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One can now use (17) and (20) to obtain

H(v2[k] j v1[k]) �
p
2b

N
log

cNp
2b

: (21)

Using (16), we then obtain the desired result

H(v1[k]; . . . ; vN [k]) � �(log(N)) : (22)
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Theorems and Fallacies in the Theory of
Long-Range-Dependent Processes

John A. Gubner, Member, IEEE

Abstract—It is frequently claimed in the literature that long-range de-
pendence has equivalent formulations in the time domain and the frequency
domain. Although many researchers understand that this is only “opera-
tionally true,” i.e., it holds in cases of interest, many state this equivalence as
a mathematical theorem. In particular, it is claimed as a theorem in the lit-
erature that if a covariance function decays like one over a fractional power
of , then the corresponding power spectral density tends to infinity at the
origin. It is shown here that the power spectral density need not exist. Con-
versely, if the power spectral density exists and tends to infinity at the origin,
it is shown here that the covariance may not have the claimed decay. To con-
clude, a new theorem is proved that gives sufficient conditions on the power
spectral density to guarantee that a process is asymptotically second-order
self-similar (ASOSS). This result is used to provide a counterexample to the
claim in the literature that asymptotic second-order self-similarity implies
long-range dependence.

Index Terms—Asymptotic second-order self-similarity, exact second-
order self-similarity, long-range dependence, slowly varying functions.

I. INTRODUCTION

A random process Xk with constant mean � := [Xn] and covari-
ance [(Xk � �)(Xm � �)] that depends on k and m only through
their difference k �m is said to be wide-sense stationary. The covari-
ance function of the process is defined by

C(n) := [(Xm+n � �)(Xm � �)]:

For sufficiently well-behaved sequencesC(n), the power spectral den-
sity of the process is defined as the Fourier series

S(f) =

1

n=�1

C(n)e�j2�fn (1)

and the covariance function C(n) is recovered from S(f) using the
formula for Fourier series coefficients

C(n) =
1=2

�1=2

S(f)ej2�fndf:

The next two theorems are classical results about Fourier series.

Theorem 1: Let C(n) be a covariance function that satisfies

C(n) =
p(jnj)
jnj� ; for n 6= 0 (2)

where p(t) is normalized slowly varying at infinity (see Appendix A),
and 0 < � < 1. Then the power spectral density (1) exists and satisfies

lim
f!0

S(f)

p 1

2�jfj
jf j��1

=
2

(2�)1��
�(1� �) sin(��=2) (3)

where �(x) :=
1

0
�x�1e��d�, x > 0, is the gamma function.
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If we use the fact that covariance functions are even to write

S(f) =

1

n=�1

C(n)e�j2�fn

=C(0) + 2

1

n=1

p(n)

n�
cos(n2�f)

then Theorem 1 follows immediately from [11, p. 187, Theorem 2.6] if
we also use the fact that normalized slow variation implies t�p(t)!1
as t ! 1 whenever � > 0.

Remark: Note that (3) can be rewritten as

lim
f!1

2�jf j S(f)

C 1

2�jfj

= 2�(1� �) sin(��=2):

Theorem 2: LetC(n) have a power spectral density S(f). Suppose
that

S(f) =
q(jf j)
jf j1�� ; for f 6= 0 (4)

where q(f) is a function of bounded variation in every interval ("; 1=2),
and is normalized slowly varying at zero. If 0 < � < 1, then

lim
n!1

C(n)

q 1

2�n
n��

=
(2�)1��

�
�(�) sin(�(1� �)=2): (5)

Theorem 2 is a restatement of [11, p. 190, Theorem 2.24].

