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Abstract. This paper addresses the problem of automatically gengrgtian-
tified invariants for programs that manipulate singly andldy linked-list data
structures. Our algorithm igroperty-directeg—i.e., its choices are driven by the
properties to be proven. The algorithm is able to establsih & correct pro-
gram has no memory-safety violations—e.g., null-pointereterences, double
frees—and that data-structure invariants are preserw@grbgrams with errors,
the algorithm produces concrete counterexamples.

More broadly, the paper describes how to integrate 1C3 wilihpredicate ab-
straction. The analysis method is complete in the follovéagse: if an inductive
invariant that proves that the program satisfies a givengutgjis expressible as a
Boolean combination of a given set of predicates, then théysis will find such
an invariant. To the best of our knowledge, this method isgts the first shape-
analysis algorithm that is capable of (i) reporting conerebunterexamples, or
alternatively (ii) establishing that the predicates in asenot capable of proving
the property in question.

1 Introduction

The goal of our work is to automatically generate quantifisgifiants for programs that
manipulate singly-linked and doubly-linked list data stures. For a correct program,
the invariant generated ensures that the program has no mesaiety violations, such
as null-pointer dereferences, and that data-structuegismts are preserved. For a pro-
gram in which it is possible to have a memory-safety violatio for a data-structure
invariant to be violated, the algorithm produces a conaceteterexample. Although
in this paper we mainly discuss memory-safety propertiesdata-structure invariants,
the technique can be easily extended to other correctnepsipies (se€5).

To the best of our knowledge, our method represents the fiegiesanalysis algo-
rithm that is capable of (i) reporting concrete counterepkas, or alternatively (ii) es-
tablishing that the abstraction in use is not capable ofipgpthe property in question.
This result is achieved by combining several existing ideasnew way:

— The algorithm uses a predicate-abstraction domain [12]hHichvquantified pred-
icates express properties of singly and doubly linked.listsontrast to most re-
cent work, which uses restricted forms of predicate abstnae-such as Cartesian
abstraction [1]—our algorithm uses full predicate abgtoac(i.e., the abstraction
uses arbitrary Boolean combinations of predicates).



— The abstraction predicates and language semantics aressegrin recently devel-
opedreachability logics AF"* andEA’, respectively, which are decidable using a
reduction to SAT [17].

— The algorithm is property-directed—i.e., its choices argeh by the memory-
safety properties to be proven. In particular, the algariik based on IC3 [3],
which we here refer to gsroperty-directed reachabilit{PDR).

PDR integrates well with full predicate abstraction: ineeff the analysis obtains
the same precision as the best abstract transformer f@ridicate abstraction, without
ever constructing the transformers explicitly. In parépwe cast PDR asfeamework
that is parameterized on

— the logicL in which the semantics of program statements are expressdd,

— the finite set of predicates that define the abstract domdain which invariants
can be expressed. An element.dfis an arbitrary Boolean combination of the
predicates.

Furthermore, our PDR framework iglatively complete with respect to the given ab-
straction That is, the analysis is guaranteed to terminate and dijharifies the given
property, (ii) generates a concrete counterexample toittem gproperty, or (iii) reports
that the abstract domain is not expressive enough to estathie proof. Outcome (ii)
is possible because the “frame” structure maintained dUPIDR can be used to build
a trace formula; if the formula is satisfiable, the model carptesented to the user as
a concrete counterexample. Moreover, if the analysis faifgove the property or find
a concrete counterexample (outcome (iii)), then there iwapto express an inductive
invariant that establishes the property in question usiBg@ean combination of the
abstraction predicates. Note that outcome (iii) is a mugdnger guarantee than what
other approaches provide in such cases when they neithegesdioor give a concrete
counterexample.

Key to instantiating the PDR framework for shape analysis waecent develop-
ment of theAF" andEAL logics for expressing properties of linked lists [LAF is
used to define abstraction predicates, BA is used to express the language seman-
tics. AF® is a decidable, alternation-free fragment of first-ordejidowith transitive
closure FO™). When applied to list-manipulation programs, atomic fatas of AF?
can denote reachability relations between memory locafiminted to by pointer vari-
ables, where reachability corresponds to repeated derafes ofnextor prev fields.
One advantage oAF” is that it does not require any special-purpose reasoning ma
chinery: anAF% formula can be converted to a formula in “effectively proitiosal”
logic, which can be reduced to SAT solving. That s, in costtta much previous work
on shape analysis, our method makes usa general purpose SMT solve£3 [5]
(rather than specialized tools developed for reasoningtdlnked data structures, e.g.,
[24,6,2,11]).

The main restriction ilAF? is that it allows the use of a relation symboi that
denotes the transitive closure of a function sympdbut only limited use off itself.
Although this restriction can be somewhat awkward, it isnmtyaa concern for the
analysis designer (and the details have already been wotked [17]). As a language



Name Description Mnemonic

=y equality

z(f)y z->f =y

z(f*)y anf path fromz to y

flsz,y] unshared linked-list segment betweenandy

alloc(z) z points to an allocated element St

f.stablgh) |anyf-path fromh leads to an allocated element St
f/b.rev[z,y| [reversed /b linked-list segment betweenandy R
f.sorted[z, y]|sortedf list segment betweenandy S

Table 1.Predicates for expressing various properties of linked liose elements hold data val-
ues.z andy denote program variables that point to list elementsiwdrl . f andb are parameters
that denote pointer fields. (The mnemonics are referred Talite 6.)

for expressing invariant®yF? provides a fairly natural abstraction, which means that
analysigesultsshould be understandable by non-experts {23&

Our work represents the first algorithm for shape analysis éither (i) succeeds,
(i) returns a concrete counterexample, or (iii) returnsaéstract trace showing that
the abstraction in use is not capable of proving the propartjuestion. The specific
contributions of our work include

— A framework, based on the PDR algorithm, for finding an indigcinvariant in
a certain logic fragment (abstract domain) that allows anprbve that a given
pre-/post-condition holds or find a concrete counter-eXantpthe property, or, in
the case of a negative result, the information that thereismductive invariant
expressible in the abstract domag3).

