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Magnetic island effects on axisymmetric equilibria
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The plasma magnetohydrodynamics equilibrium equation in the vicinity of a single, thin magnetic
island region is derived. First, the pressure profile in the vicinity of an island is determined using the
continuity of transport fluxes across the island assuming a diffusive form for the fluxes. Then, by
considering the island-induced magnetic perturbation, the structure of the current density around an
island is examined. The modifications of the pressure and current density in the vicinity of a
magnetic island lead to an equation that describes the toroidal equilibrium of the plasma. An
“effective” axisymmetric Grad—Shafranov equation is constructed by taking a helical average over
the toroidal equilibrium. Thus, we can take account of the three-dimensional magnetic island effects
for a thin island in a two-dimensional equation. As with the Grad—Shafranov equation, the
calculation does not employ a large aspect ratio or sgalbproximation; however, it uses a small
island width (w<r)s expansion. Finally, we determine the time-varying signal that would be
observed on a probe measuring a scalar quantity such as the pressure when a magnetic island
structure is rotating relative to the probe.
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I. INTRODUCTION Ill. In the magnetic island region, the parameters of the

plasma such as pressure and current density are generally
In general, the plasma magnetohydrodynanil$iD)  fnctions of magnetic flus?, helical anglea, and poloidal

equilibrium in axisymmetric tokamaks is governed by theangle 9. After obtaining the profiles and equilibrium equa-

Grad-Shafranov equation tions for these quantities in three dimensions, we average
. dp them over the helical angle at fixed W and 6 to obtain the
A \II:_MORZE -1, (1) 2D equation that we desire in Sec. IV. To make the result

applicable to various cross-section geometric shapes, the cal-

which applies to a two-dimensionéD) situation. However, culations are performed in magnetic flux coordinates. The
nonlinear tearing mode instabilities produce magnetic islandisland-induced modification of the pressure gradient is local-
in an axisymmetric toroidal, magnetically confined plasma.zed mainly to the magnetic island region. It is worked out in
Such islands break the axisymmetric property of the toroidafletail in Sec. V. Then, Sec. VI specifies the 3D variations of
equilibrium and introducg3D) structure. Rigorously speak- the pressurgor any scalar quantijyin the vicinity of a mag-
ing, one should solve a fully 3D set of equations for thenetic island in terms of what a fixed probe would observe
magnetic topology. Numerical techniques exist for solvingwhen the plasma rotates toroidally. Finally, the results are
the 3D equilibrium problem.However, for a number of rea- summarized in Sec. VIL.
sons, it would be helpful to have a 2D equation with respect
to only the 2D axisymmetric coordinates. Then, the plasmaj, AXISYMMETRIC EQUILIBRIUM AND
MHD equilibrium with a magnetic island can be effectively PERTURBATIONS
treated, with a 3D island structure grafted onto the 2D equi- , o

To lowest order, the plasma configuration is taken to be

librium in the vicinity of the rational surface. The technique X X o o
addressed in the following will show how a prescribed mag-2" axisymmetric equilibrium. The magnetic field can thus be

netic island affects the nature of the equilibrium solution inWrtten as
the vicinity of the rational surface. Bp=1V{+ VX VT, (2
If a single, isolated magnetic island is thin compared to

the radius of its singular surface, its effects can be approxiVNereé 1=RBoidal i the poloidal current functiony” labels

mated by a single helically resonant magnetic flux perturbal® Mmagnetic surfaces of the axisymmetric equilibrium, &nd
tion. A mathematical description of the axisymmetric mag-'S (n€(@xisymmetrig toroidal angle. A straight-field line po-
netic equilibrium and perturbations is developed in Sec. 11/0idal angle¢is introduced so that

The effect of the helical perturbation and the magnetic island B,= V¥ X V (q8- ), (3

it induces are localized to the vicinity of the magnetic island,

the mathematical properties of which are developed in Seé/_vhereq:qgllf).is th? safety facto(to-roidal Winding number
of magnetic field lines In magnetic flux coordinates, the

Electronic mail- xinzhenglu@wisc.edu Jacobian is given byg=1/V¥ X V §- V. In the following,
bElectronic mail: callen@engr.wisc.edu th_e equilibrium axisymmetric fie_ld is taken to be consistent
9Electronic mail: hegna@engr.wisc.edu with the Grad—Shafranov equation.
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We consider a magnetic perturbation that is resonant at a
the rational surface whemg,=m/n. The helical angle coor-
dinatea is defined asy={—qy6. In the vicinity of the mag-
netic island, some slowly changing quantities can be ap-
proximated by Taylor series expansiorfs: fy+f'x, where B
x=W¥-V¥, and f'=df/dW¥ is the derivative with respect to
the magnetic flux coordinate.
Without loss of generality, we can introduce magnetic
perturbations using a vector potential of the form

