
Property-Directed Shape Analysis

S. Itzhaky1, N. Bjørner2, T. Reps3,4, M. Sagiv1, and A. Thakur3

1 Tel Aviv University, Tel Aviv, Israel
2 Microsoft Research, USA

3 University of Wisconsin–Madison, USA
4 GrammaTech, Inc., USA

Abstract. This paper addresses the problem of automatically generating quan-
tified invariants for programs that manipulate singly and doubly linked-list data
structures. Our algorithm isproperty-directed—i.e., its choices are driven by the
properties to be proven. The algorithm is able to establish that a correct pro-
gram has no memory-safety violations—e.g., null-pointer dereferences, double
frees—and that data-structure invariants are preserved. For programs with errors,
the algorithm produces concrete counterexamples.

More broadly, the paper describes how to integrate IC3 with full predicate ab-
straction. The analysis method is complete in the followingsense: if an inductive
invariant that proves that the program satisfies a given property is expressible as a
Boolean combination of a given set of predicates, then the analysis will find such
an invariant. To the best of our knowledge, this method represents the first shape-
analysis algorithm that is capable of (i) reporting concrete counterexamples, or
alternatively (ii) establishing that the predicates in useare not capable of proving
the property in question.

1 Introduction

The goal of our work is to automatically generate quantified invariants for programs that
manipulate singly-linked and doubly-linked list data structures. For a correct program,
the invariant generated ensures that the program has no memory-safety violations, such
as null-pointer dereferences, and that data-structure invariants are preserved. For a pro-
gram in which it is possible to have a memory-safety violation or for a data-structure
invariant to be violated, the algorithm produces a concretecounterexample. Although
in this paper we mainly discuss memory-safety properties and data-structure invariants,
the technique can be easily extended to other correctness properties (see§5).

To the best of our knowledge, our method represents the first shape-analysis algo-
rithm that is capable of (i) reporting concrete counterexamples, or alternatively (ii) es-
tablishing that the abstraction in use is not capable of proving the property in question.
This result is achieved by combining several existing ideasin a new way:

– The algorithm uses a predicate-abstraction domain [12] in which quantified pred-
icates express properties of singly and doubly linked lists. In contrast to most re-
cent work, which uses restricted forms of predicate abstraction—such as Cartesian
abstraction [1]—our algorithm uses full predicate abstraction (i.e., the abstraction
uses arbitrary Boolean combinations of predicates).

– The abstraction predicates and language semantics are expressed in recently devel-
opedreachability logics, AFR andEAR, respectively, which are decidable using a
reduction to SAT [17].

– The algorithm is property-directed—i.e., its choices are driven by the memory-
safety properties to be proven. In particular, the algorithm is based on IC3 [3],
which we here refer to asproperty-directed reachability(PDR).

PDR integrates well with full predicate abstraction: in effect, the analysis obtains
the same precision as the best abstract transformer for fullpredicate abstraction, without
ever constructing the transformers explicitly. In particular, we cast PDR as aframework
that is parameterized on

– the logicL in which the semantics of program statements are expressed,and
– the finite set of predicates that define the abstract domainA in which invariants

can be expressed. An element ofA is an arbitrary Boolean combination of the
predicates.

Furthermore, our PDR framework isrelatively complete with respect to the given ab-
straction. That is, the analysis is guaranteed to terminate and either(i) verifies the given
property, (ii) generates a concrete counterexample to the given property, or (iii) reports
that the abstract domain is not expressive enough to establish the proof. Outcome (ii)
is possible because the “frame” structure maintained during PDR can be used to build
a trace formula; if the formula is satisfiable, the model can be presented to the user as
a concrete counterexample. Moreover, if the analysis failsto prove the property or find
a concrete counterexample (outcome (iii)), then there is noway to express an inductive
invariant that establishes the property in question using aBoolean combination of the
abstraction predicates. Note that outcome (iii) is a much stronger guarantee than what
other approaches provide in such cases when they neither succeed nor give a concrete
counterexample.

Key to instantiating the PDR framework for shape analysis was a recent develop-
ment of theAFR andEAR logics for expressing properties of linked lists [17].AFR is
used to define abstraction predicates, andEAR is used to express the language seman-
tics. AFR is a decidable, alternation-free fragment of first-order logic with transitive
closure (FOTC). When applied to list-manipulation programs, atomic formulas ofAFR

can denote reachability relations between memory locations pointed to by pointer vari-
ables, where reachability corresponds to repeated dereferences ofnextor prev fields.
One advantage ofAFR is that it does not require any special-purpose reasoning ma-
chinery: anAFR formula can be converted to a formula in “effectively propositional”
logic, which can be reduced to SAT solving. That is, in contrast to much previous work
on shape analysis, our method makes use ofa general purpose SMT solver, Z3 [5]
(rather than specialized tools developed for reasoning about linked data structures, e.g.,
[24, 6, 2, 11]).

The main restriction inAFR is that it allows the use of a relation symbolf ∗ that
denotes the transitive closure of a function symbolf , but only limited use off itself.
Although this restriction can be somewhat awkward, it is mainly a concern for the
analysis designer (and the details have already been workedout in [17]). As a language

2

Name Description Mnemonic
x = y equality
x 〈f 〉y x->f = y

x 〈f ∗〉y anf path fromx to y

f .ls [x , y] unsharedf linked-list segment betweenx andy
alloc(x) x points to an allocated element St

f .stable(h) anyf -path fromh leads to an allocated element St

f /b.rev [x , y] reversedf /b linked-list segment betweenx andy R

f .sorted[x , y] sortedf list segment betweenx andy S

Table 1.Predicates for expressing various properties of linked lists whose elements hold data val-
ues.x andy denote program variables that point to list elements ornull. f andb are parameters
that denote pointer fields. (The mnemonics are referred to inTable 6.)

for expressing invariants,AFR provides a fairly natural abstraction, which means that
analysisresultsshould be understandable by non-experts (see§2).5

Our work represents the first algorithm for shape analysis that either (i) succeeds,
(ii) returns a concrete counterexample, or (iii) returns anabstract trace showing that
the abstraction in use is not capable of proving the propertyin question. The specific
contributions of our work include

– A framework, based on the PDR algorithm, for finding an inductive invariant in
a certain logic fragment (abstract domain) that allows one to prove that a given
pre-/post-condition holds or find a concrete counter-example to the property, or, in
the case of a negative result, the information that there is no inductive invariant
expressible in the abstract domain (§3).