Remark: Equation (5) can be rewritten as

lim
n!1

2�n
C(n)

S 1

2�n

= 2�(�) sin (�(1� �)=2) :

It is sometimes convenient to rewrite (3) as

S(f) � ~p(jf j)
jf j1�� ; for f near 0 (6)

and to rewrite (5) as

C(n) � ~q(n)

n�
; for large n (7)

where ~p and ~q are suitably defined. Notice the similarity of (6) and (4)
and of (7) and (2). If one is not careful, one might think that the conclu-
sion of Theorem 1 is the same as the hypothesis of Theorem 2, and that
the conclusion of Theorem 2 is the same as the hypothesis of Theorem
1. Combining these two misconceptions might lead one to conclude
that (6) and (7) are equivalent. While Cox in his review of long-range
dependence was careful to talk about “essentially equivalent” condi-
tions [4, Sec. 3], others have asserted exact equivalence. For example,
in the special case that ~p and and ~q are constants, say ~p(�) � s and
~q(�) � c, it is frequently claimed in the literature, e.g., [2, p. 43, The-
orem 2.1], [8, pp. 20–21], that if C(n) satisfies

lim
n!1

C(n)

n��
= c (8)

where 0 < � < 1 and c is a positive finite constant, then the power
spectral density S(f) exists and satisfies

lim
f!0

S(f)

jf j��1 = s (9)

where s is another positive finite constant. A process satisfying (8) is
said to be long-range dependent (LRD). Conversely, the literature also
frequently claims that if the power spectral density satisfies (9), then the
covariance function satisfies (8).

The claimed equivalence of (8) and (9) is plausible in light of the
following example. For 0 < d < 1=2, let

S(f) = j1� e�j2�f j�2d = [4 sin2(�f)]�d: (10)

If we put � = 1 � 2d, then 0 < � < 1, and

lim
f!0

S(f)

jf j��1 = (2�)�2d:

The corresponding covariance function is [6, Theorem 1(d)]

C(n) =
1=2

�1=2

S(f)ej2�fndf =
�(1� 2d)�(n+ d)

�(1� d)�(d)�(n+ 1� d)

and by Stirling’s formula, �(x) � p2�xx�1=2e�x, we have

lim
n!1

C(n)

n��
=

�(1� 2d)

�(1� d)�(d)
: (11)

In spite of the above example, we show in Section II that every co-
variance function satisfying (8) with 0 < � < 1=2 can be perturbed
to obtain a new covariance function that satisfies (8) with the same
values of � and c, but whose power spectral measure is singular; i.e.,
the power spectral density does not exist. In other words, LRD (8) does
not imply (9).

If (8) holds for some 1=2 < � < 1, then the covariance sequence
is square summable, and it follows that the power spectral density (1)
exists as a limit in L2[�1=2; 1=2]. We show in Section III that if (9)
also holds, then S(f) can always be perturbed to obtain a new power
spectral density that satisfies (9) with the same values of � and s but
whose corresponding covariance function does not satisfy (8). In other
words, (9) does not imply LRD (8).

Another common claim in the literature, e.g., [8, p. 21, Sec. 1.4.1.4],
is that if a process is asymptotically second-order self-similar
(ASOSS) (defined in Section IV) with Hurst parameter 1=2 < H < 1,
then the process is LRD. In Section IV, we present a new theorem
(Theorem 3) that gives sufficient conditions on the power spectral
density for the process to be ASOSS. The theorem is then used to give
an example of an ASOSS process (with 1=2 < H < 1) that is not
LRD. Thus, ASOSS does not imply LRD (8).

Conditions that do imply LRD are discussed in Section V.

II. LRD (8) DOES NOT IMPLY (9)

Suppose that (8) holds for some 0 < � < 1=2. Let 0 < " < 1=2�
�. Then by [12, p. 146, Theorem 10.12], there exists a nondecreasing
function G(f) that is singular, and such that

gn :=
1=2

�1=2

ej2�fndG(f)

satisfies, for sufficiently large n

jgnj � K1

n1=2�"

for some positive finite constantK1. Consider now the covariance func-
tion1

C"(n) := C(n) + gn

and write

C"(n)

n��
=

C(n)

n��
+

gn
n��

:

1If gn is complex valued, we can replace it by (gn + g�n)=2 and we can
replace G with the corresponding increasing function.
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Observe that

jgnj

n��
�

K1

n1=2�"��
! 0

as n ! 1 since 1=2 � " � � > 0. Hence,

lim
n!1

C"(n)

n��
= c:

However, by construction, the spectral distribution corresponding to
C"(n) is singular; i.e., it does not have a density.

