IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000 1357
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Abstract—The sufficient statistic for performing the likelihood tion, numerical methods are presented and illustrated with two
ratio test for pairwise interaction point processes is well-known; examples. The conclusion is in Section V. Appendix A states
ho"g?"er' ltheh?"aluatior.‘ of itrs] perfohrma?]ce di.s abvery difﬁiﬁ“'t and proves a limit theorem that allows us to approximate the
problem. In this paper it is shown that the distribution of the distribution of the likelihood ratio statistic by the distribution

sufficient statistic can be approximated by the distribution of a . i ] - A
Poisson-driven shot-noise random variable, which can be readily Of & Poisson-driven shot-noise random variable. Appendices B

computed. and C provide derivations and extensions of some of the results
Index Terms—Gibbs point process, pairwise interaction point Stated in Section IV-B. Finally, Appendix D analyzes certain
process, Poisson approximation, shot noise. sparseness hypotheses used in the limit theorem of Appendix A.

Il. M ATHEMATICAL MODEL

PATIAL point processes arise in many applications such as-6t be abounded subsetof the plaii’ equipped with the
osmology, ecology, forestry, seismology, and tomograpHy-cidean norm| - [|. In our numerical examples, we takéto
[4, pp. 578-579], [17, pp. 115-120]. A common task in theé%e thel0-by-10 square with lower left-hand corner at the origin.
areas is that of testing for complete spatial randomness; i/, " -valued random vectoX = (X,---,X,) is called a
whether the observed data is independently and uniformly dRITWise interaction point proceqs5] if it has a density of the
tributed. When one has a model for the alternative to complefﬂim

I. INTRODUCTION

spatial randomness, a standard hypothesis testing problem re- 1 B
sults. For example, an important class of alternatives is providéﬁ”) =7 H P(|lwi—;]D), r= (21, ,7,) €D
by a type of Gibbs point process known as a pairwise interaction 1<i<j<n

point process [4, pp. 669—-689], [15, Ch. 4]. These processes anhe . .
completely characterized by a univariate interaction functioll ereZ is the normalizing constant
The problem of estimating this function has been addressed in
several papers, e.g., [3], [5]-[7], and [11]-[14]. In this paper, A 12/ H e([lz; — x]]) da
we assume that the interaction function is known. One can then D i<i<jzn
show that the sufficient statistic for performing the likelihood ) ) ) )
ratio test is given by a simple expression. However, since tABd the function: [0, c0) — [0, c) is called theinteraction
distribution of this statistic is not readily available, determininf!nction The idea is that if>(r) < 1 (resp.,> 1), then realiza-
the performance of the test is a very challenging problem. In t|€nS in which many point pairs hayer; — ;|| ~ r will have
paper we develop approximations of the desired distribution./OW (résp., high) probability. In our applications(r) is small
The paper is organized as follows. In Section I, the definitiofe" Small~ and1 for larger; hence, realizations in which pairs
of a pairwise interaction point process is given, and two exarpf points are close are discouraged, while pairs of points that are

ples are presented. In Section I1l, the hypothesis testing probl&# from each other are neither encouraged nor discouraged. In
is formulated, and in Section IV, the distribution of the likeOther words, points at close range tend to repel each other.

lihood ratio statistic is analyzed. To approximate the distribu- Example 1: If ©(r) = 1forallr, then theX; are independent
and uniformly distributed. A realization of such a process with
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Fig. 1. A point process with no interaction among points. Pairs closer(tt5aare indicated by the lines joining them.

It is now convenient to introduce thmair-potential function an interaction point process with interaction functian Com-

P(r) ;== —lnp(r). With this notation puting the probabilities in (1) is the focus of this paper.
IV. PERFORMANCEANALYSIS
I elz-sh=eo|- 3 ezl o Ss |
1<i < j<n 1<i < j<n As noted in Section I, we usually take interaction functions to

. o be one for large, sayr > rpax > 0. Thenyo(r) = ¢1(r) =0
Next, letS(r, z) denote the number of point pairs inwhose ¢, .~ rmax. HENCE, the integral fof() above reduces to
interpoint distance is less than or equaktd’henS(r, z) is a -

nondecreasing, piecewise-constant, integer-valued function of Timax
7, with jump discontinuities whenever= ||z; — z;]| for some U(z) = / [tho(r) — 1 (r)]S(dr, ). )
x; andz; in z. With this notation, the sum above can be written 0
as a Stieltjes integral Without loss of generality (see the discussion at the end of Ap-
oo pendix A and also at the end of Appendix C), we take for the
Z Y(||le: — x5]) = / P(r)S(dr,z). null hypothesispo(r) = 1 as in Example 1. Thetio(r) = 0,
1<i < j<n 0 and we have
lIl. THE HYPOTHESISTESTING PROBLEM Ua) = —/0 Yo (r) S(dr, ). (3)

