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The plasma magnetohydrodynamics equilibrium equation in the vicinity of a single, thin magnetic
island region is derived. First, the pressure profile in the vicinity of an island is determined using the
continuity of transport fluxes across the island assuming a diffusive form for the fluxes. Then, by
considering the island-induced magnetic perturbation, the structure of the current density around an
island is examined. The modifications of the pressure and current density in the vicinity of a
magnetic island lead to an equation that describes the toroidal equilibrium of the plasma. An
“effective” axisymmetric Grad–Shafranov equation is constructed by taking a helical average over
the toroidal equilibrium. Thus, we can take account of the three-dimensional magnetic island effects
for a thin island in a two-dimensional equation. As with the Grad–Shafranov equation, the
calculation does not employ a large aspect ratio or smallb approximation; however, it uses a small
island width sw! rds expansion. Finally, we determine the time-varying signal that would be
observed on a probe measuring a scalar quantity such as the pressure when a magnetic island
structure is rotating relative to the probe.
© 2004 American Institute of Physics. [DOI: 10.1063/1.1787811]

I. INTRODUCTION

In general, the plasma magnetohydrodynamics(MHD)
equilibrium in axisymmetric tokamaks is governed by the
Grad–Shafranov equation1

D*C = − m0R
2 dP

dC
− II 8, s1d

which applies to a two-dimensional(2D) situation. However,
nonlinear tearing mode instabilities produce magnetic islands
in an axisymmetric toroidal, magnetically confined plasma.
Such islands break the axisymmetric property of the toroidal
equilibrium and introduce(3D) structure. Rigorously speak-
ing, one should solve a fully 3D set of equations for the
magnetic topology. Numerical techniques exist for solving
the 3D equilibrium problem.2 However, for a number of rea-
sons, it would be helpful to have a 2D equation with respect
to only the 2D axisymmetric coordinates. Then, the plasma
MHD equilibrium with a magnetic island can be effectively
treated, with a 3D island structure grafted onto the 2D equi-
librium in the vicinity of the rational surface. The technique
addressed in the following will show how a prescribed mag-
netic island affects the nature of the equilibrium solution in
the vicinity of the rational surface.

If a single, isolated magnetic island is thin compared to
the radius of its singular surface, its effects can be approxi-
mated by a single helically resonant magnetic flux perturba-
tion. A mathematical description of the axisymmetric mag-
netic equilibrium and perturbations is developed in Sec. II.
The effect of the helical perturbation and the magnetic island
it induces are localized to the vicinity of the magnetic island,
the mathematical properties of which are developed in Sec.

III. In the magnetic island region, the parameters of the
plasma such as pressure and current density are generally
functions of magnetic fluxC, helical anglea, and poloidal
angleu. After obtaining the profiles and equilibrium equa-
tions for these quantities in three dimensions, we average
them over the helical anglea at fixedC andu to obtain the
2D equation that we desire in Sec. IV. To make the result
applicable to various cross-section geometric shapes, the cal-
culations are performed in magnetic flux coordinates. The
island-induced modification of the pressure gradient is local-
ized mainly to the magnetic island region. It is worked out in
detail in Sec. V. Then, Sec. VI specifies the 3D variations of
the pressure(or any scalar quantity) in the vicinity of a mag-
netic island in terms of what a fixed probe would observe
when the plasma rotates toroidally. Finally, the results are
summarized in Sec. VII.

II. AXISYMMETRIC EQUILIBRIUM AND
PERTURBATIONS

To lowest order, the plasma configuration is taken to be
an axisymmetric equilibrium. The magnetic field can thus be
written as

B0 = I = z + = z 3 = C, s2d

where I=RBtoroidal is the poloidal current function,C labels
the magnetic surfaces of the axisymmetric equilibrium, andz
is the(axisymmetric) toroidal angle. A straight-field line po-
loidal angleu is introduced so that

B0 = = C 3 = squ − zd, s3d

whereq=qsCd is the safety factor(toroidal winding number
of magnetic field lines). In magnetic flux coordinates, the
Jacobian is given byÎg=1/=C3 =u ·=z. In the following,
the equilibrium axisymmetric field is taken to be consistent
with the Grad–Shafranov equation.
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We consider a magnetic perturbation that is resonant at
the rational surface whereq0=m/n. The helical angle coor-
dinatea is defined asa;z−q0u. In the vicinity of the mag-
netic island, some slowly changing quantities can be ap-
proximated by Taylor series expansions:f = f0+ f8x, where
x;C−C0 and f8;df /dC is the derivative with respect to
the magnetic flux coordinate.