SA=AV 0-xV a, (4)

where bothA andy are of ordeix? [consistent with the smalll
island approximation, see E@) below], and the component
of 5A in the VW direction can be eliminated by an appropri-
ate gauge choice. The perturbed magnetic field is thus

6B=V X 6A
w X
=VAX VO-VyX Va
FIG. 1. Contour plot of lines of constadt” (magnetic flux surfacgsrom
= VX Vx+ V(A+qox) X V6. (5  Eq.@®).

In the vicinity of the rational surface, this magnetic pertur-

bation can produce a magnetic island. Away from this sur-

face, the magnetic surfaces are slightly sinusoidally de- SinceB-VW" =0 to leading order and MHD force bal-
formed from their axisymmetric equilibrium values. ance require8 - Vp=0, we findp=p(¥").

In what follows, the amplitude of the magnetic island is
prescribed and the resulting corrections to the equilibria are
computed. A self-consistent calculation of the island width is

The magnetic perturbations introduced via Es). will not sought here but is described in a number of other pzfpers.
change the shape of the magnetic flux surfaces in the vicinity
of the magnetic island. The equilibrium magnetic field near

Ill. PERTURBED MAGNETIC FLUX SURFACE

the rational surface aj=qy can be expanded as IV. MODIFIED GRAD-SHAFRANOV EQUATION
BO:EV\I’ X V(qe#-0)+ V¥yX V¢, (6) To obtain the equilibrium relation that generalizes the
% Grad-Shafranov equation to include the effect of magnetic
whereW,= [dW¥(q/qo—1). To leading order¥,=qx?/ 2. islands, we calculate the toroidal component of the current
The perturbed magnetic field can be written as density in two ways. First, we obtaih from Ampere’s law
A A by taking the curl of magnetic fieltboth equilibrium and
MB=V—XV/(-V (q_ +X> X Va. (7)  perturbation parts
o o
For isolated, small magnetic islandscan be approximated Vi-J=—V [(Bg+B) X V(]
by a single helically resonant harmoni8=A.cosa. The Ho
helical magnetic flux surfaces in thee- « plane, as illustrated CA(W+y) N 1 v { d(A+dox) 29] (10
in Fig. 1, are defined by y+(A/qy)=const, and become T uR? “o Y R2 |’
12
P = AN ALosa=C, (8)  whereA” is the usual second derivative operator in the Grad—
2 Shafranov equatioh.
in which ¥" is a helical magnetic flux function, which we X 1
will use later. A'y=R’V = V.
From Eq.(8), it is easy to show that the total width of
the magnetic island in magnetic flux variables is Second, we decomposkinto two parts: parallel td,
N rers and perpendicular to it. The lowest order radial force balance
w=4vAJq', 9 i o
is given by
in terms of magnetic flux variables, GN:4\/~B],LS/|(HBO in (Jo+ 83) X Bo= V p. (11)

real space wittk,=m/rg, wherer is the (cylindrical) radius

of the rational surface. The subscript O has been dropped fgkn additional term withéB is of order6=w/rs<1 smaller
simplicity. In the following we treat the ratio of the magnetic than the terms retained and hence negligible, sifite V

island width to macroscopic length scales as a small numbex 6B accounts for the order unity correctionsdp The total
(6=wlrs<1) and use this as an expansion parameter. J is given by its parallel and perpendicular components:
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BoX Vp J-By J, a contribution from the diamagnetic current. These currents

J=QBo+ TRz Q= B2 B (12 yield the neoclassical correction to the Spitzer resistivity and

0 0 0 bootstrap current, respectively. Hegg is the poloidal elec-
where the parallel current in the vicinity of the magnetictron flow damping rate ands, is the electron collision
island is given by frequency.
We expand the electrostatic potentialin the small ex-
so-l——=+l——, (13 pansion parametef=w/rs<1. The lowest order equation
gives ¢°=¢°. To next order, the parallel Ohm’s law can be
in which o=(QB?)/(B?) is an average of the parallel current written as
function Q over poloidal angle at fixe#t and«. Specifically, — —
this operation is defined by -\ By ZaY) 1A 1 0
at Vot VvV

de —
%—\gf(\l’,a,é’) ( M f7p>
2 = B2) + ———|— 19
(W, a) = T ' (14) = nel o¢ > ot vo W ) (19
z\’g where 7,.= 7(1+uc/ ve) is the neoclassical resistivity and