Let Hy denote the hypothesis thit has pair potentiad, = ) ] ] . )
—In ¢, and letH; denote the hypothesis thathas pair poten- USINg th_ls expression fdf, our goal is to approximate the prob-
tial )1 = — In ¢1. Then the likelihood ratio test for this problem?2Pilities in (1). Since the results below apply to bathandg,

is easily seen to be equivalent to we simplify the notation by writing)(4(X) > y), whereX has
interactiony, and it is understood that can be taken as either
() Iél y 1 Or o as needed. However, no matter whethehas inter-
Hy action functiony, or ¢, £ in (3) is always defined using; .

Our first result is a limit theorem, whose precise statement

wherey is an adjustable threshold, and and proof are given in Appendix A. Loosely speaking, the the-

) > ] ] ] orem says that if the number of pointss large, and if the region
Yz) = /0 [Yo(r) = 1 (r)] S(dr, 2). D is large enough that the points are “sparse,” then
The corresponding probabilities of detection and false alarm are o(U(X) > ) ~ p(Y > )
pL(X)>y) and po(4(X) > y) 6y

where the random variabl}¢ is defined as follows. LefS..(r),
respectively, where); indicates thatX is an interaction point 0 < » < r,,.x } be an inhomogeneous Poisson process with in-
process with interaction functiopy, andgy indicates thaf{ is  tensity2Ar¢(r), wherey is the interaction function ok, and
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Fig. 2. A point process with inhibition of pairs of close points. Pairs closer @ha@are indicated by the lines joining them. Note that there are fewer such pairs
than in Fig. 1.

the positive constant is determined by the sparseness condtonstant, then so ig;. Suppose tha#; takes valuey; on the
tions in Appendix D. Then interval (v;,7;41], where0 = r; < --- < r4 = 7pax. The

random variablé” in (4) can then be written as
d—1
S = 0iSeo((ri; Tiga])
We have thus reduced the computatio0f(X) > y) to that =
of (Y > y). _ _ _

Our second result is that for many interaction functipasit Where Soo((ri, 7i41]) is the number of points of the Poisson
is possible to calculate(Y > ) accurately and quickly. In the ProcessS.; that occur in the intervafr;, r;11]. We now as-
next subsection, we address the case in whicks piecewise- sume that they; are rational so that there is a positive integer
constant. In the following subsection, we address the caseliisuch thatt” := MY is an integer-valued random variable.
which ¢, is strictly increasing with continuous derivative orSincep(Y > y) = oY > My), it suffices to compute the
[() 7maX] In Append|x C,thisis genera“zed tothe casein Wh,(;ﬁomplementary cumulative distribution function ij For in-

1 is piecewise strictly monotonic with continuous derivative ofeger-valued random variables, we have from [8] that
each segment.

Remark 1: A referee has suggested that an alternative to our(Y = n) = lim — >~ v (k)Cy (kr/L)e™ " /% (6)
methods for computing:(Y” > ) is to use simulation. The k=0
reason being that it is easy to simulate Poisson processes gnd o
shot-noise random variables (as opposed to simulating interac-
tion point processes to estimgt€/( X') > y) empirically as we ® { L, k=0
Ve =

Y= — / ¥(r) Soo(dr). @)

did for comparison in Figs. 3 and 4). 1—jcot(57),  kodd _
o } ] 0, otherwise
For use below, note that the characteristic functiort ois

[10, Ch. 3] andC is the characteristic function af
E[e™Y] = exp < / " eI ) _ 1j2r g(r) dr) . (5) Cp(w) = E[eT] = E[/ @MY,
0

SinceY is analogous to a single time sample of a shot-noi§ePMPining this with (5) and the fact tha is piecewise-con-
or filtered Poisson process [10, p. 25], we cHlla shot-noise Stant, we have

random variable. Tmax o
Cy-(w) = exp </ [e=9MP1() _ 1120 o(r) dT)
A. Piecewise-Constant; 0

When the interaction function is piecewise-constant, = exp 22 AemiwMa _ ] / s ro(r)dr | .
(Y > y) can be approximated as follows.¢f is piecewise- -
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Fig. 3. Empirical estimates (solid lines) and shot-noise estimates (dashed lines) of the probabilities of false alarm (left) and detectmmExami)ie 3. The
horizontal axisy is the threshold of the test.