Without loss of generality, we can introduce magnetic
perturbations using a vector potential of the form

dA = A = u − x = a, s4d

where bothA andx are of orderx2 [consistent with the small
island approximation, see Eq.(9) below], and the component
of dA in the=C direction can be eliminated by an appropri-
ate gauge choice. The perturbed magnetic field is thus

dB = = 3 dA

= = A 3 = u − = x 3 = a

= = z 3 = x + = sA + q0xd 3 = u. s5d

In the vicinity of the rational surface, this magnetic pertur-
bation can produce a magnetic island. Away from this sur-
face, the magnetic surfaces are slightly sinusoidally de-
formed from their axisymmetric equilibrium values.

III. PERTURBED MAGNETIC FLUX SURFACE

The magnetic perturbations introduced via Eq.(5) will
change the shape of the magnetic flux surfaces in the vicinity
of the magnetic island. The equilibrium magnetic field near
the rational surface atq=q0 can be expanded as

B0 =
q

q0
= C 3 = sq0u − zd + = C0 3 = z, s6d

whereC0;edCsq/q0−1d. To leading order,C0=q08x
2/2q0.

The perturbed magnetic field can be written as

dB = =
A

q0
3 = z − = S A

q0
+ xD 3 = a. s7d

For isolated, small magnetic islands,A can be approximated
by a single helically resonant harmonic,A=Accosa. The
helical magnetic flux surfaces in thex−a plane, as illustrated
in Fig. 1, are defined byC0+sA/q0d=const, and become

C* =
q08x

2

2
+ Accosa = C, s8d

in which C* is a helical magnetic flux function, which we
will use later.

From Eq.(8), it is easy to show that the total width of
the magnetic island in magnetic flux variables is

w = 4ÎAc/q8, s9d

in terms of magnetic flux variables, orw=4ÎB̃rLs/kuB0 in
real space withku=m/ rs, wherers is the (cylindrical) radius
of the rational surface. The subscript 0 has been dropped for
simplicity. In the following we treat the ratio of the magnetic
island width to macroscopic length scales as a small number
sd;w/ rs!1d and use this as an expansion parameter.

SinceB ·=C* =0 to leading order and MHD force bal-
ance requiresB ·=p=0, we findp=psC*d.

In what follows, the amplitude of the magnetic island is
prescribed and the resulting corrections to the equilibria are
computed. A self-consistent calculation of the island width is
not sought here but is described in a number of other papers.3

IV. MODIFIED GRAD–SHAFRANOV EQUATION

To obtain the equilibrium relation that generalizes the
Grad–Shafranov equation to include the effect of magnetic
islands, we calculate the toroidal component of the current
density in two ways. First, we obtainJ from Ampère’s law
by taking the curl of magnetic field(both equilibrium and
perturbation parts):

=z ·J =
1

m0
= · fsB0 + dBd 3 = zg

=
D*sC + xd

m0R
2 +

1

m0
= ·F ] sA + q0xd

] z

=u

R2 G , s10d

whereD* is the usual second derivative operator in the Grad–
Shafranov equation.1

D*c ; R2 = ·
1

R2 = c.