The last two terms in Eq13) describe the Pfirsch—Schliiter [C.D] = dCoD ﬂ:@

current present in a toroidal plasma. From this representation IXda dadx’

of the current we find . . :
Applying an average over the helical magnetic surface

1 ap 1?9p 1 V" =consffrom Eq.(8)],
Vi dso5—-——+—=——. 15
CImo T v R (B (19 L _
. . f(V",a) (/oW 19 W)d

Equating the two forms of the toroidal component of the — _jg (T2 )da

current given in Eqs(10) and(15), we obtain (). = _ ' (20)
. WEAWER
Nvry R a<A+qox)V_e] § w1

v 2
Mo Mo ¢ R

to Eq.(19), an equation for the flux-surface-averaged parallel

__ QR 290 ip 1 +31. (16) current profile is obtained: B
A\ &\If(B()) _ 1 JA 38p pe

After averaging over the helical angle(at constant poloidal (0 =0 V' (B \ at [« S\ ow « Mot ye<B )
angle 6 and axisymmetric flux surfac#, i.e., at constand, (21)
X), this will yield the desired thin-island-modified Grad—
Shafranov equation. As with the Grad—Shafranov equationwhere Sp=p(¥") - po—pgx.
the pressurep(V) and currento(W) functions are at this Calculating the precise form far, requires a detailed
point arbitrary. description of the plasma force balance in the island region.

In order to calculate the two profile quantitiep/ ¥ Details of this calculation are given in Ref. 4. Using E2{l)
and o that are consistent with a slowly growing magneticand the result from Ampére’s lajEq. 33 in Ref. 4, we
island, we need to consider the appropriate transport equabtain

tions in the vicinity of the island to accurately describe the ) —
self-consistent behavior of the pIathEor the current, we o= &ﬂl_ XGl(E + F) + Hﬁ] + <p(‘l7) (22)
consider a parallel Ohm’s law in the form Gpy dw* A Y '
-B. IA _ BV ¢=7QB%- iB v .11, (17)  Where the parametets, F, andH are standard measures of
at interchange instability physicsand G=\V'(B?/|V¥|2). The

function ¢ can be deduced by comparing E¢&L) and(22).

where the first two terms are the parallel electric field, ¢ i '
The parallel current profile can finally be expressed as

is the electrostatic potentia is the plasma resistivity, and

I1 is the electron viscous stress tensor. Using a neoclassical q; d
closure for the viscous term, the flux-surface-averaged o= =9 (E+F)q0(<x> -X)
Ohm'’s law corresponding to the axisymmetric equilibrium is Gpo
€-B) e <_ p(')V’I) (aA IA )}
— ===, 18 tH{ — -\ — +{(0)x. 23
® LA g 18 o \ow/.)|*@ 23

where the last term comes from a neoclassical closure of th€he first terms represent Pfirsch—Schliter currents that vary
electron viscosity. Specifically, it describes damping of thewithin the helical flux surfaces. The last term, the flux-
poloidal electron flow. The poloidal electron flow can be surface-averaged parallel current, is obtained from Ohm’s
decomposed into a contribution from the parallel current andaw, Eq.(21).
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The solutions for the equilibrium condition for the criti-

Magnetic island effects on axisymmetric equilibria 4827

tion, the pressure profile is calculated. Thépg/ o¥ and

cal layer encompassing the island region should be matchedsp/ dx)«e¢¢ Will be related topg, the radial pressure gradient
asymptotically to the exterior region away from the rationalin the absence of a magnetic island. Thus, all the terms on

surface. The largéx| limit solution for A has the form

A= AX|+ Adx]es, (24)
where the Mercier indices are defined by
1
o s=7 + V= DI (25)
with D|:E+F+H—;11. Matching gives the perturbed part of

the parallel current functioor:
Me I

_ <8A> <m>
oo=————F= \N— ) o=
77nc<B >V IX [+ pet ve(BY)

+&[ 9op _@}i
Ep(’) IX [« H’

aJX
with Dr=E+F+H?. Also, the axisymmetric equilibrium
part of o is given byoy=-1"—(Ipi(B3)).