III. CONDITION (9) DOES NOT IMPLY LRD (8)

Suppose that (8) and (9) hold for some 1=2 < � < 1. Fix 0 < " <
� � 1=2, and consider the function

H(f) :=

1

n=1

hne
j2�fn

where

hn :=
ej�n lnn

n1=2+"

and � > 0. The series for H(f) converges uniformly [11, p. 197].
Hence, H is continuous, and therefore bounded on [�1=2; 1=2]. Let
H(f)� denote the complex conjugate ofH(f). SinceH(f) +H(f)�

is a bounded real-valued function, for large enough K2

Q(f) := H(f) +H(f)� +K2 � 0:

Since V (f) := [Q(f) + Q(�f)]=2 is real, even, and nonnegative,
S(f) + V (f) is a power spectral density. Since V (f) is bounded,
V (f)=jf j��1 ! 0 as f ! 0. Hence,

lim
f!0

S(f) + V (f)

jf j��1
= s:

If we denote the covariance function corresponding to S(f)+V (f)

by C(n), then

C(n) = C(n) + Rehn = C(n) +
cos(�n lnn)

n1=2+"
:

If � = (�=2)= ln 3, and if we take n = 3k , then

C(n) = C(n) +
cos(�

2
3kk)

n1=2+"
: (12)

If k is a multiple of 4, the above cosine is one, and

C(n)

n��
=
C(n)

n��
+ n��(1=2+"): (13)

Since � � (1=2 + ") > 0, as n runs through the subsequence n = 3k

with k a multiple of 4

C(n)

n��
! c+1 =1:

Remark: One might wonder if

C(n)

n��
! c0

for some �0 6= � and some positive c0 possibly different from c. How-
ever, this cannot happen. The limit (8) implies that for 0 < �0 < �,
C(n)=n�� ! 0, while if 1 > �0 > �, C(n)=n�� ! 1. On ac-
count of (13), the only possibility might be �0 = 1=2 + ". If we take
n = 3k with k odd in (12), we getC(n) = C(n), which, when divided
by n�� , goes to zero since �0 = 1=2 + " < �.

Remark: The key to this section was the construction of a covari-
ance function with terms that decayed at different rates. Cox suggested
that an analogous decay situation could arise in the frequency domain
[4, p. 58], but he did not pursue it.

IV. ASOSS DOES NOT IMPLY LRD (8)

Consider the partitioning of the sequenceXn into blocks of size m

X1; . . . ; Xm

1st block

Xm+1; . . . ; X2m

2nd block

. . .X(n�1)m+1; . . . ; Xnm

nth block

. . . :

The average of the nth block is

X(m)
n :=

1

m

nm

k=(n�1)m+1

Xk:

The superscript (m) indicates the block size, which is the number of
terms used to compute the average. The subscript n indicates the block
number. We call fX(m)

n g1n=�1 the aggregated process. It is easy to
see that the aggregated process is also wide-sense stationary. The co-
variance function of the aggregated process is denoted by C(m)(n).
We say that Xn is ASOSS with Hurst parameter 0 < H < 1 if

lim
m!1

C(m)(n)

m2H�2
=
�21
2

[jn + 1j2H � 2jnj2H + jn� 1j2H ] (14)

for some positive finite constant �21. If we put

Yn :=

n

i=1

(Xi � �)

where � := [Xn], then (14) is equivalent to the condition (see Ap-
pendix B)

lim
n!1

Y 2
n

n2H
= �21: (15)

The following result is proved in Appendix C. It gives sufficient con-
ditions for a process to be ASOSS.

Theorem 3: LetXn be a wide-sense stationary sequence with power
spectral density S(f) satisfying (9) along with the additional condition
that for every 0 < � < 1=2

sup
f2[�;1=2]

S(f) <1: (16)

Then Xn is ASOSS in that (15) holds with H = 1� �=2, and

�21 = s �
4 cos(��=2)�(�)

(2�)�(1� �)(2� �)
:

Hence, the S(f) in (10) corresponds to a process that is asymptot-
ically second-order self-similar by our theorem and is LRD by (11).
However, if we perturb this S(f) as in Section III, then S(f) + V (f)
also satisfies the hypotheses of our theorem, and corresponds to an
ASOSS process; but this process is not LRD.