Second, we decomposeJ into two parts: parallel toB0

and perpendicular to it. The lowest order radial force balance
is given by

sJ0 + dJd 3 B0 = = p. s11d

An additional term withdB is of orderd;w/ rs!1 smaller
than the terms retained and hence negligible, sincedJ= =
3dB accounts for the order unity corrections toJ0. The total
J is given by its parallel and perpendicular components:

FIG. 1. Contour plot of lines of constantC* (magnetic flux surfaces) from
Eq. (8).
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J = QB0 +
B0 3 = p

B0
2 , Q ;

J ·B0

B0
2 =

J//

B0
, s12d

where the parallel current in the vicinity of the magnetic
island is given by4

Q = s̄ − I
] p

] C

1

B0
2 + I

] p

] C

1

kB0
2l

, s13d

in which s̄=kQB2l / kB2l is an average of the parallel current
function Q over poloidal angle at fixedC anda. Specifically,
this operation is defined by

kflsC,ad =
R du

2p
ÎgfsC,a,ud

R du

2p
Îg

. s14d

The last two terms in Eq.(13) describe the Pfirsch–Schlüter
current present in a toroidal plasma. From this representation
of the current we find

=z ·J = s̄
I

R2 −
] p

] C
+

I2

R2

] p

] C

1

kB0
2l

. s15d

Equating the two forms of the toroidal component of the
current given in Eqs.(10) and (15), we obtain

D*sC + xd
m0

+
R2

m0
= ·F ] sA + q0xd

] z

=u

R2 G
= −

] p

] C
R2 + I2 ] p

] C

1

kB0
2l

+ s̄I . s16d

After averaging over the helical anglea (at constant poloidal
angleu and axisymmetric flux surfaceC, i.e., at constantu,
x), this will yield the desired thin-island-modified Grad–
Shafranov equation. As with the Grad–Shafranov equation,
the pressurepsCd and currents̄sCd functions are at this
point arbitrary.

In order to calculate the two profile quantities]p/]C
and s̄ that are consistent with a slowly growing magnetic
island, we need to consider the appropriate transport equa-
tions in the vicinity of the island to accurately describe the
self-consistent behavior of the plasma.4 For the current, we
consider a parallel Ohm’s law in the form

− B ·
] A

] t
− B · = f = hQB2 −

1

ne
B · = · P, s17d

where the first two terms are the parallel electric fieldE ·B, w
is the electrostatic potential,h is the plasma resistivity, and
P is the electron viscous stress tensor. Using a neoclassical
closure for the viscous term, the flux-surface-averaged
Ohm’s law corresponding to the axisymmetric equilibrium is

kE ·Bl
kB0

2l
= hs̄0 +

me

ne
hSs̄0 +

p08V8I

kB0
2l
D , s18d

where the last term comes from a neoclassical closure of the
electron viscosity. Specifically, it describes damping of the
poloidal electron flow. The poloidal electron flow can be
decomposed into a contribution from the parallel current and

a contribution from the diamagnetic current. These currents
yield the neoclassical correction to the Spitzer resistivity and
bootstrap current, respectively. Hereme is the poloidal elec-
tron flow damping rate andne is the electron collision
frequency.

We expand the electrostatic potentialf in the small ex-
pansion parameterd;w/ rs!1. The lowest order equation

gives f0=f0̄. To next order, the parallel Ohm’s law can be
written as

−KB0 ·
] Ā0

] t
L −

1

V8

] Ā

] t
−

1

V8
fC̄* ,fg

= hncSs̄kB0
2l +

me

me + ne
I

] p

] C
D , s19d

wherehnc=hs1+me/ned is the neoclassical resistivity and

fC,Dg ;
] C

] x

] D

] a
−

] C

] a

] D

] x
.

Applying an average over the helical magnetic surface
C* =const[from Eq. (8)],

k f̄l* =
R f̄sC*̄ ,ads1/] C*̄ /] Cdda

R s1/] C*̄ /] Cdda

, s20d

to Eq.(19), an equation for the flux-surface-averaged parallel
current profile is obtained:

ks̄l* = s̄0 −
1

hncV8kB0
2l
K ] Ā

] t
L

*
−K ] dp

] C
L

*

me

me + ne

I

kB0
2l

,

s21d

wheredp=psC*d−p0−p08x.
Calculating the precise form fors̄0 requires a detailed

description of the plasma force balance in the island region.
Details of this calculation are given in Ref. 4. Using Eq.(21)
and the result from Ampère’s law[Eq. 33 in Ref. 4], we
obtain