— An instantiation of the framework for finding invariants afograms that manip-
ulate singly-linked or doubly-linked lists. This instaation usesAF" to define a
simple predicate-abstraction domain, and is the first apitin of PDR to establish
guantified invariants of programs that manipulate linkstslg4).

— An empirical evaluation showing the efficacy of the PDR framek for a set of
linked-list programs{pb).

2 A Motivating Example

To illustrate the analysis, we use the procedurgert, shown in Fig. 1, that inserts
a new element pointed to kyinto the non-empty, singly-linked list pointed to by

i nsert is annotated with a pre-condition and a post-condition.

Table 1 shows a set of predicates for expressing propeftigdked lists whose ele-
ments hold data values. The predicates above the horidomgah Table 1 are inspired
by earlier work on shape analysis [13] and separation |&8¢. [

Given an input procedure, optionally annotated with a predition Pre and post-
conditionPost(expressed as formulas over the same vocabulary of predjc#te goal
of the analysis is to compute an invariant for the head of &amh® expressed as a CNF
formula over the predicates given in Table 1 (and their riegaj.

5 By a “non-expert”, we mean someone who has no knowledge léreibe analysis algorithm,
or the abstraction techniques used inside the algorithm.

8 The current implementation supports procedures with osipgle loop; however, this restric-
tion is not an essential limitation of our technique.



void insert(List e, List h, List x) {
Requires: h#null Ah(nT)z Az{n*)null Ae#null Ae(n)null A=h(n*)e
Ensures: h#null Ah{(n")eAe(n)z Az(n")null

p = h

g = null;

while (p!'=x & p !'= null) {
q=p

p = p->n;

}

g->n = e;

e->n = p;

Fig. 1. A procedure to insert the element pointed toebynto the non-empty, singly-linked list
pointed byh.

The task is not trivial because (i) a loop invariant may beemamplex than a pro-
gram'’s pre-condition or post-condition, and (ii) it is iaf@ble to enumerate all the po-
tential invariants expressible as CNF formulas over thdipetes shown in Table 1. For
instance, there ai@variables ini nsert (includingnul | ), and henc@6*6x6 clauses
can be created from tt8% possible instantiations of each of thdinary predicates in
Table 1. Therefore, the number of candidate invariantstiiabe formulated with these
predicates is more tha?” ", It would be infeasible to investigate them all explicitly.

Our analysis algorithm is based property-directed reachabilitf3]. It starts with
the trivial invarianttrue, which is repeatedly refined until it becomes inductiv@n
each iteration, a concrete counterexample to inductiveiseassed to refine the invariant
by excluding predicates that are implied by that countargia.

When applied to the procedure in Fig. 1, our analysis alporiterminated in about
24 seconds, and inferred the following 13-clause loop iavdr

g# e A(Wn")zAp=1z—h{n")q) A (p =z — q(n)p)
A (me(nye) A (g(n")p — q(n)p) A (R(n*)p V p = nun)
A (e{n)nun) A (z = nun vV p(n™)z) A (g # z V p # null) 1)
A =h{n*)e A (p =null = h(n")q) A (p=qVq(n)p)
A (B(n*)g A h{n*)z — h{n)qV g(n™)x)

o~~~ —

This loop invariant also guarantees that the code is memnafey # is also possible
to apply the analysis to infer sufficient conditions for meynsafety using true post-
conditions.

Our analysis is also capable of finding concrete counterpiesmwhen the proce-
dure violates the specification. For example, when the emtjiz # A" is added to
the precondition in Fig. 1 ance“ nul | " is removed, the algorithm returns the coun-
terexample trace shown in Fig. 2. Not surprisinglyis nul | in the first state at the
loop head (Fig. 1(a)). The loop body executes once, at whdtt pve reach the loop

" An invariant I is inductive at the entry to a loop if whenever the code of theplbody is
executed on an arbitrary state that satisfies lodimd the loop condition, the result is a state
that satisfied.
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Fig. 2. A two-state counterexample trace obtained from the algwritvhen it is applied to a
version of Fig. 1 in which the conjunat # h was added to the precondition aadg nul | was
removed. (a) First state at the loop head; (b) second sttte &iop head, at which point the loop
exits, and a null-dereference violation subsequently kEccu

Algorithm 1: PDR4(Init, p, Bad)
1 R[-1] := false

Algorithm 2: reducey(j, A)

2 R[0] := true 1 (r, A1) := Checka(Init, A)

3 N:=0 2 if r = satthen

4 while true do 3 o :=Model (Init A p¥ =7 A (Bad)' <"

5 if there exists0 < i < N 4 if o isNone then error “abstraction failure”

suchthatR[i{] = R[i+1] 5  else error“concrete counterexamie)”

then 6 while true do

6 return valid 7 (r,As) =

7 (r,A):= Checka(Bad R[N]) s Checka((Init)" vV (R[j — 1] A p), (A))

8 if r =unsatthen 9 if r = unsat then break

9 N:=N+1 10 elsereduces(j — 1, A2)

10 R[N] := true ufori=0...5do

11 else 12 R[i]:= R[i{] A (mA1 V —43)

12 reduces (N, A)

head in the state shown in Fig. 1(b). The loop then exits, hecktis a null-dereference
violation one in the statemenrd- >next = p.

