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Performance Analysis of Hypothesis Testing for
Sparse Pairwise Interaction Point Processes
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Abstract—The sufficient statistic for performing the likelihood
ratio test for pairwise interaction point processes is well-known;
however, the evaluation of its performance is a very difficult
problem. In this paper it is shown that the distribution of the
sufficient statistic can be approximated by the distribution of a
Poisson-driven shot-noise random variable, which can be readily
computed.

Index Terms—Gibbs point process, pairwise interaction point
process, Poisson approximation, shot noise.

I. INTRODUCTION

SPATIAL point processes arise in many applications such as
cosmology, ecology, forestry, seismology, and tomography,

[4, pp. 578–579], [17, pp. 115–120]. A common task in these
areas is that of testing for complete spatial randomness; i.e.,
whether the observed data is independently and uniformly dis-
tributed. When one has a model for the alternative to complete
spatial randomness, a standard hypothesis testing problem re-
sults. For example, an important class of alternatives is provided
by a type of Gibbs point process known as a pairwise interaction
point process [4, pp. 669–689], [15, Ch. 4]. These processes are
completely characterized by a univariate interaction function.
The problem of estimating this function has been addressed in
several papers, e.g., [3], [5]–[7], and [11]–[14]. In this paper,
we assume that the interaction function is known. One can then
show that the sufficient statistic for performing the likelihood
ratio test is given by a simple expression. However, since the
distribution of this statistic is not readily available, determining
the performance of the test is a very challenging problem. In this
paper we develop approximations of the desired distribution.

The paper is organized as follows. In Section II, the definition
of a pairwise interaction point process is given, and two exam-
ples are presented. In Section III, the hypothesis testing problem
is formulated, and in Section IV, the distribution of the like-
lihood ratio statistic is analyzed. To approximate the distribu-
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tion, numerical methods are presented and illustrated with two
examples. The conclusion is in Section V. Appendix A states
and proves a limit theorem that allows us to approximate the
distribution of the likelihood ratio statistic by the distribution
of a Poisson-driven shot-noise random variable. Appendices B
and C provide derivations and extensions of some of the results
stated in Section IV-B. Finally, Appendix D analyzes certain
sparseness hypotheses used in the limit theorem of Appendix A.

II. M ATHEMATICAL MODEL

Let be a bounded subset of the plane1 equipped with the
Euclidean norm In our numerical examples, we taketo
be the -by- square with lower left-hand corner at the origin.
A -valued random vector is called a
pairwise interaction point process[15] if it has a density of the
form

where is the normalizing constant

and the function is called theinteraction
function. The idea is that if (resp., ), then realiza-
tions in which many point pairs have will have
low (resp., high) probability. In our applications, is small
for small and for large ; hence, realizations in which pairs
of points are close are discouraged, while pairs of points that are
far from each other are neither encouraged nor discouraged. In
other words, points at close range tend to repel each other.

Example 1: If for all , then the are independent
and uniformly distributed. A realization of such a process with

points is shown in Fig. 1. For comparison with Example
2, point pairs that are within distance are connected.

Example 2: Let for , and
for An -point realization of this

process with is shown in Fig. 2. Point pairs that are
within distance are connected. Note that there are fewer such
pairs than in Fig. 1 due to the inhibition effects of the interaction
function.

1The results here and in [3] should extend to any finite-dimensional Euclidean
space with the necessary dimensional changes to the sparseness conditions in
Appendix D; e.g., areas become volumes, etc. See [16] for specific sparseness
formulas.
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Fig. 1. A point process with no interaction among points. Pairs closer than0:5 are indicated by the lines joining them.

It is now convenient to introduce thepair-potential function
With this notation

Next, let denote the number of point pairs inwhose
interpoint distance is less than or equal toThen is a
nondecreasing, piecewise-constant, integer-valued function of
, with jump discontinuities whenever for some

and in With this notation, the sum above can be written
as a Stieltjes integral

III. T HE HYPOTHESIS-TESTING PROBLEM

Let denote the hypothesis that has pair potential
, and let denote the hypothesis thathas pair poten-

tial Then the likelihood ratio test for this problem
is easily seen to be equivalent to

where is an adjustable threshold, and

The corresponding probabilities of detection and false alarm are

and (1)

respectively, where indicates that is an interaction point
process with interaction function , and indicates that is

an interaction point process with interaction function Com-
puting the probabilities in (1) is the focus of this paper.