s̄ =
q08

Gp08

dp

dC*̄
F− xq08sE + Fd + H

] Ā

] C
G + wsC*̄d, s22d

where the parametersE, F, andH are standard measures of
interchange instability physics5 andG;V8kB2/ u=Cu2l. The
functionf can be deduced by comparing Eqs.(21) and(22).
The parallel current profile can finally be expressed as

s̄ =
q08

Ḡp08

dp

dC*̄
FsE + Fdq08skxl* − xd

+ HS ] Ā

] C
−K ] Ā

] C
L

*

DG + ks̄l* . s23d

The first terms represent Pfirsch–Schlüter currents that vary
within the helical flux surfaces. The last term, the flux-
surface-averaged parallel current, is obtained from Ohm’s
law, Eq. (21).
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The solutions for the equilibrium condition for the criti-
cal layer encompassing the island region should be matched
asymptotically to the exterior region away from the rational

surface. The largeuxu limit solution for Ā has the form

Ā < Aluxual + Asuxuas, s24d

where the Mercier indices are defined by

al,s =
1

2
7 Î− DI s25d

with DI =E+F+H− 1
4. Matching gives the perturbed part of

the parallel current functions̄:

ds̄ = −
1

hnckB2lÎg
K ] Ā

] t
L

*
−K ] dp

] x
L

*

me

me + ne

I

kB2l

+
q08

Ḡp08
FK ] dp

] x
L

*
−

] dp

] x
G DR

as − H
, s26d

with DR;E+F+H2. Also, the axisymmetric equilibrium
part of s̄ is given bys̄0=−I8−sIp08kB0

2ld.
Substituting these results into Eq.(16) and averaging

over the helical anglea at fixed x (radial position in the
terms of the axisymmetric magnetic flux function) andu [an
average indicated by subscript effective(eff)], we can obtain
the equation we desire. The second term on the left is in the
form of ]f /]z, whose integral over a 2p period ofa will be
zero. The result of this helical average at constantx is

D*sC + kxlad
m0

= −
] pef f

] C
R2 − II 8

+ S q08I

Ḡp08

DR

as − H
−

me

me + ne

I2Îg

ÎgB0
2
DK ] dp

] x
L

*ef f

+ S I2Îg

ÎgB0
2

−
q08I

Ḡp08

DR

as − HDS ] pef f

] C
− p08D

−
I

hnc
ÎgB0

2

] Ac

] t
J3 s27d

where we have defined the following dimensionless integral
(see the Appendix):

J3 =
1

2p
E da

E
0

2p cosbdb

Î2z2 + scosa − cosbd

E
0

2p db

Î2z2 + scosa − cosbd

, s28d

in which z;x/ sw/2d is a dimensionless “radial” magnetic
island coordinate—z!1 is deep inside island,z=1 is on
separatrix, andz.1 is outside island.

In Eq. (27), C+kxla=C+s1/2pde0
2pxda;Cef f labels

the island-modified magnetic flux surfaces in theC−u cross
section. We can see the term on the left and the first two
terms on the right correspond to the usual Grad–Shafranov
equation in Eq.(1), while the last three terms can be taken as
some corrections to the usual equation. In the following sec-

tion, the pressure profile is calculated. Then,]pef f/]C and
k]dp/]xl*ef f will be related top08, the radial pressure gradient
in the absence of a magnetic island. Thus, all the terms on
the right of Eq.(27) are specified in terms of the original
(before island) axisymmetric magnetic flux surfacesC.

V. PRESSURE PROFILE

In the magnetic island region, the pressure is constant on
a perturbed magnetic flux surfaceC* =const. Thus, its pro-
file is a function of the helical magnetic flux labelC* in Eq.
(8): p=psC* d. Within the separatrix, we take the pressure to
be a constant, at its value on the separatrix. The helical mag-
netic flux C* is of order x2, and]C* /]a is also of orderx2;
however,]C* /]x is of orderx. Since we are assuming the
magnetic island to be thin, we can assume there are no
sources or sinks of particles in the vicinity of the magnetic
island and make an approximation that the transport fluxes
across it are continuous; hence,e=p·dS=const., in which
the integral is performed at constantC* (see Ref. 6). To the
lowest order, this quantity becomes

