainty and focus on the fundamental limiting factor, 
which is the underlying particle nature of the noise. Although 
the paper is presented in the context of optical neural networks 
in which there is currently a great deal of interest, the results 
apply to other shot-noise limited networks. Our aim is to 
determine the fundamental limits on optical networks, set by 
the quantum nature of light, which can be quite restrictive if 
high data throughputs are to be accomplished. 

The basic unit of a neural network involves incoming signals 
which are multiplied by weights, and then added and thresh- 
olded to produce the outputs. The signals are described by 
shot-noise processes. In addition, the weights themselves are 
random variables resulting from sampled shot-noise processes. 
In an all-optical system, for example, the weights are recorded 
by optical beams, each described by a shot-noise process [13], 
[ 141. In biological systems, the weights are dynamically altered 
by signals originating from a nerve-spike train and are also 
modeled as shot-noise processes. The noise in the signals is 
referred to as computing noise, and that in the weights is called 
the weight-recording noise. The errors generated by these two 
noise sources are primarily governed by the flux of particles 
underlying the computing and recording signals (e.g., average 
photon flux or nerve spike rate). 

Modeling signals and weights by shot noise processes, we 
provide a probabilistic analysis that determines the probability 
of error in neural networks of simple architectures. The 
analysis is tailored for binary-inputhinary-output networks 
with threshold (hardlimiter) nonlinearities. Typical examples 
of these networks are rule forming, global classifier, and 
Hopfield networks [IO]. The weight elements are all assumed 
to be nonnegative. This assumption was shown to be desirable 
in some networks because it leads to superior performance 
[6], and it simplifies the analysis. Nonetheless, our analysis 
can be easily extended to handle two-channel systems with a 
concomitant subtraction step [5 ] .  
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An l-input/m-output single-layer neural network with weight matrix 

11. MODEL 

Consider the single-layer (Adaline) network shown in 
Fig. 1. This can be thought of as the kth layer of a feedforward 
(Madaline) network for example. Let X E (0, l}' denote an 
I-dimensional random binary input with probability mass 
function f(x) = P{X = x}. Let W be an m x I matrix 
with nonnegative, real-valued entries w,, corresponding to 
the network weights. The j th component of the output 0 of 
the network is given by 0, = p ~ ,  (W,X), where W, denotes 
the j th row of W, and the function p ~ ,  is a (0,l)-valued 
saturation point nonlinearity with a nonnegative threshold 
constant O, 

A 

1, U > O j ,  

VS,(U) = c 0, U 5 O j .  

More compactly 

where for each U = [u I , . .  .,U,]' in lR", @@(U) = 
[vel ( U ' ) ,  . . . , pe, (U,)]', and the prime denotes the transpose 
of a vector. (We also allow nonlinearities of the form 1 - p ~ ,  .) 

We assume that each component X ,  of X, (i = 1,. . . , l ) ,  
is represented by a shot-noise process X ,  with an underlying 
Poisson process whose intensity is proportional to X ,  and an 
appropriately scaled filter so that E[*,] is proportional to X,. 
Similarly, we assume that each weight element w,,, ( i  = 
1, . . . , m, j = 1, . . . , l ) ,  is represented by a shot-noise process 
A,, with an underlying Poisson process with an intensity 
proportional to w , ~  and an appropriately scaled filter so 
that E[A,,] is proportional to w , ~ .  The role of A,, in the 
multiplication operation is to modify the intensity of the 
shot-noise process 2, by a multiplicative factor A,, . These 
modified shot-noise processes are then added to produce 
the signal Y, which then becomes the input to a threshold 
nonlinearity. We will show that the above model is applicable 
to optical neural networks. We thereafter present the results of 
this paper in the context of optical neural networks. 