3 Property-Directed Reachability

In this section, we present an adaptation of the IC3 algorithat uses predicate ab-
straction. In this paper, byredicate abstractiomve mean the technique that performs
verification using a giverixed set of abstraction predicates [9], and not techniques
that incorporate automatic refinement of the abstractiedipates; e.g. CEGAR. The
PDR algorithm shown in Alg. 1 is parameterized by a givendisiet of predicate®
expressed in a logi€. The requirements on the logitare:

R1 L is decidable (for satisfiability).
R2 The transition relation for each statement of the prognarg language can be
expressed as a two-vocabulaformula.

Then for a particular program, we are given:

— Afinite set of predicate® = {p;, € £},1 < i < n.



— The transition relation of the system as a two-vocabulamnfdap € L.
— The initial condition of the systenhpit € L.
— The formula specifying the set of bad statBad e L.

Let A be the full predicate abstraction domain over the predsiateThat is, each
elementd € A is anarbitrary Boolean combination of the predicatfs A € A is
inductive with respect ténit andp if and only if Init — A andA4A A p — (A). (¢)
renames the vocabulary of constant symbols and relatiomsligoccurring inp from
{c,...;r,...}t0{c,....;r",...}. pis (p) stripped of primes.

If the logic £ is propositional logic, then Alg. 1 is an instance of IC3 [Bur
presentation is a simplification of more advanced varia®t%,[14]. For instance, the
presentation omits inductive generalization, althoughioyplementation does imple-
ment inductive generalization (s&8). Furthermore, this simplified presentation brings
out the fact that the PDR algorithm is really an analftsimeworkthat is parameterized
on the set of abstraction predicafes

The algorithm employs an unbounded arfaywhere eaclirame R[i] € A over-
approximates the set of concrete states after executintptipeat most; times. The
algorithm maintains an intege¥, called theframe countersuch that the following
invariants hold foralD < 7 < N:

1. Initis a subset of alR[i], i.e.,Init — RJ[i].

2. The safety requirements are satisfied, i — —Bad

3. Each of theR[i + 1] includes the states iR[:], i.e., R[i] — R[i + 1].

4. The successors @[i] are included inRk[i + 1], i.e., for allo, o’ if o = R][i] and
(o,0") = p, theno’ = R[i + 1].

We illustrate the workings of the algorithm using a simplamyle, after which we
explain the algorithm in detail.

Example 1.Consider the programhile (x !'=y) x = x.n; with precondi-
tion Init £y # nun A z(nT)y. We wish to prove absence of null-dereference; that
is,Bad< z # y A z = null.

Table 2 shows a trace of PDR running with this input; each lemesents a SAT
query carried out by PDR (line 7) or by reducg (line 8). At each stage, if the result
(r) is “unsat”, then either we unfold one more loop iteratioN (:= N + 1) or we
learn a new clause to add f);] of the previous step, as marked by thé™ symbol.

If the result is ‘sat”, the resulting model is used to further refine an earlieuséaby
recursively calling reducg

On the first row, we start witl[0] = true, so definitelyR[0] A Badis satisfiable,
for example with a model where= y = nuil. The algorithm checks if this model repre-
sents areachable state at iteration O (see the second raihdeed it is not—the result
is “unsat” and the unsat-core ig = null (INitAy = nun is not satisfiable). Therefore, we
infer the negationy # nuil, and add that t&[0]. The algorithm progresses in the same
manner—e.g., after two more lineB[0] = (y # nullAz # null), and so on. Eventually,
the loop terminates wheR[i] = R[i + 1] for somei; in this example, the algorithm
terminates becaus®{1] = R[2]. The resulting invarianti®[2] = (y # nul Az{n*)y),

a slight generalization aPre in this case. a



Formula Model A = Ba(Model) Inferred

J

0[R[0] A Bad (nul, 1) 1= nul [A := 2 = null Az # y A~z {n*)y A y(n*)z T # null
—1{((Init)" v (R[-1] A p)) A (A)’|unsat /‘

0|R[0] A Bad unsat

1|R[1] A Bad (nul, 1) 1= nutl |4 := 2 = nul Az # y A =z {n*)y A y(n*)z -

0|((Init)" vV (R[O] A p)) A (A)" |(1,1) 1= nul |A:=2 =y #nl Az(n*)y Ay(n*)z z#y
—1|((Init)" v (R[—1] A p)) A (A)|unsat

1|R[1] A Bad (nul, 1) 1= nut[A := 2 = nul Az # y Az {n*)y A y(n*)z —

O[((nit)" vV (R[O] A p)) A (A) |(1,2) 1,2 = nu|A =2z # y Az,y # nul A oz (n*)y A ~y(n*)z|z(n*)y
—1{((Init)" vV (R[-1] A p)) A (A)’|unsat /'

1|R[1] A Bad (nui, 1) 1= null|A :=z = nut Az # y A nz(n*)y A y(n*)z z(n*)y

0]((Init)" v (R[0] A p)) A (A)" |unsat N

1|R[1] A Bad unsat

2|R[2) A Bad (nult, 1) 1= nul |4 := 2 = nul Az # y A -z {n*)y Ay(n*)z z(n*)y

1{((Init)" v (R[1] A p)) A (A)"  |unsat a

R[1] = R[2] valid

Table 2. Example run withinit = 4 # nun A z(n")y, Bad= z # y A 2 = nun, and

p = (2 = n(z)). The output invariant ig := z(n*)y.