– An instantiation of the framework for finding invariants of programs that manip-
ulate singly-linked or doubly-linked lists. This instantiation usesAFR to define a
simple predicate-abstraction domain, and is the first application of PDR to establish
quantified invariants of programs that manipulate linked lists (§4).

– An empirical evaluation showing the efficacy of the PDR framework for a set of
linked-list programs (§5).

2 A Motivating Example
To illustrate the analysis, we use the procedureinsert, shown in Fig. 1, that inserts
a new element pointed to bye into the non-empty, singly-linked list pointed to byh.
insert is annotated with a pre-condition and a post-condition.

Table 1 shows a set of predicates for expressing properties of linked lists whose ele-
ments hold data values. The predicates above the horizontalline in Table 1 are inspired
by earlier work on shape analysis [13] and separation logic [23].

Given an input procedure, optionally annotated with a pre-conditionPre and post-
conditionPost(expressed as formulas over the same vocabulary of predicates); the goal
of the analysis is to compute an invariant for the head of eachloop6 expressed as a CNF
formula over the predicates given in Table 1 (and their negations).

5 By a “non-expert”, we mean someone who has no knowledge of either the analysis algorithm,
or the abstraction techniques used inside the algorithm.

6 The current implementation supports procedures with only asingle loop; however, this restric-
tion is not an essential limitation of our technique.

3

void insert(List e, List h, List x) {
Requires: h 6= null ∧ h〈n+〉x ∧ x〈n∗〉null ∧ e 6= null ∧ e〈n〉null ∧ ¬h〈n∗〉e
Ensures: h 6= null ∧ h〈n∗〉e ∧ e〈n〉x ∧ x〈n∗〉null
p = h;
q = null;
while (p != x && p != null) {
q = p;
p = p->n;

}
q->n = e;
e->n = p;

}

Fig. 1. A procedure to insert the element pointed to bye into the non-empty, singly-linked list
pointed byh.

The task is not trivial because (i) a loop invariant may be more complex than a pro-
gram’s pre-condition or post-condition, and (ii) it is infeasible to enumerate all the po-
tential invariants expressible as CNF formulas over the predicates shown in Table 1. For
instance, there are6 variables ininsert (includingnull), and hence26×6×6 clauses
can be created from the36 possible instantiations of each of the6 binary predicates in
Table 1. Therefore, the number of candidate invariants thatcan be formulated with these
predicates is more than22

6×6×6

. It would be infeasible to investigate them all explicitly.
Our analysis algorithm is based onproperty-directed reachability[3]. It starts with

the trivial invarianttrue, which is repeatedly refined until it becomes inductive.7 On
each iteration, a concrete counterexample to inductiveness is used to refine the invariant
by excluding predicates that are implied by that counterexample.

When applied to the procedure in Fig. 1, our analysis algorithm terminated in about
24 seconds, and inferred the following 13-clause loop invariant:

q 6= e ∧ (h〈n∗〉x ∧ p = x → h〈n∗〉q) ∧ (p = x → q〈n〉p)
∧ (¬e〈n〉e) ∧ (q〈n∗〉p → q〈n〉p) ∧ (h〈n∗〉p ∨ p = null)
∧ (e〈n〉null) ∧ (x = null ∨ p〈n∗〉x) ∧ (q 6= x ∨ p 6= null)
∧ ¬h〈n∗〉e ∧ (p = null → h〈n∗〉q) ∧ (p = q ∨ q〈n〉p)

∧ (h〈n∗〉q ∧ h〈n∗〉x → h〈n〉q ∨ q〈n∗〉x)

(1)

This loop invariant also guarantees that the code is memory safe. It is also possible
to apply the analysis to infer sufficient conditions for memory safety using true post-
conditions.

Our analysis is also capable of finding concrete counterexamples when the proce-
dure violates the specification. For example, when the conjunct “x 6= h” is added to
the precondition in Fig. 1 and “e 6= null” is removed, the algorithm returns the coun-
terexample trace shown in Fig. 2. Not surprisingly,e is null in the first state at the
loop head (Fig. 1(a)). The loop body executes once, at which point we reach the loop

7 An invariant I is inductive at the entry to a loop if whenever the code of the loop body is
executed on an arbitrary state that satisfies bothI and the loop condition, the result is a state
that satisfiesI .

4

null e q h p x

v1 v2 v3 v4 v5 v6 v7v0

(a)

null e q h p x

v1 v2 v3 v4 v5 v6 v7v0

(b)

Fig. 2. A two-state counterexample trace obtained from the algorithm when it is applied to a
version of Fig. 1 in which the conjunctx 6= h was added to the precondition ande 6= null was
removed. (a) First state at the loop head; (b) second state atthe loop head, at which point the loop
exits, and a null-dereference violation subsequently occurs.

Algorithm 1: PDRA(Init, ρ,Bad)

1 R[−1] := false

2 R[0] := true

3 N := 0
4 while true do
5 if there exists0 ≤ i < N

such thatR[i] = R[i +1]
then

6 return valid
7 (r ,A) := CheckA(Bad,R[N])
8 if r = unsat then
9 N := N + 1

10 R[N] := true

11 else
12 reduceA(N ,A)

Algorithm 2: reduceA(j ,A)

1 (r ,A1) := CheckA(Init,A)
2 if r = sat then
3 σ := Model(Init ∧ ρN−j ∧ (Bad)′×(N−j)

)
4 if σ is None then error “abstraction failure”
5 else error “concrete counterexample(σ)”
6 while true do
7 (r ,A2) :=
8 CheckA((Init)′ ∨ (R[j − 1] ∧ ρ), (A)′)
9 if r = unsat then break

10 else reduceA(j − 1,A2)

11 for i = 0 . . . j do
12 R[i] := R[i] ∧ (¬A1 ∨ ¬A2)

head in the state shown in Fig. 1(b). The loop then exits, and there is a null-dereference
violation one in the statemente->next = p.

3 Property-Directed Reachability

In this section, we present an adaptation of the IC3 algorithm that uses predicate ab-
straction. In this paper, bypredicate abstractionwe mean the technique that performs
verification using a givenfixed set of abstraction predicates [9], and not techniques
that incorporate automatic refinement of the abstraction predicates; e.g. CEGAR. The
PDR algorithm shown in Alg. 1 is parameterized by a given finite set of predicatesP
expressed in a logicL. The requirements on the logicL are:

R1 L is decidable (for satisfiability).
R2 The transition relation for each statement of the programming language can be

expressed as a two-vocabularyL formula.