V. WHAT DOES IMPLY LRD?

Suppose that instead of (15), we make the stronger assumption (no
limit here) 2

Y 2
n = �21n

2H ; n = 1; 2; . . . : (17)

Then (8) holds with � = 2 � 2H and c = �21H(2H � 1). This can
be seen by substituting (17) into (22) in Appendix B to obtain

C(n) =
�21
2

[(n+ 1)2H � 2n2H + (n� 1)2H]

=
�21
2
n2H (1=n) (18)

where  (t) := (1 + t)2H � 2 + (1� t)2H , and applying l’Hôpital’s
rule twice to  (t)=t2 as t ! 0.

2Since this holds for all n, and not just asymptotically, taking n = 1 yields
�21 = C(0).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005 1237

As just noted, (17) implies (18). The converse is also true, as can be
seen by induction. Property (18) is known as exact second-order self-
similarity (ESOSS). Since (17) implies (15), ESOSS implies ASOSS.

It is convenient to generalize the notions of ESOSS (17), ASOSS
(15), and LRD (8). A process is said to be ESOSS-L if

Y 2
n = �2

1
n2HL(n); n = 1; 2; . . .

where L is slowly varying at infinity (see Appendix A). Similarly, a
process is said to be ASOSS-L if

lim
n!1

Y 2
n

n2HL(n)
= �2

1
:

Note that ESOSS-L implies ASOSS-L. A process is said to be LRD-L
if

lim
n!1

C(n)

n2H�2L(n)
= �2

1
H(2H � 1): (19)

It was shown in [10, pp. 1721–1722, eq. (A.9) ff.] that ESOSS-L im-
plies LRD-L. Taking L(n) � 1 recovers the special case that ESOSS
implies LRD (8). It was shown in [10, Theorem 2, g) ⇒ h)] that LRD-L
implies ASOSS-L. Taking L(n) � 1 shows that ordinary LRD (8) im-
plies ASOSS (15) (as reported in [1, p. 261] without proof).

Remark: To prove [10, Theorem 2, g) ⇒ h)] in the special case
L(n) � 1 requires no theory of slowly varying functions. The proof in
[10] simplifies and reduces to exploiting the inequality

n�1

�=k

(� + 1)�� �
n

k

t��dt �

n�1

�=k

���

and a similar one for the integral of t1��.

After this correspondence was submitted, Taqqu [9, p. 15] reported
the following result.

Proposition 4: Suppose that a wide-sense stationary process has a
covariance function C(n) that is ultimately monotone as n ! 1 and
has power spectral density S(f).

i) If for some slowly varying function L, the process is LRD-L in
the sense that C(n) satisfies (19), then

lim
f!0

S(f)

jf j1�2H ~L(jf j)
= 1 (20)

where ~L(�) is proportional to L(1=�).
ii) Conversely, if (20) holds for some ~L slowly varying at zero, then

the process is LRD-L in the sense that C(n) satisfies (19) with
L(�) proportional to ~L(1=�).

Remark: Given only the power spectral density S(f) of a process,
it may be difficult to use the proposition to show that the process is
LRD-L. The reason is that not only do we have to establish (20), but
we also have to useS(f) to establish thatC(n) is ultimately monotone.

APPENDIX A
SLOWLY VARYING FUNCTIONS

Definition 5 ([3, p. 6]): A positive measurable function p(t) is said
to be slowly varying at infinity if

lim
t!1

p(�t)

p(t)
= 1; � > 0: (21)

If the limit is taken as t # 0, the function is said to be slowly varying
at zero.

Definition 6: A positive function p(t) is said to be normalized
slowly varying at infinity if for every � > 0, for sufficiently large t,

t�p(t) is increasing and t��p(t) is decreasing in t. Normalized slow
variation at zero is defined similarly.

Remark: For normalized slowly varying functions, it is easy to show
that (21) holds [11, p. 186]. In fact, the set of normalized slowly varying
functions is a proper subclass of the slowly varying functions. See [3,
pp. 15 and 24].