In an optical implementation of the network in Fig. 1, 
each component X ,  of X, (i = l , . - . , l ) ,  is set up to 
generate an optical beam of intensity AX,, where the factor 
X controls the optical intensity of each beam. The array of 
beams is transmitted through a transparency with an array 

of transmittances corresponding to a matrix A. Each entry 
A;j(x, y) of A corresponds to a weight w;j, and it is prepared 
as follows [14]: A blank transparency is exposed to a beam 
of intensity pwij for a duration T, seconds to produce the 
shot-noise 

k 

arising from a spatial filter p - ' ~ ; ~ g ( - ,  .) ( j  is the point spread 
function of the transparency) and an underlying spatial Poisson 
process of density pw,,r, (per unit area). (The x, y variables 
for each A,, are measured from the center of the (i , j) th 
transparency.)'We assume that g(., .) is zero outside the disc 
centered at the origin and of area A,. It is also assumed that 
A and X are mutually independent and that the entries of 
A are also mutually independent. A simple calculation shows 
that E[ AsJ(z ,  y)] = w,, ssR2 g(z, y) dxdy and hence because 
of the normalization by p-'~;' in (2), the transmittanceA,, 
is proportional to the desired weight w,, in the mean. The 
parameter ,U, as we will see, determines the accuracy level of 
the recorded transparency. 

The ith beam of the m-dimensional array of beams gen- 
erated from the optical multiplication has an optical intensity 
X&(x,y)X where &(x,y)  is the zth row of A. Note that 
for each beam, the intensity varies from point to point within 
the beam cross section. The array of beams is then detected 
by an array of photodetectors. Each photodetector responds to 
the integrated optical intensity over its active area consisting 
of a disc D d  of area A d .  The output of ith photodetector is a 
temporal shot noise process %(t)  generated by a causal filter 
h(.) (of duration T ~ ,  where T~ denotes the computing time) and 
an underlying doubly stochastic Poisson process { t k  } with 
random rate (per unit time) 

Namely 

O s t k  5T.z 

Furthermore, if we define the random variables 

(3) 

(4) 

and the function 

then from (2)  and (4) 

and 

A, = XAiX (7) 

where A, = [Ail ,  Az2, + . , A,i]. Hence, each A,, is a shot 
noise-random variable generated by the filter p-'r,-'g( ., .) 
and an underlying spatial Poisson process with rate pw,,r,. 
Note that the function g(., .) is zero outside the disc 2) centered 
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n at the origin and of area A = A, + Ad + 2@&. The 
parameter A represents the spatial resolution of the system. 

The output of each detector is then sampled at time T~ and 
divided by X to generate the shot-noise random variable Y, = 
y? ( rc ) /X .  Note that due to the division by A, the conditional 
mean for each Y,  is independent of A, i.e., E[Y, I X = x] = 
yy/W,x, where y = s: h(t)  dt  and y' = ssD g(z, y) dzdy. 

In summary, conditioned on A and X, each Y, is condition- 
ally a shot-noise random variable generated by a filter X-lh(.) 
and a temporal Poisson process with intensity A, given by 
(7), i.e., Y, is a doubly stochastic shot-noise random variable. 
Furthermore, since the Y$'s are generated by distinct detectors, 
they are mutually independent conditional on X. 

Finally, each Y,  is then passed through a threshold 
nonlinearity c p ~ ~ ( . )  to yield the zth element of the final 
binary output vector Z = @s(Y),  where @z(u) = 

we would choose <, = yy/6,, and we would expect that 
Z = 0. This may not be the case in general, however, due 
to the random fluctuation of Y, around its mean. A more 
selective choice of t,, as we shall see in Section 111-B, may 
reduce, in the probabilistic sense, the deviation of the optical 
network from its deterministic counterpart. 

n 

[ c p ~ ,  ( ~ 1 1 , .  . . , ( P E ~  ( u ~ ) ] ' ,  and Y = [YI, e . . , Y,]'. Ideally, 

' 

111. PERFORMANCE OF SINGLE-LAYER NETWORKS 
We are interested in determining the probability of incorrect 

mapping, namely P{Z # 0}, which we denote by Pe(X,p), 
and understand the effect of X and p on it. To determine 
P,(A, p),  it is sufficient to compute the conditional probabili- 
ties of correct mapping Pc(X, p I x) since 

pe(x, P )  E[pe(X, P I XI1 

X € { O , l ) l  

where f is the probability mass function of the random vector 
X introduced in Section 11. Note that 