Then for a particular program, we are given:

– A finite set of predicatesP = {pi ∈ L}, 1 ≤ i ≤ n.

5

– The transition relation of the system as a two-vocabulary formulaρ ∈ L.
– The initial condition of the system,Init ∈ L.
– The formula specifying the set of bad states,Bad∈ L.

Let A be the full predicate abstraction domain over the predicatesP . That is, each
elementA ∈ A is anarbitrary Boolean combination of the predicatesP . A ∈ A is
inductive with respect toInit andρ if and only if Init → A andA ∧ ρ → (A)′. (ϕ)′

renames the vocabulary of constant symbols and relation symbols occurring inϕ from
{c, . . . , r , . . .} to {c′, . . . , r ′, . . .}. ϕ is (ϕ)′ stripped of primes.

If the logic L is propositional logic, then Alg. 1 is an instance of IC3 [3].Our
presentation is a simplification of more advanced variants [3, 7, 14]. For instance, the
presentation omits inductive generalization, although our implementation does imple-
ment inductive generalization (see§5). Furthermore, this simplified presentation brings
out the fact that the PDR algorithm is really an analysisframeworkthat is parameterized
on the set of abstraction predicatesP .

The algorithm employs an unbounded arrayR, where eachframeR[i] ∈ A over-
approximates the set of concrete states after executing theloop at mosti times. The
algorithm maintains an integerN , called theframe counter, such that the following
invariants hold for all0 ≤ i < N :

1. Init is a subset of allR[i], i.e.,Init → R[i].
2. The safety requirements are satisfied, i.e.,R[i] → ¬Bad.
3. Each of theR[i + 1] includes the states inR[i], i.e.,R[i] → R[i + 1].
4. The successors ofR[i] are included inR[i + 1], i.e., for allσ, σ′ if σ |= R[i] and

〈σ, σ′〉 |= ρ, thenσ′ |= R[i + 1].

We illustrate the workings of the algorithm using a simple example, after which we
explain the algorithm in detail.

Example 1.Consider the programwhile (x != y) x = x.n; with precondi-
tion Init

def
= y 6= null ∧ x 〈n+〉y . We wish to prove absence of null-dereference; that

is, Bad
def
= x 6= y ∧ x = null.

Table 2 shows a trace of PDR running with this input; each linerepresents a SAT
query carried out by PDRA (line 7) or by reduceA (line 8). At each stage, if the result
(r) is “unsat”, then either we unfold one more loop iteration (N := N + 1) or we
learn a new clause to add toR[j] of the previous step, as marked by the “ր” symbol.
If the result is “sat”, the resulting model is used to further refine an earlier clause by
recursively calling reduceA.

On the first row, we start withR[0] = true, so definitelyR[0] ∧ Bad is satisfiable,
for example with a model wherex = y = null. The algorithm checks if this model repre-
sents a reachable state at iteration 0 (see the second row), and indeed it is not—the result
is “unsat” and the unsat-core isy = null (Init∧y = null is not satisfiable). Therefore, we
infer the negation,y 6= null, and add that toR[0]. The algorithm progresses in the same
manner—e.g., after two more lines,R[0] = (y 6= null∧x 6= null), and so on. Eventually,
the loop terminates whenR[i] = R[i + 1] for somei ; in this example, the algorithm
terminates becauseR[1] = R[2]. The resulting invariant isR[2] ≡ (y 6= null∧x 〈n∗〉y),
a slight generalization ofPre in this case. ⊓⊔

6

j Formula Model A := βA(Model) Inferred

0 R[0] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x 6= null

−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ր
0 R[0] ∧ Bad unsat
1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x −
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ (1, 1) 1 7→ null A := x = y 6= null ∧ x 〈n∗〉y ∧ y〈n∗〉x x 6= y

−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ր
1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x −
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ (1, 2) 1, 2 7→ null A := x 6= y ∧ x , y 6= null ∧ ¬x 〈n∗〉y ∧ ¬y〈n∗〉x x 〈n∗〉y

−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ր
1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x 〈n∗〉y
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ unsat ր
1 R[1] ∧ Bad unsat
2 R[2] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x 〈n∗〉y
1 ((Init)′ ∨ (R[1] ∧ ρ)) ∧ (A)′ unsat ր
R[1] = R[2] valid

Table 2. Example run withInit
def
= y 6= null ∧ x 〈n+〉y , Bad

def
= x 6= y ∧ x = null, and

ρ
def
= (x ′ = n(x)). The output invariant isI := x 〈n∗〉y .

Some terminology used in the PDR algorithm:

– Model(ϕ) returns a modelσ satisfyingϕ if it exists, andNone if it doesn’t.
– The abstraction of a modelσ, denoted byβA(σ), is the cube of predicates fromP

that hold inσ: βA(σ) =
∧

{p | σ |= p, p ∈ P} ∧
∧

{¬q | σ |= ¬q, q ∈ P}.
– Let ϕ ∈ L is a formula in the unprimed vocabulary,A ∈ A is a value in the

unprimed or primed vocabulary.CheckA(ϕ,A) returns a pair(r ,A1) such that
• if ϕ∧A is satisfiable, thenr = sat andA1 is the abstraction of a concrete state

in the unprimed vocabulary. That is, if the givenA is in the unprimed vocabu-
lary, thenβA(σ) for someσ |= ϕ ∧ A; else ifA is in the primed vocabulary,
thenA1 = βA(σ) for some(σ, σ′) |= ϕ ∧ A.

• if ϕ ∧ A is unsatisfiable, thenr = unsat, andA1 is a predicate such that
A → A1 andϕ ∧ A1 is unsatisfiable. The vocabulary ofA1 is the same as that
of A. If A is in the primed vocabulary (as in line 8 of Alg. 2),CheckA drops
the primes fromA1 before returning the value.

A valid choice forA1 in the unsatisfiable case would beA1 = A (and indeed the
algorithm would still be correct), but ideallyA1 should be the weakest such pred-
icate. For instance,CheckA(false,A) should return(unsat, true). In practice,
whenϕ ∧ A is unsatisfiable, theA1 returned is an unsat core ofϕ ∧ A constructed
exclusively from conjuncts ofA. Such an unsat core is a Boolean combination of
predicates inP , and thus is an element ofA.