Furthermore, when; is piecewise-continuously differentiable with deriva-
—_— ‘ tive strictly of one sign on each piece, though the notation is
/ ro(r)dr = % G more cumbersome; see Appendix C.

We begin by analyzing the characteristic functiortol et

where ifop = ¢g = 1, p; = 1 forall ¢, and if ¢ = ¢, then —

p;, = ¢~ % (recall thaty) := —1n ). B:= / 22 @(r)dr (7
0

Example 3: Consider the hypothesis-testing problem for re-
alizations ofn, = 75 points in a square region whose sides hawand
length . = 10. From the analysis of the sparseness conditions Tmax
in Appendix D, and (27) in particulah = 87.1792. Let C(w) = / e~ axr o(r) dr. (8)
0

™%~ 04724, 0<r<1/4
pr(r) =4 eVt =0.7788, 1/4<r<1/2
17 > 1/2

Note that since is eitherp; orpg, B < oo, and the integrand in
(8) is absolutely integrable. Using the definitiongd&nd(, the
characteristic function df” in (5) can be written asxp[¢{(w) —
To approximatgy(Y > ¥) using (6), we must use a finite valueB], which can be factored as

of £; we found that = 64 provided sufficient accuracy. A plot B () 5

of the approximation of,(Y > 7) is given by the dashed line e et = e[+ ((w) + R(w)] )
on the left in Fig. 3; the approximation @fi (Y > y) is given

by the dashed line on the right. To estimate the true values'$¥f€re

p(£(X) > y), we used empirical estimates obtained from 5000 % (W)
simulations of X under each hypothesis. These estimates are Rw) = Z o= @) — C(w) — 1. (10)
shown by the solid lines in Fig. 3, with the solid line on the left k=2

being the estimate qf(¢/(X) > y), and the solid line on the

right being the estimate gf, (/(X) > ). Taking the inverse Fourier transform of (9), we have

B. Piecewise-Monotonig; py(w) = ¢ Plolw) + () + 9(v)] (11)

In this subsection we assume thatis continuously differ- wherepy is the density o, ~ is the inverse Fourier transform
entiable o0, ry.x] With ;1 > 00n (0, 7hax) @nde () = 1 of {, andg is the inverse Fourier transform &f. Now, it is not
for r > ruax. The discussion of this case easily generalizesbvious at this stage thatandg exist; i.e.,{ and R might be
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Fig. 4. Empirical estimates (solid lines) and shot-noise estimates (dashed lines) of the probabilities of false alarm (left) and detectmmExami)ie 4. The

horizontal axisy is the threshold of the test.

Fourier transforms of measures that are not absolutely continRemark 3:If a closed-form antiderivative of-

p(r) is

uous with respect to Lebesgue measure. Fortunately, these derown, thenB in (7) andT'“(y) in (13) are trivial to eval-

sities do exist, as shown in Appendix B. Next, wkite

p(Y >y) = P[L+T(y) +G(y)],  y<0 (12
wherel'“(y) := [~ ~(6) df, andG°(y) := [~ g(6)d6. Itis
shown in Appendyx B that

0, y20
I“(y) = / ( 22 (r)dr, lnp(0) <y <0 (13)
@1 (e¥)
B, y < lng:i(0)
and that
G(y) = lim > R(kn/L)e”TVE - (14)

k=—oc

whereby = 1/2, b, = —j/(kw) for k odd, andb;, = 0 other-
wise.

Remark 2: For numerical calculation, we use the approxima-

tion

N .
> bpR(km/L)eIkv/e
k=—N

G (y) = (15)

uate. In particular, whew = ¢y = 1, B = M2, and

Do) = Alrjax — 91 (€)°]:

Example 4: Consider the hypothesis-testing problem for re-
alizations ofn. = 75 points in a square region whose sides have
lengthZ, = 10. From the analysis of the sparseness conditions in
Appendix D, and (27) in particulak = 87.1792. Let ¢ be the
interaction function of Example 2. Then the quantitigsl*<,
¢(w), and R(w) are all easily computed in closed form under
each hypothesis. Taking = 25 and A/ = 128 provided suffi-
cient accuracy in (15). We then substituted (15) into (12). A plot
of the approximation ofo(Y" > y) is given by the dashed line
on the left in Fig. 4; the approximation ef; (Y > ) is given
by the dashed line on the right. To estimate the true values of
©po(£(X) > y) andp1 (4(X) > y), we used empirical estimates
obtained from 5000 simulations df under each hypothesis.
These estimates are shown by the solid lines in Fig. 4, with the
solid line on the left being the estimate pf(¢(X) > y), and
the solid line on the right being the estimateaf ¢(X) > ).