Substituting these results into E(@L6) and averaging
over the helical angler at fixed x (radial position in the
terms of the axisymmetric magnetic flux functjcend 6 [an
average indicated by subscript effecti\edf)], we can obtain

(26)

the equation we desire. The second term on the left is in the

form of df/ ¢, whose integral over a2 period of & will be
zero. The result of this helical average at constaist

ATV +(x).)
Mo

__ 9 Pett

o
Dr Me

+ Yol _ 1%\g <@>
Ep(’)as_H Me+Ve\e’EB% IX [ seft

RZ-11'

+< 1>Yg  qol Dg )(apeff_pr)
— 0
I d
_ _A°J3 (27)

T2
Mnc\9 BS It

where we have defined the following dimensionless integral

(see the Appendix

cifuk

27
J V22 + (COSa cos )
in which z=x/(w/2) is a dimensionless “radial” magnetic
island coordinatez<1 is deep inside islandz=1 is on
separatrix, and>1 is outside island.
In Eq. (27), Y+(x),=V+(1/2m) [5"xda=V; labels
the island-modified magnetic flux surfaces in the- 0 cross

cosBdB

V27 + (cos a—cosp)

: (28)

the right of Eq.(27) are specified in terms of the original
(before islangl axisymmetric magnetic flux surfacds.

V. PRESSURE PROFILE

In the magnetic island region, the pressure is constant on
a perturbed magnetic flux surfade* =const. Thus, its pro-
file is a function of the helical magnetic flux labgt in Eq.
(8): p=p(¥*). Within the separatrix, we take the pressure to
be a constant, at its value on the separatrix. The helical mag-
netic flux U* is of orderx?, andd¥"/da is also of ordex?,
however,d¥"/dx is of orderx. Since we are assuming the
magnetic island to be thin, we can assume there are no
sources or sinks of particles in the vicinity of the magnetic
island and make an approximation that the transport fluxes
across it are continuous; hencfyp-dS=const., in which
the integral is performed at constafit (see Ref. & To the
lowest order, this quantity becomes

dp
vp.ds=—P
f P05y

d ] T
= p* \Eszfi\r’Zq’(\If - ALosa)df da,

- dv”
IgV? f—dad
VgVoX dx 7

dv
(29
and we have
J d av"
L. B — (30)
IX dvw W=q'x4/2+A, cos a X

Matching with the pressure gradiepf far away from the
island, we obtain
dp _ 2mPo

dq’* 27 | _
+v2q' (W - A, cosB)dB
0

: (3D)

2mZpg
27 1 )
J \/22+ =(cosa - cospB)dB
o 2

ap _

(32)

Averaging overa at fixedx, we obtain the effective value of
the pressure gradient in the vicinity of the magnetic island:

wa\/zu

peff |Z/da

= poJis
(COSa cospB)dg

(33

section. We can see the term on the left and the first twan which J;=J,(2) is a dimensionless integrésee the Ap-
terms on the right correspond to the usual Grad—-Shafranogendiy. The dimensionless integrd} is plotted in Fig. 2.
equation in Eq(1), while the last three terms can be taken asAlso, using Eq.(32) we can obtairddp/ dx)«et=pgda, In
some corrections to the usual equation. In the following secwhich (see the Appendix
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dp/dx net change in the pressure gradient is localized to the island
1.2 region and the Shafranov shift(r) is determined from an
. — integral over the local pressure profile, one can anticiﬁate
/ that the island-induced change in the radial position of the
0.8 rational surface will be of orde(lw/rs)2< 1.
0.6 . B e
5 VI. PRESSURE DIAGNOSTIC
0.2 : In a tokamak, the plasma usually rotates around the tor-
oidal axis of symmetry. A local plasma parameter prBlm
e ‘ ‘ ‘ ‘ a fixed position will see the pressure at fixednd changing
0 0.5 1 1.5 2 L g .
a. To be specifica= ap+wt will range from 0 to 2r. We
z=x/w can work out the pressure function that the probe sees as

follows. Integrating Eq.(31) over an appropriate range of

FIG. 2. Effective pressure profile function in the presence of a magnetiqh . . * .
elical magnetic flux surfacgal” =consj, we obtain

island.
P ) =pet | Gl v
b=-1+2r da / { [ 27+ cosacospias s | e A s
2w B 0 (36)
.Jo 22+ (cosa- cosﬂ)] (34 wherep; is the pressure within the separatrix. Substituting

Eq. (8) into Eq. (36), we can obtain the pressure at a point

The final, island-modified Grad—-Shafranov equation, Eq(X;@). When « goes from O to 2, the range of pressure
(27), can be written in terms of the dimensionless integrals/ariation is