Some terminology used in the PDR algorithm:

— Mbdel () returns a modet satisfyingy if it exists, andNone if it doesn't.
— The abstraction of a model, denoted by3.4(o), is the cube of predicates frof
that hold ino: Ba(c) = A{p|oc =p,p € P} AN{~q |0 = —q,q € P}
— Let ¢ € L is a formula in the unprimed vocabulary, € A is a value in the
unprimed or primed vocabular@heck 4 (¢, A) returns a paifr, A1) such that
o if o A Alis satisfiable, them = sat and A, is the abstraction of a concrete state
in the unprimed vocabulary. That is, if the givdnis in the unprimed vocabu-
lary, theng 4 (o) for somes = ¢ A 4; else if A is in the primed vocabulary,
thenA; = B 4(o) forsome(o,c’) = ¢ A A.
e if ¢ A A is unsatisfiable, them = unsat, and A, is a predicate such that
A — A; andyp A A; is unsatisfiable. The vocabulary df is the same as that
of A. If A is in the primed vocabulary (as in line 8 of Alg. heck 4 drops
the primes fromA; before returning the value.
A valid choice forA; in the unsatisfiable case would e = A (and indeed the
algorithm would still be correct), but ideally; should be the weakest such pred-
icate. For instanceCheck 4 (false, A) should return(unsat, true). In practice,
wheng A A is unsatisfiable, thel; returned is an unsat core fA A constructed
exclusively from conjuncts ofi. Such an unsat core is a Boolean combination of
predicates inP, and thus is an element gf.

We now give a more detailed explanation of Alg. 1. Edtfi], i > 0 is initialized
to true (lines 2 and 10), an®k[—1] is false. N is initialized to0 (line 3). At line 5,
the algorithm checks whethét[i] = R[i + 1] for some0 < 7 < N. If true, then an
inductive invariant proving unreachability &ad has been found, and the algorithm
returnsvalid (line 6).

At line 7, the algorithm checks wheth&{N] A Badis satisfiable. If it is unsatis-
fiable, it means thak[N] excludes the states describedBgd and the frame counter



N is incremented (line 9). Otherwisel, € A represents an abstract state that satis-
fies R[N] A Bad PDR then attempts to reduégN] to try and exclude this abstract
counterexample by calling redugéV, A) (line 12).

The reduce algorithm (Alg. 2) takes as input an integér < j < N, and an
abstract statd € A such that there is a path starting frohof lengthN —j that reaches
Bad Alg. 2 tries to strengthe®[j] so as to excludel. At line 1, reduce first checks
whetherinit A A is satisfiable. If it is satisfiable, then there is an abstrace of length
N —7j fromInit to Bad, using the transition relation The call tovbdel atline 3 checks
whether there exists a concrete model corresponding tolbieaet counterexample.
p* denotesk unfoldings of the transition relatiop; p° is true. (Bad)’** denotesk
applications of the renaming operatioif to Bad If no such concrete model is found,
then the abstraction was not precise enough to prove thereeqproperty (line 4);
otherwise, a concrete counterexample to the propertyusrret! (line 5).

Now consider the case whémit A A is unsatisfiable on line 14, € A returned by
the call toCheck 4 is such thatnit A A, is unsatisfiable; that i$nit — —A4;.

The while-loop on lines 6—10 checks whether té — j)-length path tdBad can
be extended backward to &V — j + 1)-length path. In particular, it checks whether
R[j — 1] A p A (A) is satisfiable. If it is satisfiable, then the algorithm caéisluce
recursively onj — 1 and A (line 10). If no such backward extension is possible, the
algorithm exits the while loop (line 9). Note thatjif= 0, Checka(R[j — 1] A p, A)
returns(unsat, true), because?[—1] is set tofalse.

The conjunction of =A4; vV —A43) to R[i],0 < ¢ < 7, in the loop on lines 11-12
eliminates abstract counterexamplewhile preserving the required invariants éh
In particular, the invarianinit — R[] is maintained becaudeit — —A4;, and hence
Init — (R[] A(—A1V—As2)). Furthermoreds is the abstract state from which there is a
(spurious) path of lengtlv — j to Bad By the properties o€heck 4, = A1 and—As are
each disjoint from4, and hencé—A; V —A4,) is also disjoint fromA. Thus, conjoining
(mA4; v —As) to R[i],0 < ¢ < j eliminates the spurious abstract counterexandple
Lastly, the invariant®[i] — R[i + 1] is preserved becauge A; V —A,) is conjoined
to all R[i],0 < i < j, and not justR][j].

Formally, the output of PDR(Init, p, Bad) is captured by the following theorem:

Theorem 1. Given (i) the set of abstraction predicat®s= {p; € L},1 < i < n
where £ is a decidable logic, and the full predicate abstraction @amA4 over P,
(i) the initial condition Init € £, (iii) a transition relation p expressed as a two-
vocabulary formula inZ, and (iv) a formula Bads £ specifying the set of bad states,
PDR 4(Init, p, Bad) terminates, and reports either

1. valid if there existA € A s.t. (i) Init — A, (ii) A is inductive, and (ii)A — —Bad,

2. a concrete counterexample trace, which reaches a stéitshysag Bad, or

3. an abstract trace, if the inductive invariant requiredpgmve the property cannot
be expressed as an elemenibf ad

The proof of Theorem 1 in Appendix A is based on the obsermatiat, when
“abstraction failure” is reported by reduggj, A), the set of models; = R[i] (j <
i < N) represents an abstract error trace.