E =p ·dS=
dp

dC*
Îg=2xE dC*

dx
du da

=
dp

dC*
Îg=2xE ±Î2q8sC* − Accosaddu da,

s29d

and we have

] p

] x
= U dp

dC* U
C*=q8x2/2+Ac cos a

] C*

] x
. s30d

Matching with the pressure gradientp08 far away from the
island, we obtain

dp

dC* =
2pp08

E
0

2p

±Î2q8sC* − Ac cosbddb

, s31d

] p

] x
=

2puzup08

E
0

2pÎz2 +
1

2
scosa − cosbddb

. s32d

Averaging overa at fixedx, we obtain the effective value of
the pressure gradient in the vicinity of the magnetic island:

dpef f

dx
= p08E uzuda

E
0

2pÎz2 +
1

2
scosa − cosbddb

; p08J1,

s33d

in which J1;J1szd is a dimensionless integral(see the Ap-
pendix). The dimensionless integralJ1 is plotted in Fig. 2.
Also, using Eq.(32) we can obtaink]dp/]xl*ef f=p08J2, in
which (see the Appendix)
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J2 ; − 1 + 2pE daYFE
0

2p

Î2z2 + scosa − cosbddb

·E
0

2p db

Î2z2 + scosa − cosbdG . s34d

The final, island-modified Grad–Shafranov equation, Eq.
(27), can be written in terms of the dimensionless integrals
J1, J2, andJ3 as

D*Cef f

m0
= −

] pef f

] C
R2 − II 8

+ S q08I

Ḡp08

DR

as − H
−

me

me + ne

I2Îg

ÎgB0
2
Dp08J2

+ S I2Îg

ÎgB0
2

−
q08I

Ḡp08

DR

as − HDp08sJ1 − 1d

−
I

hnc
ÎgB0

2

] Ac

] t
J3. s35d

The small[z=x/ sw/2d!1, deep inside the island] and large
[z=x/ sw/2d@1, far outside the island] limits of the dimen-
sionless integralsJ1, J2, andJ3 are discussed in the Appen-
dix.

Equation (35) is the final magnetic-island-modified
Grad–Shafranov equation we have been seeking. Comparing
with Eq. (1), the right of Eq.(35) is already known(in terms
of the original axisymmetric flux surfaces), after we obtain
the equilibrium quantities by solving the usual Grad–
Shafranov equation and introduce a magnetic island structure
and its effects. We only need to solve forCeff to obtain the
new island-modified magnetic flux surfaces.

Since far awaysz@1d from the magnetic island all the
corrections to the regular axisymmetric Grad–Shafranov
equation[Eq. (1)] scale as 1/ z4, the island-induced correc-
tions to the Grad–Shafranov equation here scale assw/ rs

d4
;

hence they are quite small far from the island. In the vicinity
of the magnetic islandsuzu ,1d the corrections are of order
unity—see the following section for the order unity modifi-
cation of the local pressure gradient. However, because the

net change in the pressure gradient is localized to the island
region and the Shafranov shiftDsrd is determined from an
integral over the local pressure profile, one can anticipate7

that the island-induced change in the radial position of the
rational surface will be of ordersw/ rs

d2
!1.

VI. PRESSURE DIAGNOSTIC

In a tokamak, the plasma usually rotates around the tor-
oidal axis of symmetry. A local plasma parameter probe8 at
a fixed position will see the pressure at fixedx and changing
a. To be specific,a;a0+vt will range from 0 to 2p. We
can work out the pressure function that the probe sees as
follows. Integrating Eq.(31) over an appropriate range of
helical magnetic flux surfacessC* =constd, we obtain

psx,ad = ps +E
Ac

C* 2pp08

E
0

2p

±Î2q8sC*’ − Ac cosbddb

dC*’ ,

s36d

where ps is the pressure within the separatrix. Substituting
Eq. (8) into Eq. (36), we can obtain the pressure at a point
sx,ad. When a goes from 0 to 2p, the range of pressure
variation is

pmin = ps +E
Ac

sq8x2/2d−Ac ±2pp08

E
0

2p

Î2q8sC*’ − Accosbddb

dC*’

to

pmax= ps

+E
Ac

sq8x2/2d+Ac ±2pp08

E
0

2p

Î2q8sC*8 − Accosbddb

dC*8.

s37d

Whenx,w/2, the lower limit isps.

