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Functions of Several
Variables

Exercise 9.1 If Sisa nonempﬁy subset of a vector space X, prove (as asserted
in Sec. 9.1) that the span of S is a vector space.

Solution. We need only verify that the span of S is closed under the two vector
space operations. All the other properties of a vector space hold in the span of
S, since it is contained in a vector space in which they hold.

To that end, let x and y be elements of the span of S, and let ¢ be any real
number. By definition there are elements x;,...,Xm,¥1,... ,¥n, and scalars
Cly++sCm,d1,...,dp such that X = ;X1 4+ +epXm and y = dyy 1+ - +dnVa.
We then have

X+y=caXi+ -+ CmXm+di1y1 + -+ dn¥n,

which is a finite linear combination of elements of S, hence belongs to the span
of S. Likewise, by the distributive law,

cx = c(e1X) + - -+ CmXm) = (ce1)X1 + - - + (CCm )X,

which belongs to the span of S.

Exercise 9.2 Prove (as asserted in Sec. 9.6) that BA is linear if A and B are
linear transformations. Prove also that A~! is linear and invertible.

Solution. Let A: X - Y and B:Y — Z be linear transformations, and let x
and y be any elements of A and ¢ any scalar. Then BA : X — Z satisfies

BA(x+y) = B(Ax+y))
= B(A(X) + A(y))
= B(A(z)) + B(A(y))
= BA(x)+ BA(y).
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154 CHAPTER 9. FUNCTIONS OF SEVERAL VARIABLES

Similarly,

i

BA(cx) B(A(cx))
B(cA(x))
¢B(A(x))

cBA(x).

If A is a one-to-one mapping of X onto Y, and z and w are any elements
of Y,let x = A™Y(z) and y = A~Y(w). Then by definition A(x) = z and
Aly)=w. It therefore follows from the linearity of A that Ax+y)=z+Ww.
Again, by definition, this means that Al (z+w)=x+y=A""(2)+ A=Y (w),
so that A~! preserves vector addition. Similarly, A(cx) = cA(x) = cz, so that
A~1(cz) = cx = cA7'(z), and hence A—1 also preserves scalar multiplication.

Exercise 9.3 Assume A € L(X,Y) and Ax = 0 only when x = 0. Prove that
A is then 1-1.

Solution. Suppose A(x) = A(y). It then follows that A(x—y) = A(x)—A(y) =
0. Hence by assumption x -y = 0, and so x = y; therefore A is one-to-one.

Exercise 9.4 Prove (as asserted in Sec. 9.30) that null spaces and ranges of
linear transformations are vector spaces.

Solution. Let N be the null space of the linear transformation A: X — Y, let x
and y be elements of N, and let ¢ be any scalar. By definition Ax)=0= Aly),
and A(x +y) = A(x) + Aly) =0+0=0,50 that, by definition, x +y € N.
Likewise A(cx) = cA(x) = c0 = 0, and so cx € N. Therefore N is a subspace
of X. ‘

Let R be the range of A, let z and w be any elements of R, and let ¢ be any
scalar. By definition, there exist vectors x € X and y € X such that z = A(x)
and w = A(y). Then A(x+y)= A(x) + A(y)=z+w, and hence z+w € R.
Likewise A(cx) = cA(x) = cz, so that cz € R. Therefore R is a subspace of Y.

Exercise 9.5 Prove that to every A € L(R"™, R!) corresponds a unique y € R
such that Ax = x - y. Prove also that ||Al| = [y]. :
Hint: Under certain conditions, equality holds in the Schwarz inequality.

Solution. Let e1,...,e, be the standard basis of R*,and let y = A(e1)er +
.-+ A(en)en. Then for any x = c1€1 + -+~ + cpen we have
AX) = cadle)+ - +cnA(en)
y - X.
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There can be at most one such y, since if A(x) =z -x, then |y -z =y -y -
y-z—z-y+z-z=A(y) - Aly) - Alz) + A(z) = 0.
By the Schwarz inequality we have

|A)] =y - x| < |y][x]

for all x, so that ||A|| < |y|. On the other hand A(y) =y -y = ly|2, so that
14l = |yl

Exercise 9.6 If f(0,0) =0 and

flow)= s i (@) # 0.0)

prove that (Dyf)(x,y) and (Da2f)(z,y) exist at every point of R2, although f
is not continuous at (0,0).

Solution. At any point (z,y) except (0,0) the differentiability of f(z,y) follows
from the rules for differentiation and the principles of Chapter 5. At (0,0) it is
a routine computation to verify that both partial derivatives equal zero:

£(h,0) = £0.0) _
. .

(D1£)(0,0) = lim

However, f(z,y) is not continuous at (0,0, since f(z,z) = $ for all  # 0,

and hence lir% flz,z) = % # £(0,0).