IV. PERFORMANCEANALYSIS

As noted in Section II, we usually take interaction functions to
be one for large, say Then
for Hence, the integral for above reduces to

(2)

Without loss of generality (see the discussion at the end of Ap-
pendix A and also at the end of Appendix C), we take for the
null hypothesis as in Example 1. Then ,
and we have

(3)

Using this expression for, our goal is to approximate the prob-
abilities in (1). Since the results below apply to bothand ,
we simplify the notation by writing where has
interaction , and it is understood that can be taken as either

or as needed. However, no matter whetherhas inter-
action function or , in (3) is always defined using

Our first result is a limit theorem, whose precise statement
and proof are given in Appendix A. Loosely speaking, the the-
orem says that if the number of pointsis large, and if the region

is large enough that the points are “sparse,” then

where the random variable is defined as follows. Let ,
be an inhomogeneous Poisson process with in-

tensity , where is the interaction function of , and
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Fig. 2. A point process with inhibition of pairs of close points. Pairs closer than0:5 are indicated by the lines joining them. Note that there are fewer such pairs
than in Fig. 1.

the positive constant is determined by the sparseness condi-
tions in Appendix D. Then

(4)

We have thus reduced the computation of to that
of

Our second result is that for many interaction functions, it
is possible to calculate accurately and quickly. In the
next subsection, we address the case in whichis piecewise-
constant. In the following subsection, we address the case in
which is strictly increasing with continuous derivative on

In Appendix C, this is generalized to the case in which
is piecewise strictly monotonic with continuous derivative on

each segment.

Remark 1: A referee has suggested that an alternative to our
methods for computing is to use simulation. The
reason being that it is easy to simulate Poisson processes and
shot-noise random variables (as opposed to simulating interac-
tion point processes to estimate empirically as we
did for comparison in Figs. 3 and 4).

For use below, note that the characteristic function ofis
[10, Ch. 3]

E (5)

Since is analogous to a single time sample of a shot-noise
or filtered Poisson process [10, p. 25], we calla shot-noise
random variable.

A. Piecewise-Constant

When the interaction function is piecewise-constant,
can be approximated as follows. If is piecewise-

constant, then so is Suppose that takes value on the
interval , where The
random variable in (4) can then be written as

where is the number of points of the Poisson
process that occur in the interval We now as-
sume that the are rational so that there is a positive integer

such that is an integer-valued random variable.
Since , it suffices to compute the
complementary cumulative distribution function of For in-
teger-valued random variables, we have from [8] that

(6)

where

odd
otherwise

and is the characteristic function of

E E

Combining this with (5) and the fact that is piecewise-con-
stant, we have
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Fig. 3. Empirical estimates (solid lines) and shot-noise estimates (dashed lines) of the probabilities of false alarm (left) and detection (right) for Example 3. The
horizontal axisy is the threshold of the test.

Furthermore,

where if for all and if then
(recall that ).

Example 3: Consider the hypothesis-testing problem for re-
alizations of points in a square region whose sides have
length From the analysis of the sparseness conditions
in Appendix D, and (27) in particular, Let

To approximate using (6), we must use a finite value
of ; we found that provided sufficient accuracy. A plot
of the approximation of is given by the dashed line
on the left in Fig. 3; the approximation of is given
by the dashed line on the right. To estimate the true values of

we used empirical estimates obtained from 5000
simulations of under each hypothesis. These estimates are
shown by the solid lines in Fig. 3, with the solid line on the left
being the estimate of , and the solid line on the
right being the estimate of

B. Piecewise-Monotonic

In this subsection we assume that is continuously differ-
entiable on with on and
for The discussion of this case easily generalizes

when is piecewise-continuously differentiable with deriva-
tive strictly of one sign on each piece, though the notation is
more cumbersome; see Appendix C.

We begin by analyzing the characteristic function ofLet

(7)

and

(8)

Note that since is either or , , and the integrand in
(8) is absolutely integrable. Using the definitions ofand , the
characteristic function of in (5) can be written as

, which can be factored as

(9)

where

(10)

Taking the inverse Fourier transform of (9), we have

(11)

where is the density of , is the inverse Fourier transform
of , and is the inverse Fourier transform of Now, it is not
obvious at this stage thatand exist; i.e., and might be
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Fig. 4. Empirical estimates (solid lines) and shot-noise estimates (dashed lines) of the probabilities of false alarm (left) and detection (right) for Example 4. The
horizontal axisy is the threshold of the test.