= 1 - pc(x,Plx)P(x) 

i=l 

where P,"(A, ,U I x) is the conditional probability of correct 
mapping of the ith output. Since each '~6% is a threshold 
nonlinearity with threshold level I,, the set cp<'(cpe, (W,x)) 
is either (-m,&] or (&,a) corresponding to W,x 5 0, or 
W,x > e,, respectively. 

To compute P,?(A, ,U I x), we first determine the conditional 
moment generating functions (MGF's) Qy, 1 X,A, (s 1 x, a) = 
E[eSY" I X = x, A, = a], s E (E (the symbol C denotes the set 
of complex numbers), and i = 1, . . . , m. It is clear from (7) 
that once A, and X are fixed, the intensity A, will also be fixed 
(i.e., deterministic), and hence Y, becomes a shot-noise random 
variable. Consequently, QY, I X,A, (s I x, a )  can be computed 

n 

using the well-known form of a shot noise random variable 
~ 5 1  

Qy,  I X,A, ( s  I X, a) = exP{Xaxa(s/x)) (8) 

where a is a row vector, x is a column vector, and 

We now proceed to remove the conditioning on A,. Let QA, ( s )  
denote the MGF of the random row vector A,, i.e., 

QA,(s)  = E[eA+], s E (E'. (10) 

Averaging (8) over all possible A, we obtain the conditional 
MGF of Y, given X = x 

(11) 

where 5, is the ith coordinate of x. It is clear from (4) and the 
independence of the A t ' s  that the components of the random 
row vector A, are mutually independent. We also know from 
the discussion in the preceding section that each element A,, 
is a shot noise random variable, scaled by p-l~,-', resulting 
from a filter g(+, .) and an underlying Poisson process with 

QY, I X ( ~  I X> = QA, ([Xxia(s/X), . . . , X Z P ( S / ~ ) ] ' )  

rate pwi j~ , .  Therefore, (10) takes the special form 

\ j=1 1 
and hence 

where 
F P  

Using the mean value theorem for integrals (assuming 
real), (13) can be recast in the more informative form 

QY, I X(S I4 
/ 

where h* and g* are intermediate values defined by h* = 
T ~ - ~  S:((esh(t) - 1) d t  a d  g* = A-l JJD(esg(",Y) - 1 ) dxdy, 
respectively. The statistics of Y,  conditioned on X therefore 
depend on two parameters: the computing-noise parameter 

(16) 
A 

N, = A r c  

and the weight-recording-noise parameter 

(17) N,  = PAr,. 

The former is the mean number of photons (which is propor- 
tional to optical energy) per computing time in each beam, 
while the latter is the mean number of photons per recording 
time per pixel of spatial resolution. These parameters can be 

n 
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cast in the more general context of shot-noise limited systems: 
N,  is the average number of particles per clock time per signal, 
and N, is the average number of particles per weight. 

In principle, one can compute conditional probability den- 
sity functions from conditional MGF's by taking their inverse 
Laplace transform. This approach, however, is generally dif- 
ficult to implement numerically. A numerical technique that 
directly computes the probability P: (A, p I x) from the char- 
acteristic function Qy, I ~ ( j u  I x) has been developed by the 
authors [7]. We will use this technique in our computations in 
the examples. The limiting behavior of the average probability 
of error for large values of p and X is studied in the next 
section. 

A. Asymptotic Analysis of the Pegormance 

We start by examining the expression for the conditional 
MGF of Y, given in (13). It is easy to see that, Xa(s/X) 
converges to ys as X + CO. Hence 

A 
= Q,"(s 1x1. 