max?

max

V. CONCLUSION

Although the sufficient statisti{ X') for performing the like-
lihood ratio test for pairwise interaction point processes is easy
to compute, the evaluation of its performance is a challenging
problem. The limit theorem of Appendix A shows that in the
case of sparseness, the distributior/@X ) could be approxi-

where£ and\ are finite. Note that for plotting equally spacednated by the distribution of the shot-noise random variable
samples, the approximation is efficiently computed using a fa&d it is then shown that the distribution Bf could be com-

Fourier transform routine.

2The assumptions op; imply that it is upper-bounded by one; heng¢eis
nonnegative, anll” in (4) is nonpositive. Sinc¥ is nonpositivep(Y > y) =
0 fory > 0.

puted using (6) or (12), depending on the form of the interaction
function. While the analysis of (6) in Section IV-A is straight-
forward, the derivation of (12) in Section IV-B is more com-
plicated, and the details are found in Appendix B. Extensions
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are treated in Appendix C. Finally, we note that our analysis of We now turn to the continuity of on &§. Let s, be a se-
the sparseness conditions in Appendix D in the case of squguence inSy that converges ta € S7. We must show that
regions leads to a simply computable value for the constant(s;) — £(s). Now, in [3, Theorem 2.3], which establishes the

which appears in the characteristic functiortofn (5). convergence in distribution &f(-, X)) to S, the space is
equipped with the Skorohod topology [1, pp. 111-112]. To say
APPENDIX A thats, — s in the Skorohod topology means the following. Let
LIMIT THEOREM M Dbe the class of strictly increasing, continuous mappings of

This result establishes the approximation [0, 7max] ONtO itself. Then there exigt, € M such that

o(U(X) > 1) = p(Y > 1), s (e, Y(r)) =s(r),  uniformlyinr  (16)

whereY is defined in (4). and

Theorem: Let {D,,} be an increasing sequence of bounded
Borel subsets of the plane for which the sparseness conditions in
Appendix D hold. For example, iD,, is a square whose sidesS
have length proportional ta, then the sparseness condition
hold (see Appendix D). Suppose that(r) is piecewise-con-

klim et (r) =, uniformly in 7. a7

ince s, and s take only integer values, (16) implies that for
§ufﬁciently largek, sy = s o . For suchk

tinuous, positive almost everywhere with respect to Lebesgue |g(3k) _ g(3)| _ |g(3 o k) — g(3)|.
measure, and upper-bounded hyAlso assumep(r) = 1
for r > ruax. FOr eachn, let X = (X]E"), i ,X,(L")) be a Supposes has.J jumps in[0, r,..] located atr; < --- < 7.

(D,,)*-valued interaction point process with common interacrhen
tion function, wherey is eitherp, or ¢o = 1. Thens(X ()

converges td” in distribution; i.e., for ally at whichp(Y > ¥) . - J _
is continuous [¢(s 0 px) — £(s)| = Z P l(m)) — b1 (r;)

j=1
lim (A(X™) > y) = oY > ). 7 1
’ _ _ _ < Z b1y~ (r5)) = (i)l
Proof: LetS denote the space of right-continuous, piece- j=1
wise-constant, integer-valued functions[0v,,.«]. Fors € S,

put By (17), 13, ' (r;) — 7; ask — oc. Sinces € S, ¢ is finite
. and continuous at all the;. Hence gy (1, ' (7)) — #1(r;) as
i(s) = — / 1 () s(dr). well. O