We now give a more detailed explanation of Alg. 1. EachR[i], i ≥ 0 is initialized
to true (lines 2 and 10), andR[−1] is false. N is initialized to0 (line 3). At line 5,
the algorithm checks whetherR[i] = R[i + 1] for some0 ≤ i < N . If true, then an
inductive invariant proving unreachability ofBad has been found, and the algorithm
returnsvalid (line 6).

At line 7, the algorithm checks whetherR[N] ∧ Bad is satisfiable. If it is unsatis-
fiable, it means thatR[N] excludes the states described byBad, and the frame counter

7

N is incremented (line 9). Otherwise,A ∈ A represents an abstract state that satis-
fiesR[N] ∧ Bad. PDR then attempts to reduceR[N] to try and exclude this abstract
counterexample by calling reduceA(N ,A) (line 12).

The reduce algorithm (Alg. 2) takes as input an integerj , 0 ≤ j ≤ N , and an
abstract stateA ∈ A such that there is a path starting fromA of lengthN−j that reaches
Bad. Alg. 2 tries to strengthenR[j] so as to excludeA. At line 1, reduce first checks
whetherInit ∧A is satisfiable. If it is satisfiable, then there is an abstracttrace of length
N−j from Init to Bad, using the transition relationρ. The call toModel at line 3 checks
whether there exists a concrete model corresponding to the abstract counterexample.
ρk denotesk unfoldings of the transition relationρ; ρ0 is true. (Bad)′×k denotesk
applications of the renaming operation(·)′ to Bad. If no such concrete model is found,
then the abstraction was not precise enough to prove the required property (line 4);
otherwise, a concrete counterexample to the property is returned (line 5).

Now consider the case whenInit ∧A is unsatisfiable on line 1.A1 ∈ A returned by
the call toCheckA is such thatInit ∧ A1 is unsatisfiable; that is,Init → ¬A1.

The while-loop on lines 6–10 checks whether the(N − j)-length path toBadcan
be extended backward to an(N − j + 1)-length path. In particular, it checks whether
R[j − 1] ∧ ρ ∧ (A)′ is satisfiable. If it is satisfiable, then the algorithm callsreduce
recursively onj − 1 andA2 (line 10). If no such backward extension is possible, the
algorithm exits the while loop (line 9). Note that ifj = 0, CheckA(R[j − 1] ∧ ρ,A)
returns(unsat, true), becauseR[−1] is set tofalse.

The conjunction of(¬A1 ∨ ¬A2) to R[i], 0 ≤ i ≤ j , in the loop on lines 11–12
eliminates abstract counterexampleA while preserving the required invariants onR.
In particular, the invariantInit → R[i] is maintained becauseInit → ¬A1, and hence
Init → (R[i]∧(¬A1∨¬A2)). Furthermore,A2 is the abstract state from which there is a
(spurious) path of lengthN − j to Bad. By the properties ofCheckA, ¬A1 and¬A2 are
each disjoint fromA, and hence(¬A1∨¬A2) is also disjoint fromA. Thus, conjoining
(¬A1 ∨ ¬A2) to R[i], 0 ≤ i ≤ j eliminates the spurious abstract counterexampleA.
Lastly, the invariantR[i] → R[i + 1] is preserved because(¬A1 ∨ ¬A2) is conjoined
to all R[i], 0 ≤ i ≤ j , and not justR[j].

Formally, the output of PDRA(Init, ρ,Bad) is captured by the following theorem:

Theorem 1. Given (i) the set of abstraction predicatesP = {pi ∈ L}, 1 ≤ i ≤ n

whereL is a decidable logic, and the full predicate abstraction domain A over P ,
(ii) the initial condition Init ∈ L, (iii) a transition relation ρ expressed as a two-
vocabulary formula inL, and (iv) a formula Bad∈ L specifying the set of bad states,
PDRA(Init, ρ,Bad) terminates, and reports either

1. valid if there existsA ∈ A s.t. (i) Init → A, (ii) A is inductive, and (iii)A → ¬Bad,
2. a concrete counterexample trace, which reaches a state satisfying Bad, or
3. an abstract trace, if the inductive invariant required toprove the property cannot

be expressed as an element ofA. ⊓⊔

The proof of Theorem 1 in Appendix A is based on the observation that, when
“abstraction failure” is reported by reduceA(j ,A), the set of modelsσi |= R[i] (j ≤
i < N) represents an abstract error trace.

8

Inductive Generalization. EachR[i] is a conjunction of clausesϕ1 ∧ · · · ∧ ϕm . If we
detect that someψj comprising a subset of literals ofϕj , it holds thatR[i] ∧ ρ ∧ ψj |=
(ψj)

′, thenψj is inductive relative toR[i]. In this case, it is safe to conjoinψj to R[k]
for k ≤ i + 1. Spurious counter-examples can also be purged if they are inductively
blocked. The advantages of this method are explained thoroughly by Bradley [3].

4 Property-Directed Reachability for Linked-List Program s

In this section, we describe how PDRA(Init, ρ,Bad) described in Alg. 1 can be in-
stantiated for verifying linked-list programs. The key insight is the use of the recently
developed reachability logics for expressing properties of linked lists [17].

4.1 Reachability Logics

We use two related logics for expressing properties of linked data structures:

– AFR is a decidable fragment of first-order logic with transitiveclosure (FOTC),
which is an alternation-free quantified logic. This logic isused to express the ab-
straction predicatesP , and pre- and post-conditions. It is closed under negation,
and decidable for both satisfiability and validity.

– EAR allows there to be universal quantifiers inside of existential ones. It is used to
define the transition formulas of statements that allocate new nodes and dereference
pointers. This logic is not closed under negation, and is only decidable for satisfia-
bility. We count on the fact that transition formulas are only used in a positive form
in the satisfiability queries in Alg. 1.

AlthoughAFR is used as the language for defining the predicates inP , thewlp rules go
slightly outside ofAFR, producingEAR formulas (see Table 5 below).