Fourier transforms of measures that are not absolutely contin-
uous with respect to Lebesgue measure. Fortunately, these den-
sities do exist, as shown in Appendix B. Next, write2

(12)

where and It is
shown in Appendix B that

(13)

and that

(14)

where for odd, and other-
wise.

Remark 2: For numerical calculation, we use the approxima-
tion

(15)

where and are finite. Note that for plotting equally spaced
samples, the approximation is efficiently computed using a fast
Fourier transform routine.

2The assumptions on' imply that it is upper-bounded by one; hence is
nonnegative, andY in (4) is nonpositive. SinceY is nonpositive,}(Y > y) =
0 for y � 0:

Remark 3: If a closed-form antiderivative of is
known, then in (7) and in (13) are trivial to eval-
uate. In particular, when , and

Example 4: Consider the hypothesis-testing problem for re-
alizations of points in a square region whose sides have
length From the analysis of the sparseness conditions in
Appendix D, and (27) in particular, Let be the
interaction function of Example 2. Then the quantities, ,

, and are all easily computed in closed form under
each hypothesis. Taking and provided suffi-
cient accuracy in (15). We then substituted (15) into (12). A plot
of the approximation of is given by the dashed line
on the left in Fig. 4; the approximation of is given
by the dashed line on the right. To estimate the true values of

and we used empirical estimates
obtained from 5000 simulations of under each hypothesis.
These estimates are shown by the solid lines in Fig. 4, with the
solid line on the left being the estimate of and
the solid line on the right being the estimate of

V. CONCLUSION

Although the sufficient statistic for performing the like-
lihood ratio test for pairwise interaction point processes is easy
to compute, the evaluation of its performance is a challenging
problem. The limit theorem of Appendix A shows that in the
case of sparseness, the distribution of could be approxi-
mated by the distribution of the shot-noise random variable,
and it is then shown that the distribution of could be com-
puted using (6) or (12), depending on the form of the interaction
function. While the analysis of (6) in Section IV-A is straight-
forward, the derivation of (12) in Section IV-B is more com-
plicated, and the details are found in Appendix B. Extensions
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are treated in Appendix C. Finally, we note that our analysis of
the sparseness conditions in Appendix D in the case of square
regions leads to a simply computable value for the constant
which appears in the characteristic function ofin (5).

APPENDIX A
LIMIT THEOREM

This result establishes the approximation

where is defined in (4).

Theorem: Let be an increasing sequence of bounded
Borel subsets of the plane for which the sparseness conditions in
Appendix D hold. For example, if is a square whose sides
have length proportional to, then the sparseness conditions
hold (see Appendix D). Suppose that is piecewise-con-
tinuous, positive almost everywhere with respect to Lebesgue
measure, and upper-bounded by. Also assume
for For each , let be a

-valued interaction point process with common interac-
tion function , where is either or Then
converges to in distribution; i.e., for all at which
is continuous

Proof: Let denote the space of right-continuous, piece-
wise-constant, integer-valued functions on For ,
put

With this notation, we can write (recall (3) and (4))
and

Now, the hypotheses of our theorem are sufficient for us to
apply [3, Theorem 2.3], which says that the sequence of pro-
cesses converges in distribution
to the Poisson process It remains to
show that converges in distribution to
as well.

Following Billingsley [1, pp. 30–31, Theorem 5.1], it suffices
to find a set such that not only is , but
also is continuous on To this end, let denote the set of
discontinuities of in Let

Put Then is the union of a finite set and a set
of measure zero. Thus has measure zero. Next, let denote
the set of such that has at least one jump discontinuity
in Then

where is the number of points of the Poisson process
that occur in Since has measure zero, and since
is a Poisson process with an integrable, nonimpulsive intensity,

Hence,

We now turn to the continuity of on Let be a se-
quence in that converges to We must show that

Now, in [3, Theorem 2.3], which establishes the
convergence in distribution of to , the space is
equipped with the Skorohod topology [1, pp. 111–112]. To say
that in the Skorohod topology means the following. Let

be the class of strictly increasing, continuous mappings of
onto itself. Then there exist such that

uniformly in (16)

and

uniformly in (17)

Since and take only integer values, (16) implies that for
sufficiently large , For such

Suppose has jumps in located at
Then

By (17), as Since , is finite
and continuous at all the Hence, as
well.