Note that we can recognize Qf(.  I x) as the moment gener- 
ating function of the sum D(x) = p-lr;lxlyD1 + ... + 
pu-lr;lxmyDm, where each D,, J = l , . - . , m ,  is an in- 
dependent spatial shot noise process with filter g(.,.) and 
underlying Poisson process with mean intensity prrw,,. Thus, 
conditioned on X = x, Y, converges in distribution to the 
random variable D(x), and we determine the limiting behavior 
of the conditional probability of error in the ith output 

lim P,"(x, p I x) 
A-00 

= p{D(x) $ $1,"(cpe,(W,x)) I x = x}. (18) 

Similarly, we obtain the limiting conditional MGF as p -+ CO 

lim QY, 1 X(S I x) = exp{~a(s/J)r'W,x> 
P-00 

A 
= Q?(s I x). 

Observe that Qt(. I x) can be recognized as the MGF of 
6(x)/X where k(x) is a shot-noise process resulting from 
a filter h(.) and an underlying Poisson process of intensity 
rate Xy'W,x. Hence 

lim P,"(X, p I x) 
PL" 

= P{X-lfi(x) $! cp,'(cpe,(W,X)) IX = x}. (19) 

Finally, it is easy to check that 

lim QY, I x ( s 1 X) = ~ X P  { YY'KXS} 
k P - + M  

A 
= Qz(s I x) 

which is recognized as the conditional MGF of the random 
variable yy'W,X, given X = x. Thus, by fixing X = x, 
Y, converges, as both X and p approach 00, to the constant 
yy' W,x in distribution and hence in probability. Therefore, 
limA,@ P,(X, p 1 x) exists and it is equal to zero for each 

fixed x. We now characterize this limit further by providing 
the rate of convergence. Let {A,} and {p,}  be two sequences 
diverging to CO. We are interested in determining the behavior 
of 

A 
~ , " ( x , n )  = P;(Xn,pn I x )  

as n -+ CO, for a fixed x. There are three cases to consider: 
1) limn = IC, o < I C < C O ;  

2) = CO; and 
3) limn = 0. 

P n  

P n  

P n  
To address this problem, we appeal to the theory of large 
deviations. It turns out that the decay is exponential in all 
cases. We have the following result whose proof uses the 
Gartner-Ellis theorem [l], [4]. The proof is deferred to the 
Appendix. 

Theorem: For each i = l , . . . , m ,  let 6, = yy'W,x, and 
suppose that [, > 6, if and only if 8, > W,x. Then, 

For Case 1) 
A .  1 

,400 A, 
T , ( x )  = lim - log P,"(x, n) 

1 

= --Pl,,S, + IC-l w , , p ( ~ ~ , a ( P l , , ) )  (20) 
j=1 

where PI,, is the unique solution to the equation 

where pz,, is the unique solution to the equation 

& = y'W,x lTc h(t)ep2+h(t) d t  

For Case 3) 

1 

j=1 

where p3,i is the unique solution to the equation 

The hypothesis in the theorem guarantees that in the limit 
the optical network becomes equivalent to its deterministic 
counterpart. Choices of [, that violate the hypothesis should 
be avoided since this tends to change the task of the network. 

Using the theorem, we obtain an expression for the exponen- 
tial decay rate T(X) of the conditional probability of incorrect 
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mapping of the output vector 

as follows: 

where qn = pnrr for Case 3) and qn = An otherwise. 
Finally, the exponential decay rate for the average prob- 

ability of error P,(n) = E[P,(X,n)] can be computed as 
follows: 

n 

= max r(x). 
x E ( O , l } ~  

Example 1: Consider the optical implementation of the 
neural network of Fig. 1 with m = 1. Two cases are studied: 
In the first we take 1 = 2 and W = [0.5,0.5]; in the second 
1 = 100 and W = [0.01,. . . , 0.011. The threshold 81 = 0.75 in 
both cases. It is assumed that all inputs are equiprobable. The 
temporal and spatial shot-noise filters are chosen as follows: 

and 

(In particular, the above form of g is obtained if j is a delta 
function; this corresponds physically to the case when the point 
spread function of the transparency is much narrower than the 
beam width and the detector's active area.) For this example, 
h * ~ ,  and g*A appearing in the conditional MGF (15) are both 
equal to one, and we obtain 