Definition 1. (EAR) A term, t , is a variable or constant symbol. Anatomic formula
is one of the following: (i)t1 = t2; (ii) r(t1, t2, . . . , ta) wherer is a relation sym-
bol of arity a (iii) A reachability constraintt1〈f ∗〉t2, wheref is a function symbol. A
quantifier-free formula(QFR) is a boolean combination of atomic formulas. Auniver-
sal formulabegins with zero or more universal quantifiers followed by a quantifier-free
formula. Analternation-free formula(AFR) is a boolean combination of universal for-
mulas.EAR consists of formulas with quantifier-prefix∃∗∀∗.

In particular, QFR ⊂ AFR ⊂ EAR. ⊓⊔

Technically,EAR forbids any use of an individual function symbolf ; however,
whenf defines an acyclic linkage chain—as in acyclic singly linkedand doubly linked
lists—f can be defined in terms off ∗ by using universal quantification to express that
an element is the closest in the chain to another element. This idea is formalized by
showing that for allα andβ, f (α) = β ↔ Ef (α, β) whereEf is defined as follows:

Ef (α, β)
def
= α〈f +〉β ∧ ∀γ : α〈f +〉γ → β〈f ∗〉γ, (2)

whereα〈f +〉β
def
= α〈f ∗〉β ∧ α 6= β. However, because of the quantifier in Eqn. (2),

the right-hand side of Eqn. (2) can only be used in a context that does not introduce a
quantifier alternation (so that the formula remains in a decidable fragment ofFOTC).

9

Name Formula
x 〈f 〉y Ef (x , y)
f .ls [x , y] ∀α, β : x 〈f ∗〉α ∧ α〈f ∗〉y ∧ β〈f ∗〉α → (β〈f ∗〉x ∨ x 〈f ∗〉β)
f .stable(h) ∀α : h〈f ∗〉α → alloc(α)

f /b.rev [x , y] ∀α, β :

(

α 6= null ∧ β 6= null
∧ x 〈f ∗〉α ∧ α〈f ∗〉y ∧ x 〈f ∗〉β ∧ β〈f ∗〉y

)

→
(

α〈f ∗〉β ↔ β〈b∗〉α
)

f .sorted[x , y] ∀α, β :

(

α 6= null ∧ β 6= null
∧ x 〈f ∗〉α ∧ α〈f ∗〉β ∧ β〈f ∗〉y

)

→ dle(α, β)

Table 3.AFR formulas for the derived predicates shown in Table 1.f andb denote pointer fields.
dle is an uninterpreted predicate that denotes a total order on the data values. The intention is
thatdle(α, β) holds wheneverα->d ≤ β->d , whered is the data field. We assume that the
semantics ofdle are enforced by an appropriate total-order background theory.

A Predicate Abstraction Domain that usesAFR. The abstraction predicates used
for verifying properties of linked list programs were introduced informally in Table 1.
Table 3 gives the corresponding formal definition of the predicates asAFR formulas.
Note that all four predicates defined in Table 3 are quantified. (The quantified formula
for Ef is given in Eqn. (2).) In essence, we use a template-based approach for obtaining
quantified invariants: the discovered invariants have a quantifier-free structure, but the
atomic formulas can be quantifiedAFR formulas.

We now show that theEAR logic satisfies requirements R1 and R2 for the PDR
algorithm stated in§3.

Decidability of EAR. To satisfy requirement R1 stated in§3, we have to show that
EAR is decidable for satisfiability.

EAR is decidable for satisfiability because any formula in this logic can be trans-
lated into the “effectively propositional” decidable logic of ∃∗∀∗ formulas described by
Piskac et al. [21].EAR includes relations of the formf ∗ (the reflexive transitive closure
of a function symbolf), but only allows limited use off itself.

Every EAR formula can be translated into an∃∗∀∗ formula using the following
steps [17]: (i) add a new uninterpreted relationRf , which is intended to represent reflex-
ive transitive reachability viaf ; (ii) add the consistency ruleΓlinOrd shown in Table 4,
which asserts thatRf is a partial order, i.e., reflexive, transitive, acyclic, and linear;8

and (iii) replace all occurrences oft1〈f ∗〉t2 byRf (t1, t2). (By means of this translation
step, acyclicity is built into the logic.)

Proposition 1 (Simulation of EAR). Consider EAR formulaϕ over vocabularyV =

〈C,F ,R〉. Letϕ′ def
= ϕ[Rf (t1, t2)/t1〈f

∗〉t2]. Thenϕ′ is a first-order formula over vo-
cabularyV ′ = 〈C, ∅,R∪ {Rf : f ∈ F〉, andΓlinOrd ∧ϕ′ is satisfiable if and only if the
original formulaϕ is satisfiable.

This proposition is the dual of [16, Proposition 3, AppendixA.1] for validity of ∀∗∃∗

formulas.
8 Note that the order is a partial order and not a total order, because not every pair of elements

must be ordered.

10

∀α : Rf (α, α) reflexivity
∧ ∀α, β, γ : Rf (α, β) ∧ Rf (β, γ) → Rf (α, γ) transitivity
∧ ∀α, β : Rf (α, β) ∧ Rf (β, α) → α = β acyclicity
∧ ∀α, β, γ : Rf (α, β) ∧ Rf (α, γ) → (Rf (β, γ) ∨ Rf (γ, β)) linearity

Table 4.A universal formula,ΓlinOrd, which asserts that all points reachable from a given point
are linearly ordered.

Command C wlp(C ,Q)
assume ϕ ϕ→ Q

x = y Q [y/x]
x = y->f y 6= null ∧ ∃α : (Ef (y, α) ∧Q [α/x])
x->f = null x 6= null ∧Q [α〈f ∗〉β ∧ (¬α〈f ∗〉x ∨ β〈f ∗〉x)/α〈f ∗〉β]
x->f = y x 6= null ∧Q [α〈f ∗〉β ∨ (α〈f ∗〉x ∧ y〈f ∗〉β)/α〈f ∗〉β]
x = malloc() ∃α : ¬alloc(α) ∧Q [(alloc(β) ∨ (β = α ∧ β = x))/alloc(β))]
free(x) alloc(x) ∧Q [(alloc(β) ∧ β 6= x)/alloc(β))]

Table 5.Rules forwlp for atomic commands.alloc stands for a memory location that has been al-
located and not subsequently freed.Ef (y , α) is the universal formula defined in Eqn. (2).Q [y/x]
denotesQ with all occurrences of atomic formulax replaced byy .