0

With this notation, we can write (recall (3) and (4)X ) = Discussion

g(g(.’Xoo)) andy = g(goo). The preceding proof appeals to [3, Theorem 2.3]. The hy-
NOW, the hypotheses of our theorem are sufficient for us thheses of that theorem are identical to those of our limit the-
apply [3, Theorem 2.3], which says that the sequence of p@€m, exceptfor our extra assumption thabe positive almost
cesseq S(r, X(M),0 < 7 < ruax} cONverges in distribution everywhere. To understand this extra assumption, itis helpful to
to the Poisson procedsS.o(r),0 < 7 < rmax}. It remains to consider a simple modification of our limit theorem to handle

showtha?/(S(-, X (™)) converges in distribution tf{ S.,) = v the case in whichy, is not identically one. In this casé,is

as well. given by (2), and the modified hypotheses for our limit theorem
Following Billingsley [1, pp. 30-31, Theorem 5.1], it sufficesre that bothy, and ¢, should be piecewise-continuous and

to find a setS; C S such that not only ig(S.. € S;) = 0, but Upper-bounded by andthat the sets

also/ is continuous ors¢. To this end, lefD, denote the set of . ) ) . ) do (1
discontinuities ofp; in [0, 705 Let Doy = {r € [0, 7max] : po(r) = 0 andy, (r) > 0}

DZ = {7’ S [0,7’11133(]; @1(7’) = 0} and

PutD; := D,UD.. ThenD; is the union of a finite set and a set D1 := {7 € [0, rmax] 1 o(r) > 0 ande: (r) = 0}
of measure zero. Thu3; has measure zero. Next, &t denote

the set ofs € S such thats has at least one jump discontinuitySh°U|d have measure zero. The proof would be as before, except
in D,. Then thatDy is replaced by the union of the discontinuitiessgfand

@1, again a finite set, an®. is replaced byDy; U D19 U Dy,
9(So0 € S1) = 9(Seu(P1) > 1) =1 — (S0 (D) = 0) where

whereS..(D;) is the number of points of the Poisson process Doo = {7 € [0, rmax] : 00 (r) = 1 (r) = O} (18)
that occur inD;. Since?; has measure zero, and sinfg,

is a Poisson process with an integrable, nonimpulsive intensiyote that sinceS., has intensit@2Aro (1), (Seo(Doo)=0) =1
©(S0(D1) = 0) = 1. Hence,p(Ss € S1) = 0. for bothy = g andyp = ¢;.
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APPENDIX B
DERIVATION OF (11), (13),AND (14)

Lety; be continuously differentiable df, r.,.«], with ¢; >
00N (0, rmax), @ndeps (r) = 1 for r > rypax.

The key to the derivations is to show tlidh (8) is the Fourier
transform of a nonnegative, integrable functanrhe assump-
tions ony; imply that it has an inverse

<p1_1; [01(0),1] = [0, Tmax]-

Furthermore, since>; (r) is continuous and positive for €
(07 Tmax)

d
%%

_ 1
Coglert @)

is also continuous. Making the change of variable —);(r)
in (8) yields

)

te (‘Pl(o)’ 1)

0

(w) = / ¢-4(0) db (19)
In1(0)
where
2207 () (7 (e?))e?
) .= 20
v(6) (o () (20)

for In ¢1(0) < @ < 0. For ¢ outside this range, set6) := 0.
Since~ is honnegative, we can show it is integrable by setti
w = 01in (19); then from (8) and (7);(0) = B < oc.

Now recall thaty(#) is defined to be zero fof < ln¢(0)
and foré > 0. This implies that fory < 0

/:o ~(6) db = /yofy(e) o,

Forlny:(0) < v < 0, we make the change of variabfe=
—In1(r), and obtain the integral in (13). Fgr < In¢;(0),
the lower limit in (21) can be set fm ¢4 (0); but this integral is
exactly¢(0) in (19), which equals3.

We next show the existence ¢fn (11). Since! is the Fourier
transform ofy, we see from the definition ok in (10) that it is
the Fourier transform of

I(y) (21)

k

g(y) =Y Ey)

k

(22)

oo
=9

wherev** is thek-fold convolution ofy with itself. We remark
that sincey is zero on[0, o), the same holds for the convolu-
tions~y**, and thus forg as well.

To conclude, we turn to (14). This equation is exactly [9, p.

753, Theorem 1], the hypothesis of which is

1 v y
T /_W | R(w)[2 dw = 0.

lim
W—oo

1363

APPENDIX C
MORE GENERAL INTERACTION FUNCTIONS

We now generalize the results of Section IV-B and of Ap-
pendix B. Lety; be upper-bounded by one, and suppose that for
somed > 3, there exist point§ = r; < -+ < rq = ryax SUCh
thate; is continuously differentiable with derivative strictly of
onesign orfr;, ;11 ). Furthermore, assume that andy; have
finite left and/or right limits at each;. We continue to assume
()01(7’) = 1forr 2 Tmax-

Under the above assumptions,(r) # 0 for » # r;. From
(8) we can write

d—1
(w) =) Gilw)
=1
where

Tit1 .
Ci(w) : / eI Maxe o(r) dr.