Inductive Generalization. EachR]i] is a conjunction of clauses; A - - - A @,,,. If we
detect that some; comprising a subset of literals gf;, it holds thatR[i] A p A ¥ |=
(¢;)', theny; is inductive relative taR[i]. In this case, it is safe to conjoify; to R[k|
for £ < i + 1. Spurious counter-examples can also be purged if they dreciively
blocked. The advantages of this method are explained tigbiplby Bradley [3].

4 Property-Directed Reachability for Linked-List Program s

In this section, we describe how PQRnit, p, Bad) described in Alg. 1 can be in-
stantiated for verifying linked-list programs. The keyigt# is the use of the recently
developed reachability logics for expressing propertfdmked lists [17].

4.1 Reachability Logics
We use two related logics for expressing properties of lintata structures:

— AF® is a decidable fragment of first-order logic with transitilesure EO'C),
which is an alternation-free quantified logic. This logiaised to express the ab-
straction predicate®, and pre- and post-conditions. It is closed under negation,
and decidable for both satisfiability and validity.

— EA® allows there to be universal quantifiers inside of existémes. It is used to
define the transition formulas of statements that allocetemodes and dereference
pointers. This logic is not closed under negation, and ig datidable for satisfia-
bility. We count on the fact that transition formulas areyamsed in a positive form
in the satisfiability queries in Alg. 1.

AlthoughAF” is used as the language for defining the predicat@s thewlp rules go
slightly outside ofAF, producinge A® formulas (see Table 5 below).

Definition 1. (EAT) Aterm, t, is a variable or constant symbol. Astomic formula
is one of the following: (i)t = t2; (i) (¢, to,...,t,) Wherer is a relation sym-
bol of arity a (iii) A reachability constraintt; (f*)¢., wheref is a function symbol. A
quantifier-free formula(QF") is a boolean combination of atomic formulasuAiver-
sal formulabegins with zero or more universal quantifiers followed byarifier-free
formula. Analternation-free formula(AF") is a boolean combination of universal for-
mulas.EA” consists of formulas with quantifier-prefixv*.

In particular, QF? ¢ AF? c EAE. O

Technically, EA® forbids any use of an individual function symbgl; however,
whenf defines an acyclic linkage chain—as in acyclic singly linked doubly linked
lists—f can be defined in terms ¢f by using universal quantification to express that
an element is the closest in the chain to another elemens. idlba is formalized by
showing that for allv andg, f (o) = 5 <> Ef(«, B) whereE; is defined as follows:

Ep(a,8) Z a(f1)BAYY :alf*)y = B(), (2)
wherea(fH)3 = alf*)B A o # . However, because of the quantifier in Eqn. (2),

the right-hand side of Eqn. (2) can only be used in a contattdbes not introduce a
quantifier alternation (so that the formula remains in adaie fragment oFQ').



Name Formula

z(f)y Ey(z,y)

fls[z,yl |V, Bra(fYanalf )y AB(f)a— (B{f )z V z(f)B)
f.stablgh) [Va: h{f*)a — alloc(«)

I I
f/breviz,y] Ve, B : A 3(?*?5/\a?f%f/?i(f*)ﬁ/\ﬁ(fﬂy) — (af*)B © B(b*)a)
a#null AB#null

f.sorted[z, y]|Va, B :

A r<f*>aAa<f*>ﬁAB<f*>y> — die(a, )

Table 3. AF* formulas for the derived predicates shown in Tabl¢ andb denote pointer fields.
dle is an uninterpreted predicate that denotes a total ordeh@umlata values. The intention is
thatdle(a, 8) holds whenevern- >d < - >d, whered is the data field. We assume that the
semantics oflle are enforced by an appropriate total-order backgroundyheo

A Predicate Abstraction Domain that usesAF”. The abstraction predicates used
for verifying properties of linked list programs were intitecced informally in Table 1.
Table 3 gives the corresponding formal definition of the jraigs asAF" formulas.
Note that all four predicates defined in Table 3 are quantifiede quantified formula
for Ey is given in Eqn. (2).) In essence, we use a template-basedagpfor obtaining
quantified invariants: the discovered invariants have aftifier-free structure, but the
atomic formulas can be quantifiéd formulas.

We now show that th&€A” logic satisfies requirements R1 and R2 for the PDR
algorithm stated i§3.

Decidability of EA”. To satisfy requirement R1 stated §8, we have to show that
EA% is decidable for satisfiability.

EAZ is decidable for satisfiability because any formula in tbigi¢ can be trans-
lated into the “effectively propositional” decidable logif 3*v* formulas described by
Piskac et al. [21]EA includes relations of the forrfi* (the reflexive transitive closure
of a function symbof), but only allows limited use of itself.

Every EA" formula can be translated into atfv* formula using the following
steps [17]: (i) add a new uninterpreted relati®n which is intended to represent reflex-
ive transitive reachability vig; (ii) add the consistency rulgjj,org shown in Table 4,
which asserts thak; is a partial order, i.e., reflexive, transitive, acyclicddmear®
and (iii) replace all occurrences 6f(f*)t> by R¢(t1, t2). (By means of this translation
step, acyclicity is built into the logic.)

Proposition 1 (Simulation of EAY). Consider EA’ formula ¢ over vocabulary) =
(C,F,R). Lety' = o[R;(t, t2)/t1(f*)t2]. Theny' is a first-order formula over vo-
cabularyV’ = (C,0, RU{Ry: f € F), andIjinorg \ ¢’ is satisfiable if and only if the

original formula is satisfiable.

This proposition is the dual of [16, Proposition 3, Appendit] for validity of v*3*
formulas.