with 1 = 2 and 1 = 100, corresponding to the first case 
and the second case, respectively. For example, if we take 
re = lo-' s (corresponding to the response time of a 
fast photodetector) and use a 100 pW beam of wavelength 
1 pm, then N,  = SO3 photons. If the detector's active 

surface matches the beam, and if the recording time 7r is 
also lo-' s, then N, = SO3 photons. Fig. 2(a) depicts the 
dependence of P, (A, p) on the computing-noise parameter 
Ne for fixed values of the weight-recording-noise parameter 
N,. The curves labeled with diamonds correspond to the 
case I = 100. As Ne increases, P,(X, p)  approaches the 
constant E[limp,,, Pi"(, p I X)], where the quantity inside 
the expectation IS given by (18). A similar plot is obtained 
if the roles of Ne and N, are reversed. Finally, Pe(A, p)  
converges to zero exponentially fast as Ne = N, approach 
CO [see Fig. 2(b)]. The exponential rate (with respect to Nc), 
for the case 1 = 2, is computed from (20), (23), and (24): 
T = -0.5[1.5p -t 2 - 2exp(eP - l)], where p is the solution 
to the equation 0.75 = exp(p - 1 + eP). These equations 
yield T = - 0.0175, which is in agreement with Fig. 2(b). 
The important conclusion extracted from this example is that 
to achieve a particular accuracy (i.e., for a fixed average 
probability of error), there is trade-off, on the one hand, 
between spatial resolution A, recording optical power p, and 
recording time T?; and on the other hand, between computing 
speed T, and processing optical power A. 

B. Selecting the Optical Threshold to Optimize the Pegormance 
It is evident from our definition of the conditional prob- 

ability of error that the choice of the threshold level may 
have an effect on the average probability of error. It is 
therefore important to investigate the possibility of optimizing 
the performance by a judicious selection of the threshold level. 
To motivate this point, consider the network in Example 1 
and plot P,(A, p) as a function of the optical threshold level 
(1 over an admissible range 0.5 < (1 < 1 (see Fig. 3). The 
admissible range of a threshold level is the values of threshold 
that do not change the ideal characteristics of the network (see 
the hypothesis of the theorem). For fixed-noise parameters, 
there exists an optimum threshold level toptimum at which 
P,(A, p) is minimized. As the noise parameters increase, the 
optimal threshold decreases in value. This is expected since 
as the noise parameters increase, the decay of the tail of the 
probability density function of the doubly stochastic shot noise 
becomes faster. Furthermore, as the noise parameters increase, 
P, becomes more sensitive to change in the optimum threshold 
value. 

This procedure can be repeated for any single-layer network 
without difficulty if the nonlinearities are identical. On the 
other hand, if the thresholds & for any layer are allowed to 
be different, then the procedure becomes more cumbersome 
due to the fact that the optimization is performed over many 
threshold levels. It is therefore not generally mathematically 
tractable to determine the optimum threshold levels since the 
probability of error cannot be expressed in a closed form. It is 
possible, however, to use the asymptotic results to determine 
analytically the threshold levels that maximize the exponential 
decay rate r.  

Iv .  PERFORMANCE OF MULTILAYER NETWORKS 
Consider an M-layer network. For k = 1, . . . , M ,  let 

X(k) and X(k + 1) be vectors in (0, l } d k  and (0, l } d k + l ,  

respectively, denoting the input and output to the kth layer. 
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Fig. 2. Average probability of error P, for the single-layer networks in 
Example 1 as a function of the computing-noise parameter N c :  (a) The 
weight-recording-noise parameter N ,  is fixed at 100 and 200 and (b) The 
weight-recording-noise parameter N, is set to be equal to N,. The curves 
labeled with diamonds correspond the network with 100 inputs, the remaining 
curves correspond to the two-input network. 