Discussion

The preceding proof appeals to [3, Theorem 2.3]. The hy-
potheses of that theorem are identical to those of our limit the-
orem, except for our extra assumption thatbe positive almost
everywhere. To understand this extra assumption, it is helpful to
consider a simple modification of our limit theorem to handle
the case in which is not identically one. In this case,is
given by (2), and the modified hypotheses for our limit theorem
are that both and should be piecewise-continuous and
upper-bounded by and that the sets

and

and

and

should have measure zero. The proof would be as before, except
that is replaced by the union of the discontinuities ofand

, again a finite set, and is replaced by
where

(18)

Note that since has intensity ,
for both and
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APPENDIX B
DERIVATION OF (11), (13),AND (14)

Let be continuously differentiable on with
on , and for
The key to the derivations is to show thatin (8) is the Fourier

transform of a nonnegative, integrable functionThe assump-
tions on imply that it has an inverse

Furthermore, since is continuous and positive for

is also continuous. Making the change of variable
in (8) yields

(19)

where

(20)

for For outside this range, set
Since is nonnegative, we can show it is integrable by setting

in (19); then from (8) and (7),
Now recall that is defined to be zero for

and for This implies that for

(21)

For we make the change of variable
, and obtain the integral in (13). For ,

the lower limit in (21) can be set to ; but this integral is
exactly in (19), which equals

We next show the existence ofin (11). Since is the Fourier
transform of , we see from the definition of in (10) that it is
the Fourier transform of

(22)

where is the -fold convolution of with itself. We remark
that since is zero on the same holds for the convolu-
tions , and thus for as well.

To conclude, we turn to (14). This equation is exactly [9, p.
753, Theorem 1], the hypothesis of which is

However, this hypothesis is equivalent to the requirement that
the distribution corresponding to have no point masses [2, p.
306]. In other words, the densitymust not contain impulses,
which is clearly true in (22) since contains no impulses.

APPENDIX C
MORE GENERAL INTERACTION FUNCTIONS

We now generalize the results of Section IV-B and of Ap-
pendix B. Let be upper-bounded by one, and suppose that for
some , there exist points such
that is continuously differentiable with derivative strictly of
one sign on Furthermore, assume that and have
finite left and/or right limits at each We continue to assume

for
Under the above assumptions, for From

(8) we can write

where

(23)

The restriction of to , taking and to have the
their right and left limit values at and , respectively, is
continuously differentiable with derivative strictly of one sign
on Hence, has a local inverse

where, if is increasing on , then and
if is decreasing on then

and Next, making the change of vari-
able in the definition of yields

where

for , and otherwise. Since we
have defined to be zero outside , the range
of integration above may be replaced by Hence

where

The analog of (13) is then



1364 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

where for

increasing on

and

decreasing on

Discussion

To handle the case in which is not identically one, we
note that is then given by (2) instead of (3). Also, in (5), (8),
and (23), is replaced by The above
analysis can be carried out as before if we use the change
of variable , and if we assume that on

, is continuously differentiable with
derivative strictly of one sign. We can even handle the case in
which for some intervals , both and are
zero (cf. the set in (18) in Appendix A), since for such,

in (23) is zero.

APPENDIX D
THE SPARSENESSCONDITIONS

The sparseness conditions referred to in the paper are given
for a sequence of regions whose areas grow as
[3], [16]. The sparseness conditions are purely geometric con-
straints on how the region grows as the number of points
increases. We use the following notation. Let denote the
closed ball (disk in ) centered at with radius

and let denote the “-interior”

For example, if is a square whose sides have length, then
is the square with the same center but whose sides have

length
Next, let

and let

The first sparseness condition is , where the
limit is finite, positive, and does not depend onThe second
sparseness condition is

For the square whose sides have length

Then

and we see that the first sparseness condition will hold if and
only if is asymptotically proportional to If in fact

for some constant , which can always be
arranged in practice as shown below, then

and However, the extent to which the
first sparseness condition holds whenis finite is determined
by absolute error

(24)

and the relative error

(25)

We now turn to the second sparseness condition whenis
a square whose sides have length In this case

Since

This goes to zero if grows faster than as is the case
if To see the extent to which sparseness holds
when is finite, substitute and
Then

(26)

Now, in practice, we are given a fixed region, say a square
with sides of length , and a fixed number of points, say
Using , we require that This leads
to

and hence

(27)
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