8 Note that the order is a partial order and not a total orderabse not every pair of elements
must be ordered.
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Va : Rp(w, @) reflexivity
AV, B,7v: Rf(or, B) N Rp(B,7v) = Ry(e, ) transitivity|
AVa, B Ri(e, B) NRf(B,a) > a=f acyclicity|
AV, B,7v: Rp(a, B) AN Rp(a,y) = (Rp(8,7) V Rr(v,8))| linearity,

Table 4. A universal formula/jjnorg, Which asserts that all points reachable from a given point
are linearly ordered.

CommandC  |wip(C, Q)

assune ¢ = Q

X =y Qly/=]

X = y->f y#null Ada: (Ei(y,a) A Qla/z])

x>t = null o % null A Qalf )8 A (~ol ) V B alf )]
x->f =y zZnull AQla(f")BV (alf*)x Ay{f*)B)/elf*)f]

x = mall oc() |Ja: —alloc(a) A Q[(alloc(B) V (8 =a A B = z))/alloc(B))]
free(x) alloc(z) A Q[(alloc(B) A 5 # x)/alloc(B))]

Table 5. Rules forwlp for atomic commandslloc stands for a memory location that has been al-
located and not subsequently freéli(y, «) is the universal formula defined in Eqn. (2)[y/z]
denotes) with all occurrences of atomic formulareplaced byy.

Axiomatic specification of concrete semantics ifEA”. To satisfy requirement R2
stated in§3, we have to show that the transition relation for each state Cmd of
the programming language can be expressed as a two-vooahuiaulap € EAL.
Let wip(Cmd Q) be the weakest liberal precondition of commagwhd with respect
Q € EA%. Then, the transition formula for comma@andis wip(Cmd Id), whereld is

a two-vocabulary formula that specifies that the input aedilitput states are identical,

ie.,
Idd:ef/\c:c//\ /\Voz,ﬂ:

ceC feFr

alf*)B & alf™)B.

To show that the concrete semantics of linked list prograamshe expressed in
EA”, we have to prove th&A” is closed undewlp; that is, for all command€md
andQ € EA", wip(Cmd Q) € EAR.

Table 5 shows rules for computingp for atomic commands. Note that pointer-
related rules in Table 5 each include a memory-safety cmdip detectnul | -
dereferences. For instance, the rule far*f = y” includes the conjunct £
nul | ”; if, in addition, we wish to detect accesses to unallocatemory, the rule
would be extended with the conjunalfoc(z)”.

The following lemma establishes the soundness and comgleseof thevlp rules.

Lemma 1. Consider a command’ of the form defined in Table 5 and postcondition
Q. Then,o = wip(C, Q) if and only if the execution of' on o can yield a states’
such that’ E Q.

This lemma is the dual of [16, Prop. 1, App. A.1] for validitf/'¢* 3* formulas.
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Memory-safety
Benchmark + data-structure integrity Additional properties
A|Time|N |# calls to Z3# clauses.A| Time |N|# calls to Z3# clauseg

create 1.37 3 28 3 8.194 96 7
delete 14554 61 6 9.323 67 7
deleteAll St 6.77 3 72 6 St 37.3947 308 12
filter 2.373 27 4 55.53 5 94 5
insert 26.385 220 16 25.254 155 13
prev 0.212 3 0 11.64 4 118 6
last 0.332 3 0 7.493 41 4
reverse 5355 128 4 146.426 723 11
sorted insert S|41.07 3 48 7 S| 51.464 134 10
sorted merge 26.69 4 87 10 S| 256.415 140 14
make doubly-linked|| [18.91 3 44 5 R|1086.615 112 8

Table 6. Experimental results. ColumA signifies the set of predicates used (blank = only the
top part of Table 1; S = with the addition of tlsertedpredicate family; R = with the addition
of therev family; St = with the addition of thestablefamily, wherealloc conjuncts are added
in wip rules). Running time is measured in seconds. N denotes ginestiindex for a generated
elementR|[:]. The number of clauses refers to the inferred loop invariant

Weakest liberal preconditions of compound commanksC: (sequencing) and
C1| C» (nondeterministic choice) are defined in the standard wey, i

def

wip(C1; Ca, Q) = wip(C1, wip(Ca, Q)) wip(Ch|C2, Q) = wIp(C1, Q) AWIp(C2, Q)

Consider a program with a single loop#ti | e Conddo Cmd'. Alg. 1 can be
used to prove whether or not a preconditRme € AF" before the loop implies that a
postconditiorPoste AF? holds after the loop, if the loop terminates: we supply Alg. 1
with Init = Pre, p = CondA wip(Cmd Id) andBad £ ~CondA —Post Furthermore,

def

memory safety can be enforced on the loop body by seBad= (—CondA —Pos} v
(CondA —wlp(Cmd true)).

5 Experiments

To evaluate the usefulness of the analysis algorithm, wéieabji to a collection of
sequential procedures that manipulate singly and douibked lists (see Table 6). For
each program, we report the predicates used, the time (@ndsg, the number of PDR
frames, the number of calls to Z3, and the size of the reguitiductive invariant, in
terms of the number of clauses. All experiments were run orv&Hiz Intel Core i5
machine with 4GB of RAM, running OS X 10.7.5. We used versio®i 2l of Z3 [5],
compiled for a 64-bit Intel architecture (using gcc 4.2 ahi'M).