Axiomatic specification of concrete semantics inEAR. To satisfy requirement R2
stated in§3, we have to show that the transition relation for each statementCmd of
the programming language can be expressed as a two-vocabulary formulaρ ∈ EAR.
Let wlp(Cmd,Q) be the weakest liberal precondition of commandCmdwith respect
Q ∈ EAR. Then, the transition formula for commandCmdis wlp(Cmd, Id), whereId is
a two-vocabulary formula that specifies that the input and the output states are identical,
i.e.,

Id
def
=

∧

c∈C

c = c′ ∧
∧

f∈F

∀α, β : α〈f ∗〉β ⇔ α〈f ′∗〉β.

To show that the concrete semantics of linked list programs can be expressed in
EAR, we have to prove thatEAR is closed underwlp; that is, for all commandsCmd
andQ ∈ EAR, wlp(Cmd,Q) ∈ EAR.

Table 5 shows rules for computingwlp for atomic commands. Note that pointer-
related rules in Table 5 each include a memory-safety condition to detectnull-
dereferences. For instance, the rule for “x->f = y” includes the conjunct “x 6=
null”; if, in addition, we wish to detect accesses to unallocatedmemory, the rule
would be extended with the conjunct “alloc(x)”.

The following lemma establishes the soundness and completeness of thewlp rules.

Lemma 1. Consider a commandC of the form defined in Table 5 and postcondition
Q . Then,σ |= wlp(C ,Q) if and only if the execution ofC on σ can yield a stateσ′

such thatσ′ |= Q .

This lemma is the dual of [16, Prop. 1, App. A.1] for validity of ∀∗∃∗ formulas.

11

Benchmark
Memory-safety

+ data-structure integrity Additional properties
A Time N # calls to Z3# clausesA Time N # calls to Z3# clauses

create 1.37 3 28 3 8.19 4 96 7
delete 14.55 4 61 6 9.32 3 67 7
deleteAll St 6.77 3 72 6 St 37.35 7 308 12
filter 2.37 3 27 4 55.53 5 94 5
insert 26.38 5 220 16 25.25 4 155 13
prev 0.21 2 3 0 11.64 4 118 6
last 0.33 2 3 0 7.49 3 41 4
reverse 5.35 5 128 4 146.42 6 723 11
sorted insert S 41.07 3 48 7 S 51.46 4 134 10
sorted merge 26.69 4 87 10 S 256.41 5 140 14
make doubly-linked 18.91 3 44 5 R 1086.61 5 112 8

Table 6. Experimental results. ColumnA signifies the set of predicates used (blank = only the
top part of Table 1; S = with the addition of thesortedpredicate family; R = with the addition
of the rev family; St = with the addition of thestablefamily, wherealloc conjuncts are added
in wlp rules). Running time is measured in seconds. N denotes the highest index for a generated
elementR[i]. The number of clauses refers to the inferred loop invariant.

Weakest liberal preconditions of compound commandsC1;C2 (sequencing) and
C1|C2 (nondeterministic choice) are defined in the standard way, i.e.,

wlp(C1;C2,Q)
def
= wlp(C1,wlp(C2,Q)) wlp(C1|C2,Q)

def
= wlp(C1,Q) ∧ wlp(C2,Q)

Consider a program with a single loop “while Conddo Cmd”. Alg. 1 can be
used to prove whether or not a preconditionPre ∈ AFR before the loop implies that a
postconditionPost∈ AFR holds after the loop, if the loop terminates: we supply Alg. 1
with Init

def
= Pre, ρ

def
= Cond∧ wlp(Cmd, Id) andBad

def
= ¬Cond∧ ¬Post. Furthermore,

memory safety can be enforced on the loop body by settingBad
def
= (¬Cond∧¬Post) ∨

(Cond∧ ¬wlp(Cmd, true)).

5 Experiments

To evaluate the usefulness of the analysis algorithm, we applied it to a collection of
sequential procedures that manipulate singly and doubly-linked lists (see Table 6). For
each program, we report the predicates used, the time (in seconds), the number of PDR
frames, the number of calls to Z3, and the size of the resulting inductive invariant, in
terms of the number of clauses. All experiments were run on a 1.7GHz Intel Core i5
machine with 4GB of RAM, running OS X 10.7.5. We used version 4.3.2 of Z3 [5],
compiled for a 64-bit Intel architecture (using gcc 4.2 and LLVM).

For each of the benchmarks, we verified that the program avoids null-
dereferences, as well as that it preserves the data-structure invariant that the inputs
and outputs are acyclic linked-lists. In addition, for someof the benchmarks we were
also able to verify some additional correctness properties. While full functional cor-
rectness, or even partial correctness, is hard to achieve using predicate abstraction, we
were able to use simple formulas to verify several interesting properties that go beyond

12

Benchmark Property checked

create Some memory location pointed to byx (a global variable) that was allocated
prior to the call, is not reachable from the list head,h.

delete The argumentx is no longer reachable fromh.
deleteAll An arbitrary non-null elementx of the list becomes non-allocated.
filter Two arbitrary elementsx andy that satisfy the filtering criterion and have an

n-path between them, maintain that path.
insert The new elemente is reachable fromh and is the direct predecessor of the

argumentx.
last The function returns the last element of the list.
prev The function returns the element just beforex, if one exists.
reverse If x comes beforey in the input, thenx should come aftery in the output.
sorted insert The list rooted ath remains sorted.
make doubly-linked The resultingp is the inverse ofn within the list rooted ath.

Table 7. Some correctness properties that can be verified by the analysis procedure. For each of
the programs, we have defined suitablePre snf Postformulas inAFR.

Automatic bug finding
BenchmarkBug description Time N # calls to Z3c.e. size

insert Precondition is too weak (omittede 6= null) 4.46 1 17 8
filter Potentialnull dereference 6.30 1 21 3

Typo: list head used instead of list iterator 103.10 3 79 4
reverse Corrupted data structure: a cycle is created 0.96 1 9 2

Table 8.Results of experiments with buggy programs. Running time ismeasured in seconds. N
denotes the highest index for a generated elementR[i]. “C.e. size” denotes the largest number of
individuals in a model in the counterexample trace.

memory-safety properties and data-structure invariants.Table 7 describes the proper-
ties we checked for the various examples. As seen from columns 3, 4, 8, and 9 of the
entries fordelete andinsert in Table 6, trying to provestrongerproperties can
sometimes result infeweriterations being needed, resulting in ashorterrunning time.
In the remainder of the examples, handling additional properties beyond memory-safety
properties and data-structure invariants required more processing effort, which can be
attributed mainly to the larger set of symbols (and hence predicates) in the computation.