Ji, Jp, andJ; as f(q'xZIZ)—Ac +27p} o
. .= + d\If
A Werr__ IPeripe _y, S f ’ 2q' (V" - AcosB)dB
Mo aw o
Q6| Dr Me IZ\‘@ ' to
=, 0 oty T Pod2
Gpy Qs Me™ Ve VgBg Pmax= Ps
IZ? ,I b (q/x2/2)+Ac iz/n-pé %,
TR [
VgB;  Gpg %s * f V2q' (¥ — Acos B)dB

0
J3. (35) (37

Whenx<w/2, the lower limit isps.

| dA.
/___
77nc\“’gB(% It

The small[z=x/(w/2) <1, deep inside the islah@nd large
[z=x/(w/2)>1, far outside the islarjidimits of the dimen-
sionless integrald,, J,, andJ; are discussed in the Appen-
dix. In this paper we have developed procedures for includ-
Equation (35) is the final magnetic-island-modified ing the effect of a “thin”(w<r) magnetic island in an oth-
Grad-Shafranov equation we have been seeking. Comparirgwise axisymmetric equilibrium. The calculation concen-
with Eq. (1), the right of Eq(35) is already knowr(in terms  trates on the modification to the equilibrium that occurs in
of the original axisymmetric flux surfacesafter we obtain  the vicinity of the rational surface. The final island-modified
the equilibrium quantities by solving the usual Grad-Grad-Shafranov equation is given by Eg5). The island-
Shafranov equation and introduce a magnetic island structuigodified helically averaged magnetic flux surfaces are the
and its effects. We only need to solve fin; to obtain the ¥ . surfaces, which become the axisymmetric flux surfaces
new island-modified magnetic flux surfaces. V¥ in the absence of a magnetic island. After tigs; sur-
Since far away(z>1) from the magnetic island all the faces in the presence of a magnetic island are determined,
corrections to the regular axisymmetric Grad-ShafranoVocal-probe-measure@®D) variations in the pressui@r any
equation[Eq. (1)] scale as ¥Z*, the island-induced correc- other scalar plasma parameter that is constant along mag-
tions to the Grad—Shafranov equation here scal@wdsf; netic field lineg in a toroidally rotating plasma can be deter-
hence they are quite small far from the island. In the vicinitymined from Eq.(36).
of the magnetic island|z| <1) the corrections are of order The structure of the modified Grad—Shafranov equation
unity—see the following section for the order unity modifi- has been obtained following an averaging procedure.
cation of the local pressure gradient. However, because thdamely, the island-modified “flux surface” shape is deter-

VIl. DISCUSSION AND SUMMARY
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mined by two modified profile functiongpe/ dyr and 1l . tees that 2+ (cosa—cosB) >0, which yields the limit
The construction of these two profiles for a slowly evolving 1

magnetic island required the specification of the transport |af < cos™(1 - 27%) (A1)
equations in the vicinity of the island. For the pressure profor z less than 1; ifz is greater than 1, the limit fox is the

file, a constant thermal flux assumption was used with a difyhole period of 2.

fusive Fick's law form for the thermal flux. For the modified First, we examine the limitz|>1—far from the mag-
current profile, a neoclassical Ohm’s law was used that acnetic island. Since the last three terms in E2f) represent
counts for resistive diffusion as well as neoclassical viscosthe modification to the Grad—Shafranov equation, they must

ity. While the actual magnetic topology is described by heli-yanish wherz is much greater than unity. Specific examina-
cal flux surfaces, approximate “axisymmetric” equilibrium tions show that for large

profiles have been obtained by averaging the relevant equa-
tions over the helical angle. The island-induced changes in ;1 4 1 Jo~— Jo ~

: o L 1 » 2 vJ3 '
the Grad—Shafranov equation are of order unity in the vicin- 167 327 87

. . 4 .

ity of the island, but of o_rdeQw/rS)_ <1 fa_r _from the |slan_d. which satisfy the requirement that E@5) reduces to usual
The resultant changes in the radial positions of the alesymérad—Shafranov equation, Ed), in the infinitez (far from
metric flux surfaces can be anticipated to be of ofdefr,) the magnetic islandcase. ’ '

. 4 .
near the rational surface ae/rJ far from it. However, We can also obtain an analytical approximation for the
detailed numerical solutions of the island-modified Grad—pree integrals in the smatllimit. The limit for « will then
Sha_franov equation §hould be performed to confirm thesge|q|< 2z The integral ovep can be expressed in the form
scalings and determine the relevant magnitudes of thesgr elliptic integrals of the first and second kind. Using ap-
island-induced effects on the magnetic flux surface positionssroximation formulas for them, we can obtain for small

1 1 a2)

—1, ng_

y4 2z 2
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