For each of the benchmarks, we verified that the program avoid | -
dereferences, as well as that it preserves the data-steuicivariant that the inputs
and outputs are acyclic linked-lists. In addition, for soofiethe benchmarks we were
also able to verify some additional correctness propertdsile full functional cor-
rectness, or even partial correctness, is hard to achieng peedicate abstraction, we
were able to use simple formulas to verify several intenggbroperties that go beyond
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Benchmark || Property checked

create Some memory location pointed to by(a global variable) that was allocatgd
prior to the call, is not reachable from the list hehd,

delete The argumenx is no longer reachable from

deleteAll An arbitrary non-null element of the list becomes non-allocated.

filter Two arbitrary elements andy that satisfy the filtering criterion and have |an
n-path between them, maintain that path.

insert The new elemeng is reachable fronh and is the direct predecessor of the
argumenk.

last The function returns the last element of the list.

prev The function returns the element just befargf one exists.

reverse If x comes beforg in the input, therx should come aftey in the output.

sorted insert The list rooted ah remains sorted.

make doubly-linked| The resulting is the inverse of within the list rooted ah.

Table 7. Some correctness properties that can be verified by thesasaljocedure. For each of
the programs, we have defined suitaBle snf Postformulas inAF?.

Automatic bug finding

BenchmarkBug description Time [NJ# calls to Z3c.e. siz¢
insert Precondition is too weak (omitted=# nul 1 )|| 4.461 17 8
filter Potentialnul | dereference 6.30 1 21 3
Typo: list head used instead of list iterator ||{103.10 3 79 4
reverse Corrupted data structure: a cycle is created 0.9 1 9 2

Table 8. Results of experiments with buggy programs. Running tinmaéasured in seconds. N
denotes the highest index for a generated elemgijt “C.e. size” denotes the largest number of
individuals in a model in the counterexample trace.

memory-safety properties and data-structure invaridrasle 7 describes the proper-
ties we checked for the various examples. As seen from cadBnd, 8, and 9 of the
entries fordel et e andi nsert in Table 6, trying to provestrongerproperties can
sometimes result ifeweriterations being needed, resulting irslaorterrunning time.
In the remainder of the examples, handling additional priiggebeyond memory-safety
properties and data-structure invariants required mavegssing effort, which can be
attributed mainly to the larger set of symbols (and hencdipates) in the computation.

Bug Finding. We also ran our analysis on programs containing deliberagss,bto
demonstrate the utility of this approach to bug finding. Inoéthe cases, the method
was able to detect the bug and generate a concrete trace éh Wie safety or cor-
rectness properties are violated. The output in that caaeseries of concrete states
09..0cn Where eachr; contains the set of heap locations, pointer referencespend
gram variables at step The experiments and their results are shown in Table 8. We
found both the length of the trace and the size of the heaptates to be very small.
Their small size makes the traces useful to present to a hpnogmammer, which can
help in locating and fixing the bug.

Observations.It is worth noting that for programs where the proof of safstirivial—
because every access is guarded by an appropriate comtlitiveck, such as ipr ev
and | ast —the algorithm terminates almost immediately with the eotrinvariant
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true. This behavior is due to the property-directedness of thrageh, in contrast
with abstract interpretation, which always tries to find lis&st fixed point, regardless
of the desired property.

We experimented with different refinements of inductivewgralization §3). Our
algorithm could in many cases succeed without it, but withba most basic version
that just pushes each clause (without removing literalg) olserved runs with up to
N = 40 iterations. On the other hand, the more advanced versiandoétive general-
ization did not help us: trying to remove literals resultecilarge number of expensive
(and useless) solver calls; and blocking spurious cowsxamples using inductive gen-
eralization also turned out to be quite expensive in ouirgett

We also noticed that the analysis procedure is sensitiveetaimber of abstraction
predicates used. In particular, using predicates whosaeitiefis involve quantifiers
can affect the running time considerably. When the predi€atiliesf.sorted[z, y|
andf /b.rev [z, y] are added to4, running times can increase substantially (about 20-
60 times). This effect occurred even in the casemft ed mer ge, where we did not
attempt to prove an additional correctness property begaifety and integrity—and
indeed there were no occurrences of the added predicateslimdp invariant obtained.
As can be seen from Table 6, the PDR algorithen seis well-behaved, in the sense
that the number of calls to Z3 increased only modestly withdtditional predicates.
However, each call to Z3 took a lot more time.

6 Related Work

The literature on program analysis is vast, and the subfesttape analysis alone has
an extensive literature. Thus, in this section we are onlg &btouch on a few pieces
of prior work that relate to the ideas used in this paper.

Predicate abstraction.Houdini [8] is the first algorithm of which we are aware that
aims to identify a loop invariant, given a set of predicatescandidate ingredients.
However, Houdini only inferconjunctiveinvariants from a given set of predicates.
Santini [28, 27] is a recent algorithm for discovering inaats expressed in terms of
a set of candidate predicates. Like our algorithm, Sansifdased on full predicate
abstraction (i.e., it uses arbitrary Boolean combinatioha set of predicates), and
thus is strictly more powerful than Houdini. Santini couldke use of the predicates
and abstract domain described in this paper; however, aiglike algorithm, Santini
would not be able to report counterexamples when verifindtids. Other work infers
quantified invariants [26, 15] but does not support the ripgof counterexamples.
Templates are used in many tools to define the abstract demsa&d to represent sets
of states, by fixing the form of the constraints permittednpate Constraint Matrices
[25] are based on inequalities in linear real arithmetie. (ipolyhedra), but leave the
linear coefficients as symbolic inputs to the analysis. Tddaes of the coefficients are
derived in the course of running the analysis. In compariaawefficient in our use of
EA” corresponds to one of the finitely many constants that apgpehe program, and
we instantiated our templates prior to using PDR.