Bug Finding. We also ran our analysis on programs containing deliberate bugs, to
demonstrate the utility of this approach to bug finding. In all of the cases, the method
was able to detect the bug and generate a concrete trace in which the safety or cor-
rectness properties are violated. The output in that case isa series of concrete states
σ0..σN where eachσi contains the set of heap locations, pointer references, andpro-
gram variables at stepi . The experiments and their results are shown in Table 8. We
found both the length of the trace and the size of the heap structures to be very small.
Their small size makes the traces useful to present to a humanprogrammer, which can
help in locating and fixing the bug.

Observations.It is worth noting that for programs where the proof of safetyis trivial—
because every access is guarded by an appropriate conditional check, such as inprev
and last—the algorithm terminates almost immediately with the correct invariant

13

true. This behavior is due to the property-directedness of the approach, in contrast
with abstract interpretation, which always tries to find theleast fixed point, regardless
of the desired property.

We experimented with different refinements of inductive-generalization (§3). Our
algorithm could in many cases succeed without it, but without the most basic version
that just pushes each clause (without removing literals), we observed runs with up to
N = 40 iterations. On the other hand, the more advanced versions ofinductive general-
ization did not help us: trying to remove literals resulted in a large number of expensive
(and useless) solver calls; and blocking spurious counter-examples using inductive gen-
eralization also turned out to be quite expensive in our setting.

We also noticed that the analysis procedure is sensitive to the number of abstraction
predicates used. In particular, using predicates whose definitions involve quantifiers
can affect the running time considerably. When the predicate familiesf .sorted[x , y]
andf /b.rev [x , y] are added toA, running times can increase substantially (about 20-
60 times). This effect occurred even in the case ofsorted merge, where we did not
attempt to prove an additional correctness property beyondsafety and integrity—and
indeed there were no occurrences of the added predicates in the loop invariant obtained.
As can be seen from Table 6, the PDR algorithmper seis well-behaved, in the sense
that the number of calls to Z3 increased only modestly with the additional predicates.
However, each call to Z3 took a lot more time.

6 Related Work

The literature on program analysis is vast, and the subject of shape analysis alone has
an extensive literature. Thus, in this section we are only able to touch on a few pieces
of prior work that relate to the ideas used in this paper.

Predicate abstraction.Houdini [8] is the first algorithm of which we are aware that
aims to identify a loop invariant, given a set of predicates as candidate ingredients.
However, Houdini only infersconjunctiveinvariants from a given set of predicates.
Santini [28, 27] is a recent algorithm for discovering invariants expressed in terms of
a set of candidate predicates. Like our algorithm, Santini is based on full predicate
abstraction (i.e., it uses arbitrary Boolean combinationsof a set of predicates), and
thus is strictly more powerful than Houdini. Santini could make use of the predicates
and abstract domain described in this paper; however, unlike our algorithm, Santini
would not be able to report counterexamples when verification fails. Other work infers
quantified invariants [26, 15] but does not support the reporting of counterexamples.
Templates are used in many tools to define the abstract domains used to represent sets
of states, by fixing the form of the constraints permitted. Template Constraint Matrices
[25] are based on inequalities in linear real arithmetic (i.e., polyhedra), but leave the
linear coefficients as symbolic inputs to the analysis. The values of the coefficients are
derived in the course of running the analysis. In comparison, a coefficient in our use of
EAR corresponds to one of the finitely many constants that appearin the program, and
we instantiated our templates prior to using PDR.

As mentioned in§1, PDR meshes well with full predicate abstraction: in effect, the
analysis obtains the benefit of the precision of the abstracttransformers for full pred-
icate abstraction, without ever constructing the abstracttransformers explicitly. PDR

14

also allows a predicate-abstraction-based tool to create concrete counterexamples when
verification fails.

Abstractions based on linked-list segments.In this paper, our abstract domain is
based on formulas expressed inAFR, which has very limited capabilities to express
properties of stretches of data structures that are not pointed to by a program variable.
This feature is similar to the self-imposed limitations on expressibility used in a num-
ber of past approaches, including (a) canonical abstraction [24]; (b) a prior method for
applying predicate abstraction to linked lists [20]; (c) anabstraction method based on
“must-paths” between nodes that are either pointed to by variables or are list-merge
points [18]; and (d) domains based on separation logic’s list-segment primitive [6, 2]
(i.e., “ls[x , y]” asserts the existence of a possibly empty list segment running from the
node pointed to byx to the node pointed to byy). Decision procedures have been used
in previous work to compute the best transformer for individual statements that manip-
ulate linked lists [29, 22].

STRAND and elastic quantified data automata.Recently, Garg et al. developed
methods for obtaining quantified invariants for programs that manipulate linked lists
via an abstract domain ofquantified data automata[10, 11]. To create an abstract do-
main with the right properties, they use a weakened form of automaton—so-calledelas-
tic quantified data automata—that is unable to observe the details of stretches of data
structures that are not pointed to by a program variable. (Thus, an elastic automaton
has some of the characteristics of the work based on linked-list segments described
above.) An elastic automaton can be converted to a formula inthe decidable fragment
of STRAND over lists [19].

Other work on IC3/PDR. Our work represents the first application of PDR to programs
that manipulate dynamically allocated storage. We chose touse PDR because it has been
shown to work extremely well in other domains, such as hardware verification [3, 7].
Subsequently, it was generalized to software model checking for program models that
use linear real arithmetic [14] and linear rational arithmetic [4]. Cimatti and Griggio [4]
employ a quantifier-elimination procedure for linear rational arithmetic, based on an
approximate pre-image operation. Our use of a predicate-abstraction domain allows us
to obtain an approximate pre-image as the unsat core of a single call to an SMT solver
(line 8 of Alg. 2).

7 Conclusion

Compared to past work on shape analysis, our approach (i) is based on full predicate
abstraction, (ii) makes use of standard theorem proving techniques, (iii) is capable of
reporting concrete counterexamples, and (iv) is based on property-directed reachability.
The experimental evaluation in§5 illustrates these four advantages of our approach.
The algorithm is able to establish memory-safety and preservation of data-structure
invariants for all of the examples, using only the simple predicates given in Table 1.
This result is surprising because earlier work on shape analysis that employed the same
predicates [13] failed to prove these properties. One reason is that [13] only uses positive
and negative combinations of these predicates, whereas ouralgorithm uses arbitrary
Boolean combinations of predicates.