VII. DISCUSSION AND SUMMARY

In this paper we have developed procedures for includ-
ing the effect of a “thin”sw! rsd magnetic island in an oth-
erwise axisymmetric equilibrium. The calculation concen-
trates on the modification to the equilibrium that occurs in
the vicinity of the rational surface. The final island-modified
Grad–Shafranov equation is given by Eq.(35). The island-
modified helically averaged magnetic flux surfaces are the
Ceff surfaces, which become the axisymmetric flux surfaces
C in the absence of a magnetic island. After theCef f sur-
faces in the presence of a magnetic island are determined,
local-probe-measured(3D) variations in the pressure(or any
other scalar plasma parameter that is constant along mag-
netic field lines) in a toroidally rotating plasma can be deter-
mined from Eq.(36).

The structure of the modified Grad–Shafranov equation
has been obtained following an averaging procedure.
Namely, the island-modified “flux surface” shape is deter-

FIG. 2. Effective pressure profile function in the presence of a magnetic
island.
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mined by two modified profile functions]pef f/]c and II ef f8 .
The construction of these two profiles for a slowly evolving
magnetic island required the specification of the transport
equations in the vicinity of the island. For the pressure pro-
file, a constant thermal flux assumption was used with a dif-
fusive Fick’s law form for the thermal flux. For the modified
current profile, a neoclassical Ohm’s law was used that ac-
counts for resistive diffusion as well as neoclassical viscos-
ity. While the actual magnetic topology is described by heli-
cal flux surfaces, approximate “axisymmetric” equilibrium
profiles have been obtained by averaging the relevant equa-
tions over the helical angle. The island-induced changes in
the Grad–Shafranov equation are of order unity in the vicin-
ity of the island, but of ordersw/ rs

d4
!1 far from the island.

The resultant changes in the radial positions of the axisym-
metric flux surfaces can be anticipated to be of ordersw/ rs

d2

near the rational surface andsw/ rs
d4

far from it. However,
detailed numerical solutions of the island-modified Grad–
Shafranov equation should be performed to confirm these
scalings and determine the relevant magnitudes of these
island-induced effects on the magnetic flux surface positions.
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APPENDIX: PROPERTY OF INTERGRALS IN THIS
WORK

In Eqs.(33), (34), and(28), we defined three dimension-
less integralsJ1, J2, and J3 that are only functions of the
variable z;x/ sw/2d, which is a dimensionless measure of
the radial distance from the rational surface in terms of the
half-width of the magnetic island. We will show some of
their asymptotic scaling properties here. In all of them the
integrals overb are performed over an entire period of 2p,
while the integrals overa are only done over the region
where the pointsz,ad is outside the separatrix. This guaran-

tees that 2z2+scosa−cosbd.0, which yields the limit

uau ø cos−1s1 − 2z2d sA1d

for z less than 1; ifz is greater than 1, the limit fora is the
whole period of 2p.

First, we examine the limituzu@1—far from the mag-
netic island. Since the last three terms in Eq.(35) represent
the modification to the Grad–Shafranov equation, they must
vanish whenz is much greater than unity. Specific examina-
tions show that for largez

J1 < 1 +
1

16z4, J2 < −
1

32z4, J3 <
1

8z2 , sA2d

which satisfy the requirement that Eq.(35) reduces to usual
Grad–Shafranov equation, Eq.(1), in the infinitez (far from
the magnetic island) case.

We can also obtain an analytical approximation for the
three integrals in the smallz limit. The limit for a will then
be uauø2z. The integral overb can be expressed in the form
of elliptic integrals of the first and second kind. Using ap-
proximation formulas for them, we can obtain for smallz,

J1 < z2, J2 < −
pz

2 ln z
− 1, J3 <

2z

p
S1 +

2

ln z
D . sA3d
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