7

(23)

The restriction ofp; to [r;, 7;41], takingy; and¢; to have the
their right and left limit values at; andr; 1, respectively, is
continuously differentiable with derivative strictly of one sign
on (r;,7:4+1). Hence, has a local inverse

@15 [tis tipr] = [riyrigal

where, if¢, is increasing orjr;, 7;41], thent; = ¢1(r;) and

ng+l = p1(ri+1); if @1 is decreasing offv;, ;41], thent; =

01(ri41) andt; 11 = ¢1(r;). Next, making the change of vari-
abled = —i1 (r) in the definition of¢; yields

1nti+1

Gilw) = /mtz-

o 22eri(e?) pleri(e?))e’
71(9) = |<p1((p1*711(60))|

forln¢; < 6 < Int;y4, andv;(#) := 0 otherwise. Since we
have definedy; to be zero outsidm ¢; < 6 < lnt;41, the range
of integration above may be replaced By, o). Hence

d—1
(W)= Glw)
=1
d—1 0o
Z /_ 70 :(6) do

30) = Y ul6).

&% (0) db

where

<y (0) db

where

However, this hypothesis is equivalent to the requirement thgte analog of (13) is then

the distribution corresponding # have no point masses [2, p.
306]. In other words, the densigymust not contain impulses,
which is clearly true in (22) since contains no impulses.

I(y) = z_: I (y)
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where forln¢; < 6 < Int;44 L2 = Kn(n — 1) for some constank’, which can always be
Tit1 ) ) arranged in practice as shown below, then
T (y) :/ 2 r (r)dr, 1 increasing ofr;, ;1] . dr d4p?
e M) = o (1- -+ )
and 2K L, L2

o () and\,(r) — A = n/(2K). However, the extent to which the
Ii(y) = / 2Xr¢(r)dr, o, decreasing ofr;, 7 41].  first sparseness condition holds whers finite is determined
r by absolute error

Discussion A= (r) =X- 4% <1 - L7_> (24)
To handle the case in which, is not identically one, we and the relative error

note that/ is then given by (2) instead of (3). Also, in (5), (8), A= A (r) r r

and (23),—1(r) is replaced byyo(r) — v1(r). The above B - 4L_n 1= L,)’ (25)

analysis can be carried out as before if we use the chang€ye now turn to the second sparseness condition wheis
of variable ¢ = 4(r) — ¢1(r), and if we assume that ona square whose sides have length In this case
(resmix1)y ©1(r)/po(r) is continuously differentiable with atea (B.(§)NDy) _ area(B.(€)) mr?
derivative strictly of one sign. We can even handle the case in (D.)? < (D)2 =71
which for some interval$r;, r;11], bothgo(r) and(r) are areata ) areatn ) I )
zero (cf. the seDyq in (18) in Appendix A), since for such Sincearea (Dn\Tn(r)) = Ly, = (Ln = 2r)° = 4rLy —dr
G(w) in (23) is zero. on(r) < n(n—1) wr(drL, — 47’2).
= 2 L

This goes to zero it.? grows faster than(n — 1), as is the case
if L2 = Kn(n—1). To see the extent to which sparseness holds
whenn is finite, substitute:(n—1) = L2 /K andK = 7/(2)).

The sparseness conditions referred to in the paper are givdren
for a sequence of regiod),,} whose areas grow as — oo -3 ,
[3], [16]. The sparseness conditions are purely geometric con- () < A- 4L— <1 — L_>

n

APPENDIX D
THE SPARSENESSCONDITIONS

(26)
straints on how the regioP,, grows as the number of points
increases. We use the following notation. I%{¢) denote the  Now, in practice, we are given a fixed regidh say a square

closed ball (disk ilR?) centered af with radiusr with sides of lengthL, and a fixed number of points, say.
B.(¢) = {¢ e R%: ||¢' —¢|| <r} UsingL? = Kn(n — 1), we require thal.3, = L2. This leads
to

and letZ,,(r) denote the #-interior”
2
To(r) := {£ € Dy: Bo(&) € Dy} K=e—1
For example, ifD,, is a square whose sides have lenbfh then N(N -1
Z,(r) is the square with the same center but whose sides hayg| hence

length L,, — 2.
s aN(N -1
Next, let A=-—= % (27)
A o= D) avea (Ta(r) 2K 2L
T) = .
" 2 area (D)%’
and let REFERENCES
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