15

References

1. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian abstraction for model checking
C programs. InTACAS, 2001.

2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape
analysis for composite data structures. InCAV, 2007.

3. A. Bradley. SAT-based model checking without unrolling.In VMCAI, 2011.
4. A. Cimatti and A. Griggio. Software model checking via IC3. In CAV, 2012.
5. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. InTACAS, 2008.
6. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation logic. In

TACAS, 2006.
7. N. Eén, A. Mishchenko, and R. Brayton. Efficient implementation of property directed reach-

ability. In FMCAD, 2011.
8. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for Esc/Java. InFME,

2001.
9. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. InPOPL, 2002.

10. P. Garg, C. Löding, P. Madhusudan, and D. Neider. Learning universally quantified invariants
of linear data structures. InCAV, 2013.

11. P. Garg, P. Madhusudan, and G. Parlato. Quantified data automata on skinny trees: An ab-
stract domain for lists. InSAS, 2013.

12. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. InCAV, 1997.
13. L. Hendren.Parallelizing Programs with Recursive Data Structures. PhD thesis, Cornell

Univ., Ithaca, NY, Jan 1990.
14. K. Hoder and N. Bjørner. Generalized property directed reachability. InSAT, 2012.
15. K. Hoder, L. Kovács, and A. Voronkov. Invariant generation in vampire. In P. A. Abdulla

and K. R. M. Leino, editors,TACAS, volume 6605 ofLecture Notes in Computer Science,
pages 60–64. Springer, 2011.

16. S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, and M.Sagiv. Effectively-propositional
reasoning about reachability in linked data structures. Technical report, IMDEA, Madrid,
Spain, 2011. Available at software.imdea.org/∼ab/Publications/cav2013tr.pdf.

17. S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, and M.Sagiv. Effectively-propositional
reasoning about reachability in linked data structures. InCAV, 2013.

18. T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape analysis with fast and
precise transformers. InCAV, 2006.

19. P. Madhusudan and X. Qiu. Efficient decision procedures for heaps using STRAND. InSAS,
2011.

20. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and canonical
abstraction for singly-linked lists. InVMCAI, 2005.

21. R. Piskac, L. de Moura, and N. Bjørner. Deciding effectively propositional logic using DPLL
and substitution sets.J. Autom. Reasoning, 44(4):401–424, 2010.

22. A. Podelski and T. Wies. Counterexample-guided focus. In POPL, 2010.
23. J. Reynolds. Separation logic: A logic for shared mutable data structures. InLICS, 2002.
24. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.TOPLAS,

24(3):217–298, 2002.
25. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalableanalysis of linear systems using

mathematical programming. In R. Cousot, editor,VMCAI, volume 3385 ofLecture Notes in
Computer Science, pages 25–41. Springer, 2005.

26. S. Srivastava and S. Gulwani. Program verification usingtemplates over predicate abstrac-
tion. In PLDI, pages 223–234, 2009.

16

27. A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and all that: Attaining most-precise inductive
invariants. TR-1790, Comp. Sci. Dept., Univ. of Wisconsin,Madison, WI, Apr. 2013.

28. A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and all that: Automating abstract interpreta-
tion. Electr. Notes Theor. Comp. Sci., 2013.

29. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations
for shape analysis. InTACAS, 2004.

A Proofs

Theorem 1 Given (i) the set of abstraction predicatesP = {pi ∈ L}, 1 ≤ i ≤ n

whereL is a decidable logic, and the full predicate abstraction domain A over P ,
(ii) the initial condition Init ∈ L, (iii) a transition relation ρ expressed as a two-
vocabulary formula inL, and (iv) a formula Bad∈ L specifying the set of bad states,
PDRA(Init, ρ,Bad) terminates, and reports either

1. valid if there existsA ∈ A s.t. (i) Init → A, (ii) A is inductive, and (iii)A → ¬Bad,
2. a concrete counterexample trace, which reaches a state satisfying Bad, or
3. an abstract trace, if the inductive invariant required toprove the property cannot

be expressed as an element ofA.

Proof. The first two cases are trivial: if PDRA terminates returning someR[j], j < N ,
thenInit → R[j] by virtue ofInit → R[0] andR[i] → R[i + 1] for everyi < N , and
R[j] → ¬Bador the check at line line 7 would have failed. Also,R[j − 1] ≡ R[j] so
R[j] is inductive.

If PDRA returns a set of concrete states, then they have to be a concrete counterex-
ample trace, as they are a model ofInit ∧ ρN−j ∧ (Bad)′×(N−j) (line 3 of reduceA).

For the third case, we show that if the check on the first line of“reduce” is “sat”,
then there exists a chain of concrete states,σj σj+1 · · · σN , such thatσj |= Init ,
σN |= Bad , and for anyj ≤ i < N there exist two concrete statesσ, σ′ satisfying:

– σ ∈ γ(βA(σi))
– σ′ ∈ γ(βA(σi+1))
– 〈σ, σ′〉 |= ρ

The key point is that, because the given abstraction can never distinguish any two states
in γ(βA(σi)), the chainσj σj+1 · · ·σN cannot be excluded by the abstract domain
A, no matter what Boolean combination of the predicates ofP is used. Moreover, the
chainβA(σj) βA(σj+1) · · · βA(σN) is an abstract trace that leads from an initial
state to an error state.

Notice that the chain above may not be a concrete trace, therecan be “breaks”
between adjacentσis, within the same abstract element.

Construction of(σi)i=j ...N : Follow the chain of recursive calls to “reduce” with
index valuesN down toj . The parameterA is always a cube of the formβA(σ); take
oneσ |= A for each call, forming a series that we denote byσj , σj+1, etc. We show
that this series satisfies the above properties: At each callexcept the innermost, “reduce”
made a recursive call at line 7, which means thatR[j − 1] ∧ ρ ∧ (A)′ was satisfiable;
the returned cubeA2 becomesβA(σj−1). Let 〈σ, σ′〉 |= R[j − 1] ∧ ρ ∧ (A)′, then
σ |= A2 = βA(σj−1); σ′ |= A = βA(σj); and〈σ, σ′〉 |= ρ as required. ⊓⊔

17