As mentioned irg1, PDR meshes well with full predicate abstraction: in gffdte
analysis obtains the benefit of the precision of the abstransformers for full pred-
icate abstraction, without ever constructing the abstractsformers explicitly. PDR
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also allows a predicate-abstraction-based tool to cremterete counterexamples when
verification fails.

Abstractions based on linked-list segmentsln this paper, our abstract domain is
based on formulas expressedAR’, which has very limited capabilities to express
properties of stretches of data structures that are notgubio by a program variable.
This feature is similar to the self-imposed limitations oqpressibility used in a num-
ber of past approaches, including (a) canonical abstrag2id]; (b) a prior method for
applying predicate abstraction to linked lists [20]; (c)astraction method based on
“must-paths” between nodes that are either pointed to bialles or are list-merge
points [18]; and (d) domains based on separation logidsskgment primitive [6, 2]
(.e., “Is[z, y]" asserts the existence of a possibly empty list segmentimgrfrom the
node pointed to by to the node pointed to by). Decision procedures have been used
in previous work to compute the best transformer for indiallstatements that manip-
ulate linked lists [29, 22].

STRAND and elastic quantified data automata.Recently, Garg et al. developed
methods for obtaining quantified invariants for progranet tmanipulate linked lists
via an abstract domain @fuantified data automatg 0, 11]. To create an abstract do-
main with the right properties, they use a weakened form tifraaton—so-calledlas-
tic quantified data automata—that is unable to observe thelslefastretches of data
structures that are not pointed to by a program variableugTan elastic automaton
has some of the characteristics of the work based on linkedégments described
above.) An elastic automaton can be converted to a formutaeiecidable fragment
of STRAND over lists [19].

Otherwork on IC3/PDR. Our work represents the first application of PDR to programs
that manipulate dynamically allocated storage. We choaead®DR because it has been
shown to work extremely well in other domains, such as hardwarification [3, 7].
Subsequently, it was generalized to software model chgdkinprogram models that
use linear real arithmetic [14] and linear rational arithimpt]. Cimatti and Griggio [4]
employ a quantifier-elimination procedure for linear raibarithmetic, based on an
approximate pre-image operation. Our use of a predicad&adtion domain allows us
to obtain an approximate pre-image as the unsat core of &sialfto an SMT solver
(line 8 of Alg. 2).

7 Conclusion

Compared to past work on shape analysis, our approach (gsiedoon full predicate
abstraction, (i) makes use of standard theorem provingrigoes, (iii) is capable of
reporting concrete counterexamples, and (iv) is basedapepty-directed reachability.
The experimental evaluation &b illustrates these four advantages of our approach.
The algorithm is able to establish memory-safety and pvesen of data-structure
invariants for all of the examples, using only the simpledizates given in Table 1.
This result is surprising because earlier work on shapeyaisehat employed the same
predicates [13]failed to prove these properties. One reiagbat [13] only uses positive
and negative combinations of these predicates, whereaalgorithm uses arbitrary
Boolean combinations of predicates.
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A Proofs

Theorem 1 Given (i) the set of abstraction predicates = {p; € £},1 < i < n
where £ is a decidable logic, and the full predicate abstraction damA4 over P,
(i) the initial condition Init € £, (iii) a transition relation p expressed as a two-
vocabulary formula inZ, and (iv) a formula Bad: £ specifying the set of bad states,
PDR 4(Init, p, Bad) terminates, and reports either

1. valid if there existsd € A s.t. (i) Init — A, (i) A isinductive, and (iii)A — —Bad,

2. aconcrete counterexample trace, which reaches a stétfysag Bad, or

3. an abstract trace, if the inductive invariant requiredpgmve the property cannot
be expressed as an elementbf

Proof. The first two cases are trivial: if PDRterminates returning some[j], j < N,
thenInit — R[j] by virtue of Init — R[0] andR[i] — R[¢ + 1] for every: < N, and
R[j] — —Bador the check at line line 7 would have failed. AlsBj — 1] = R][j] so
R[j] is inductive.

If PDR 4 returns a set of concrete states, then they have to be a tecotmterex-
ample trace, as they are a modelwt A pV =7 A (Bad)*“~” (line 3 of reduce,).

For the third case, we show that if the check on the first lingG@duce” is “sat”,

then there exists a chain of concrete states, o;1 --- on, such thatr; = Init,
on | Bad, andforanyj < i < N there exist two concrete statess’ satisfying:

— 0 €7(Baloy))

- o' €y(Baloit1))

~ (0.0 Ep

The key point is that, because the given abstraction carr désteguish any two states
in v(B.4(0;)), the chaino; ¢j41---on cannot be excluded by the abstract domain
A, no matter what Boolean combination of the predicate® i used. Moreover, the
chainfa(o;) Baloj+1) -+ Ba(on) is an abstract trace that leads from an initial
state to an error state.

Notice that the chain above may not be a concrete trace, tearde “breaks”
between adjacent;s, within the same abstract element.

Construction of(c;);—;...~: Follow the chain of recursive calls to “reduce” with
index valuesV down toj. The parameted is always a cube of the forrfis(o); take
onec = A for each call, forming a series that we denotedhyo, 4, etc. We show
that this series satisfies the above properties: At eachxadipt the innermost, “reduce”
made a recursive call at line 7, which means tRgt — 1] A p A (4)’ was satisfiable;
the returned cubel, becomess4(o;—1). Let (o,0’) = R[j — 1] A p A (A)’, then
o= Ay =pBa(oj-1); 0’ = A= Ba(oj); and(o,0’) = p as required. O
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