The positive integer d k ,  for each k ,  denotes the number of 
components (X(k)i : i = 1 , .  . . , d k ) )  of X(k) .  Let S k ,  ( k  = 
1, . . . , M + 1) be a list of all the 2dk elements of (0, l } d k ,  
and for each i = 1 , . . . , 2d 'C ,  let I i ( k )  = [II(k),...,Iik(k)]' 
denote the ith item of the list s k .  The analysis of Section 11 
enables us to compute the probabilities of the form 

P k ( j  I i )  P{x(k + 1) = l ' ( k  + 1) I x(k) = I i ( k ) }  

where i = 1 , .  . . , 2dk and j = 1 , .  . . , 2dk+1. Observe that 
d k + i  

P k ( j  I i )  = n P{X(k + l)s = I!(k + 1) I X(k) = I i ( k ) }  
s=l 

a" 
g 0.01 
e, 

rcl 0 

1 o-6 
0.5 0.6 0.7 0.8 0.9 1 

Threshold level 5, 
Fig. 3.  The dependence of the average probability of error P, on the 
selection of the threshold level 51 for the two-input single-layer network 
of Example 1. Three sets of the computing-noise parameter N, and the 
weight-recording-noise parameter N ,  are considered: (100, IOO), (100, 500), 
and (500, 500). 

setup gives rise for each k = I,...,&', to a 2d', x 2 d k + l  

transition probability matrix T( k )  with entries 

(T(k))i j  = Pk( j  I i). 
To determine the transition probability matrix of the M-layer 
network, we invoke the fact that for each k = 2, . . . , M + 1, 
the dependence of X ( k )  on X(1). . . X ( k  - 1) i s  through 
X(k - 1) alone. In other words, the sequence {X(k)}Etl 
is a Markov chain. In particular, P{X(M + 1) = P ( M  + 
P ( M +  1) I X(M) = I i ( M ) } .  The entries of the 2d1 x 2dM+1 
total probability transition matrix Ttotal are thus given by 

l)IX(1) = XI, . . . ,X(M)  = I"M)}  = P { X ( M + l )  = 

n 
(Ttotal)zj = P{X(M + 1) = l ' (M + 1) I X(1) = rz(l)} 

= (T(1) x T ( 2 )  x e * *  x T(M))zj. (28) 

The average probability of error P, is the probability of 
incorrect mapping averaged over all possible input patterns. 
If a network is aimed to implement a classifier, for instance, 
then P, represents the average probability of any deviation 
from the desired classifier. For any input vector x E SI, let 
C(x) E S M + ~  denote the desired output vector. Conditioned 
on a particular input pattern X(1) = x, the conditional 
probability of error P,(x) of the network is 

P,(x) P{X(M + 1) # C(X) I X(l)  = X} 

= 1 - P{X(M + 1) = C(X) I X(1) = x}  

= 1 - (Ttotal)zl(X),z~+l(C(X)) 

where il(x) and i M + l ( C ( ~ ) )  are the indexes of x and C(x) 
in SI and SM+I, respectively. Hence 

Pe = E[Pe(X(1))1 
= P,(X)P{X(l) =x}. since the components X ( k  + s = 1 , . . . , & + 1 ,  of the 

vector X ( k  + 1) are conditionally independent. Naturally, this X E S 1  



706 BEE TRANSACTIONS ON NEURAL NETWORKS, VOL. I ,  NO. 3, MAY 1996 

2000 
i 
I4 

1500 
ii 
it 
3 1000’ 
.3 

0 

@ 500 
8 
2 

0 
0 500 1000 1500 2000 

Computing-noise parameterN 

Fig. 4. Trade-off between the computing-noise parameter Nc and the 
weight-recording-noise parameter N ,  for the three-layer classifier of Example 
2. The average probability of error P, is fixed at lop4, lo-’, and lop6.  
For a given P,, there is a critical value for the computing-noise parameter 
Nc below which the desired P, is not attainable. A similar critical value for 
the weight-recording-noise parameter N, is required. 