APPENDIX B
EQUIVALENCE OF (14) AND (15)

To show that (14) implies (15), first observe that

C(n)(0) = X
(n)
1 � �

2

= Y 2
n =n2:

Then

Y 2
n

n2H
=

n2C(n)(0)

n2H
=

C(n)(0)

n2H�2
! �2

1
by (14):

Proving that (15) implies (14) requires a bit more work. A simple
calculation, e.g., [7, eq. (8.2)], shows that

2C(n) = Y 2
n+1 � Y 2

n � Y 2
n � Y 2

n�1 : (22)

Similarly, if C(m)(n) denotes the covariance function of X(m)
n :=

mX
(m)
n , then [7, eq. (8.3)]

2C(m)(n) = Y 2
(n+1)m � 2 Y 2

nm + Y 2
(n�1)m :

Since C(m)(n) = C(m)(n)=m2

C(m)(n)

m2H�2
=

1

2

Y 2
(n+1)m

[(n+ 1)m]2H
(n+ 1)2H

�2
Y 2
nm

(nm)2H
n2H +

Y 2
(n�1)m

[(n� 1)m]2H
(n� 1)2H

and we see that (15) implies (14).

APPENDIX C
PROOF OF THEOREM 3

To establish (15), observe that

Y 2
n =

n

i=1

n

k=1

C(i� k)

=

n

i=1

n

k=1

1=2

�1=2

S(f)ej2�f(i�k)df

=
1=2

�1=2

S(f)

n

k=1

e�j2�fk
2

df

=
1=2

�1=2

S(f)
sin(n�f)

sin(�f)

2

df

=n2
1=2

�1=2

S(f)
sin(n�f)

n�f

2
�f

sin(�f)

2

df:

We now show that

lim
n!1

Y 2
n

n2��
= s �

4 cos(��=2)�(�)

(2�)�(1� �)(2� �)
:

The first step is to put

in(�) := n�
1=2

�1=2

1

jf j1��
sin(n�f)

n�f

2
�f

sin(�f)

2

df
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and show that

Y 2
n

n2��
� s � in(�)! 0:

The second step is to put

jn(�) := n�
1=2

�1=2

1

jf j1��
sin(n�f)

n�f

2

df

and show that in(�)� jn(�) ! 0. The proof is concluded by noting
that jn(�) ! j(�), where

j(�) := ���
1

�1

1

j�j1��
sin �

�

2

d�

=
4 cos(��=2)�(�)

(2�)�(1� �)(2� �)
by [5, p. 447]:

Step 1

Let " > 0 be given, and let 0 < � < 1=2 be so small that for
0 < jf j < �

S(f)

jf j��1
� s < "

or

S(f)�
s

jf j1��
<

"

jf j1��
:

Put

B� := sup
jfj2[�;1=2]

S(f)�
s

jf j1��
<1:

Let n be so large that

1

n1��
<

"

B�
:

Observe that

Y 2
n

n2��
� s � in(�)

is equal to

n�
1=2

�1=2

S(f)�
s

jf j1��
sin(n�f)

n�f

2
�f

sin(�f)

2

df: (23)

Since the integrand is even, we can restrict our attention to [0; 1=2]. We
first consider the interval [0; �] and later [�; 1=2]. Write

n�
�

0

S(f)�
s

f1��

sin(n�f)

n�f

2
�f

sin(�f)

2

df

� "n�
�

2

2 �

0

1

f1��

sin(n�f)

n�f

2

df

= "n�
�

2

2 ���

n�

n��

0

1

�1��
sin �

�

2

d�

� "
�

2

2

���
n��

0

1

�1��
sin �

�

2

d�

< "
�

2

2 j(�)

2
:

We return to (23) and focus now on the range of integration [�; 1=2].
Write

n�
1=2

�

S(f)�
s

f1��

sin(n�f)

n�f

2
�f

sin(�f)

2

df

� n�B�
�

2

2 1=2

�

sin(n�f)

n�f

2

df

= n�B�
�

2

2 n�=2

n��

sin �

�

2
d�

n�

�
B�

n1��

�

4

1

0

sin �

�

2

d�

< "
�

4

1

0

sin �

�

2

d�:

Step 2

Let " > 0 be given, and let 0 < � < 1=2 be so small that for
0 < jf j < �

�f

sin(�f)

2

� 1 < ":

Let n be so large that

1

n1��
<

"

���1
:

Observe that in(�) � jn(�) is equal to

n�
1=2

�1=2

1

jf j1��
sin(n�f)

n�f

2
�f

sin(�f)

2

� 1 df

and the integrand is nonnegative. Write

n�
�

0

1

f1��

sin(n�f)

n�f

2
�f

sin(�f)

2

� 1 df

� "n�
�

0

1

f1��

sin(n�f)

n�f

2

df

< "j(�)=2:

To conclude Step 2, write

n�
1=2

�

1

f1��

sin(n�f)

n�f

2
�f

sin(�f)

2

� 1 df

� n�
1

�1��
�2

4
� 1

1=2

�

sin(n�f)

n�f

2

df

<
���1

�n1��

�2

4
� 1

1

0

sin �

�

2

d�

<
"

�

�2

4
� 1

1

0

sin �

�

2

d�:
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Survival Exponential Entropies

Konstantinos Zografos and Saralees Nadarajah

Abstract—The multivariate survival function of a random vector is
used to define a broad class of entropy measures. Several properties of the
proposed class are studied and explicit expressions of the measures derived
for specific probabilistic models. The cumulative residual entropy, intro-
duced by Rao et al. and Wang et al., is a particular case of the proposed
class of measures.

Index Terms—Exponential entropy, multivariate survival function,
Shannon entropy.

I. INTRODUCTION

The notion of entropy is of fundamental importance in different areas
such as physics, probability and statistics, communication theory, and
economics. It was originally developed in the field of thermodynamics
and extended later to statistical mechanics. The concept of entropy is
of particular importance in the field of information theory and it was
introduced there by Shannon in [3]. If X is a random variable with
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an absolutely continuous distribution with probability density function
f(x) then the Shannon entropy of the density f is defined by

HSh(X) = �

+1

�1

f(x) ln f(x)dx (1)

which may be regarded as a descriptive quantity of the distribution
given by f . The conditions for the existence of (1) are derived in [4].

Since Shannon’s [3] pioneering work on the mathematical theory
of communication, entropy (1) has been used as a major tool in infor-
mation theory and in almost every branch of science and engineering.
Numerous entropy and information indices have been developed and
used in various disciplines and contexts. A competitor to Shannon en-
tropy is the Rényi entropy defined by

HR(X) =
1

1� �
ln

+1

�1

f
�(x)dx (2)

for � > 0 and � 6= 1 [5]. HSh(X) and HR(X) are special cases of
the exponential entropy of order �, defined by

B�(X) =

+1

�1

f
�(x)dx

1=(1��)

; � > 0; � 6= 1: (3)

In particular

HSh(X) = lim
�!1

flnB�(X)g

and

HR(X) = lnB�(X):

Exponential entropy (3) has been defined and studied by Campbell [6]
and generalized by Koski and Persson [7]. It has been successfully ap-
plied [8] in data compression or signal compression problems, in the
sense of quantization.

Information theoretic principles and methods have become integral
parts of probability and statistics and have been applied in various
branches of statistics and related fields [9].

Shannon’s original definition of entropy was given for discrete
random variables and its continuous counterpart, defined by (1), is
not a direct consequence of the definition in the discrete case. It is
also well known that for continuous distributions, HSh(X) may be
negative and infinite. Rao et al. [1] enumerated several drawbacks of
HSh(X). The most important of them is thatHSh(X) is defined only
for distributions with densities. In order to overcome this drawback,
Rao et al. [1] and Wang et al. [2] defined a new measure, referred
to as the cumulative residual entropy, based on the probability distri-
bution of a random variable rather than its density function. Several
properties of the said measure have been stated and studied in the
previously-mentioned articles.

Measures of uncertainty with origins in Shannon entropy (1) and
involving, in their expression, the distribution function of a nonnegative
random variable, have been defined and studied earlier by Ebrahimi and
his colleagues [10]–[13]. The role of information theory in reliability
analysis has been reviewed by Ebrahimi et al. [14].

In this article, we propose two new broad classes of measures of un-
certainty of a random vector X based on the survival function of an
absolute value transformation of X . We refer to them as the survival
exponential and the generalized survival exponential entropies. Their
definition is motivated by the work of Rao et al. [1] and Wang et al. [2],
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