Example 2: Consider a three-layer classifier that maps the 
inputs “101,” “011,” and “110” to “1” and maps every other 
input to “0.” All the temporal and spatial filters are chosen 
according to (25) and (26). Fig. 4 shows that to achieve a 
certain average probability of error P,, the computing-noise 
parameter N ,  and the weight-recording-noise parameter N,  
must exceed certain levels. These levels are determined by the 
asymptotic behavior of P, which can be computed by using 
the expression (19) and (18) for each layer. For example, if 
we require P, to be lop4, then our calculations show that N, 
and N,  should be at least 181. This demonstrates the trade 
off between the weight-recording-noise parameter N, and the 
computing-noise parameter N,, while fixing P,. Clearly, for 
a lower P,, we expect the curve to move up. Similarly to 
Example 1, as both N, and N, increase, P, decreases to zero 
exponentially fast, as shown in Fig. 5. In this limiting case, 
the optical implementation of the network behaves identically 
to its deterministic counterpart. 

v. PERFORMANCE OF RECURRENT NETWORKS 

The performance analysis of the recurrent optical network 
follows directly from the analysis of the multilayer networks. 
The output at the kth iterate of the recurrent network can 
be thought of as the output of a k-layer neural network with 
all the layers having identical weight matrices and the same 
number of inputs and outputs. Let T denote the m x m 
one-step transition probability matrix of the network, then 
the 2” x 2” matrix of k-step transition probabilities can 
be determined from (28) as Tk. The conditional probability 
of error is P,,k(x) = 1 - (Tk)%(x),t(c(x)), where i(x) zind 
i (C(x) )  are the indexes of the initial state x and the desired 
output C(x), respectively. The average probability of error 
Pe,k for the kth iterate is then obtained by averaging over all 
x with respect to the initial distribution f .  

1 o - ’ O  

0 200 400 600 800 1000 
Computing-noise parameter Nc 

Fig. 5. Average probability of error P, for the three-layer classifier in 
Example 2 as a function of the computing-noise parameter N,. The parameter 
N, is equal to N,. 

the number of iterates tends to 00. We wish to determine the 
probability that the state C(x) is not attained, as the number 
of iterates tends to 00. 

Since this network is modeled by a finite state Markov chain 
with transition probability matrix T, and since the entries of 
T are nonzero, as the number of steps (or iterates) increases, 
the probability that the final output of the network converges 
to a particular state 1, E {O,l}m is independent of the 
initial state X(1), and these probabilities are the stationary 
distribution of the Markov chain. Let II = [TI,  7r2, . . . , nzm] 
denote the stationary distribution of the Markov chain [9], 
i.e., II is the unique nonnegative solution to the eigenvector 
equation IIT = 11, with Czn-a = 1. Furthermore, 7r% = 
limntca P { X ( n )  = 1%) regardless of the value of the initial 
state X(1). The probability of error P,(x) in sending the state 
x to the state C(x) in an infinite number of iterations is simply 

where i ( C ( x ) )  denotes the index of the state C(x) in the list S 
consisting of the elements of {O, l}“. The average asymptotic 
probability of error P, can be computed by averaging over x 
with respect to the initial probability mass function f ,  i.e., 

Exumple 3: To illustrate the effect of the number of it- 
erations on the performance of optical recurrent networks, 
consider the identity recurrent network whose weight matrix 
W is a 3 x 3 identity matrix. The threshold levels are set to 
0.5. The temporal and spatial shot noise filters are assumed 
to be those given by (25) and (26). Fig. 6 demonstrates the 
dependence of the average probability of error Pe,k  on the 
number of iterations k along with asymptotic value P,, as 
k + 00, for various values of the computing-noise parameter 
N, and the weight-recording-noise parameter N,. To achieve 

Pe 1 Cx(l - -/rz(C(x)))f(x)* 

a certain accuracy level in a certain number of iterations, N,  
and N,  must be chosen sufficiently large. For fixed values of 
these parameters, P,,k increases initially with k and then levels 
off to its asymptotic value. For this example, the asymptotic 

A. Limit of Large Number of Iterations 
Let the network’s initial state X be set to x( l), and suppose 

that the network is designed so that a state C(x) is achieved as 
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rate was analytically determined. We found that the average 
probability of error can be minimized by an optimal selection 
of the nonlinearity thresholds. Furthermore, the sensitivity 
to this optimum threshold increases as the computing-noise 
parameter and the recording-noise parameter increase, i.e., the 
threshold robustness is lowered as a result of the reduction in 
computing and recording noise. 

As for recurrent networks, we have captured the Markovian 
structure of the accumulation of noise from one iteration to 
the next. As the number of iterations increases, the average 
probability of error increases initially and then saturates at an 
asymptotic level. This level was characterized in terms of the 
stationary distribution of a Markov chain. 0 5 10 15 29 25 30 35 

Number of iterations k 
Fig. 6.  The dependence of the average probability of error P, on the number 
of iterations k for the 3 x 3 identity recurrent network of Example 3. Three 
sets of the computing-noise parameter N ,  and the weight-recording-noise 
parameter N ,  are considered. (100, loo), (100, 500), and (200, 200). 

VII. APPENDIX: PROOF OF THE THEOREM 

Without loss of generality, assume that 0, > W,x, i = 
l r . . . , m  . In this case 

P, is 0.875, and it is independent of the values of N,  and P,z(x,n)=P{U, E (J,,m)IX=x}. 
N,. This is due to the one-to-one nature of this particular 
network. - A  Let Y = q,yi where qn is defined in Section 111-A. Define 

Qn(s )  = A q i l  1ogE[esY I x = x]] S E E. VI. CONCLUSION 

We have considered the performance analysis of neural A Suppose that limn+cc Qn(s )  = Q ( s )  exist and that it is 
differentiable. Put networks for which weights and signals are modeled by shot- 

noise processes. Fluctuations in signals are referred to as 
computing noise and uncertainty in weights is referred to as 
weight-recording noise. This model is applicable to optical 
neural networks and biological systems in which signals have 
an inherent particle nature. 

The dependence of the average probability of error in the 
network output has been determined in terms of key param- 
eters of the computing noise and the weight-recording noise. 
The key parameter governing the statistics of the computing 
noise is the average number of quanta per clock cycle per 
signal. This parameter is referred to as the computing-noise 
parameter. The key parameter for the weight-recording noise 
is the average number of quanta per weight, and it is called 
the weight-recording-noise parameter. In an optical neural 
network, the computing-noise parameter is proportional to 
optical energy per processing time per beam; the weight- 
recording-noise parameter is proportional to the optical energy 
per pixel of spatial resolution. 

We have shown analytically that for a fixed weight- 
recording-noise parameter, the probability of error decreases 
with the increase in the computing-noise parameter, and levels 
off to a value limited by the weight-recording-noise parameter. 
Similar behavior is obtained when the computing-noise 

I ( U )  = sup S (su - Q(s)), U E R. 

By Ellis's theorem [4] 

and 

If I is continuous and increasing, then it follows that 

lim qZ1 log P{Y E (ti, OO) I x = x} = --I(&). 
n-cc 

Indeed, if condition 1) holds, then 

and calculus show that I ( u )  is given by parameter is fixed and the weight-recording-noise parameter 
is varied. For a given level of precision, there is therefore a 
trade off between weight-recording noise and computing noise. 
As the recording-noise parameter and the weight-computing- 
noise parameter are simultaneously increased, the average 

1 

I ( U )  = Pl ,zU - k-lE W i j i a ( k z j a ( P 1 , i ) )  

j=1 
probability of error decays to zero exponentially fast as a 
function of the dominant parameter. The exponential decay which is continuous and increasing, and Part 1) follows. 
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Parts 2) and 3) are proved similarly. Straightforward 
lation shows that for Part 2) 

For Part 3) 

1 

j=1 

and 

calcu- 

j=1 

In either case, I is continuous and increasing, and Parts 2) 
and 3) of the theorem follow. 
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