Exercise 9.7 Suppose that f is a real-valued function defined in an open set
E C R", and that the partial derivatives Dy f,..., D, f are bounded in E. Prove
that f is continuous in £

Hint: Proceed as in the proof of Theorem 9.21.

Solution. Let ¢ > 0 be given, and let x° = (29,...,2%) be any point of
E. First choose 6y > 0 so that y € E if |y — x% < 26,. Then, if M =

max ((le)(x),...,(an)(x)), choose 6 = min .(50’Z7—1—:1—EI)_M>' It then fol-

lows that if [y — x°| < §, we have

'f(Y) _f(xo)t If(ylvyyn) —f(mgaaxg,)‘
< lf(yl,y%'--,yn)_f(m(lJ,y%---,yn)l'*'
+1f(x?7y2)""ayn) —f(x(l)amga"-’yn)l -

e s lf($?>xga X ,xg-layn) - f(IE?,iEg, '733?7.—17"1"9;)'?

where the ellipsis indicates terms of the form

]f(x?a$g> eee axg—l’yk’yk-i-la' .- )yn) - f(x(1)7xg’ s ?xg—l’xg)yk-i-l’ ce ;yn)l'
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By the mean-value theorem there is a number ¢ between 29 and yi such that
this last difference equals o

tre~ o7 O 0 1] A ; \/,.. A0\
(Def) (23,25, . Th 1, Cly Yrt 15 - > Un ) (Hk = T

£
which is at most M§. Since by definition M§é is at most —— and there are

only n such terms, it follows that |f (x%) — f(y)| < e. Thus f is continuous.

Remark: We have actually shown that f(x) satisfies a Lipschitz condition
on any convex subset of E, i.e., that | f(x) — f(y)| £ nM|x —y| on each convex
subset.

Exercise 9.8 Suppose that f is a differentiable real function in an open set
E C R™, and that f has a local maximum at a point x € E. Prove that

f(x) =0.

Solution. Let y be any element of R", and cons1der the real-valued function
©(t) = f(x+ty), defined near t = 0. This function is “differentiable (by Theorem
9.15 o(t) = f'(x + ty)(y)). Since ¢(t) has a maximum at t =0, it follows that
¢'(0) = 0, i.e., that f/(x)(y) = 0. Since y is arbitrary, it follows by definition
of the zero linear transformation that f’(x) is the zero linear transformation.

Exercise 9.9 If f is a differentiable mapping of a connected open set E C R"
into R™, and if f/(x) = 0 for for every x € E, prove that f is constant in E.

Solution. The mean-value argument given in Exercise 7 above, applied to each
component of f, shows that f is locally constant (the partial derivatives are all
zero). Hence, 1f %0 is any point of E, the set of x such that f(x) = f(x°) is an
open set. Since this set is also closed in E, and E is connected, it follows that
it must be all of E.

Exercise 9.10 If f is a real function defined in a convex open set E C R", such
that (D;f)(x) = 0 for every x € E, prove that f(x) depends only on z3,...,Zn.

Show that the convexity of F can be replaced by a weaker condition, but
that some condition is required. For example, if n = 2 and E is shaped like a
horseshoe, the statement may be false.

Solution. We need to show that f(z9,z2,...,2,) = f(z},zq,. .., z,) whenever
x0 = (29,z9,...,%,) and x! = (1,%2,...,2Z,) both belong to E. Since E
is convex, the line segment joining x° and x' is contained in E. The mean-
value theorem applies on this line segment, showing that f(x°) — f(x?!) = (29 -
z3})(D1f)(x) for some point x on this interval. Hence the result now follows

from the hypothesis.
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Note that convexity is needed only on each line segment through E parallel
to the z;-axis. Thus if the intersection of E with each line parallel to the z;-axis
is an interval and (D;f)(x) = 0 for all x € E, then f is independent of z;.

If we define f(z,y) on all of R? except the nonnegative portion of the y-axis
by specifying

v 0 ify<Oorz<,
f(z,y) = {y2 ify>0andz >0,

then f(z,y) is continuously differentiable on its domain, (D1f)(z,y) = 0 ev-
erywhere on that domain, yet f(-1,1) = 0 # 1 = f(1,1), so that f is not
independent of z.

Exercise 9.11 If f and g are differentiable real functions in R™, prove that

V(fg)=fVg+4gVf
and that V(1/f) = —f~2V f wherever f # 0.

Solution. This is a routine computation applied to the ith component of the
various quantities.

Exercise 9.12 Fix two real numbers a and b, 0 < a < b. Define a mapping
f= (fla f27f3) of R2 into R3 by

fi(s,t) = (b+acoss)cost
fa(s,t) = (b+acoss)sint
fs(s,t) = asins

Describe the range K of f. (It is a certain compact subset of R3.)
(a) Show that there are exactly 4 points p € K such that

(VA)E(p) = 0.

Find these points.
(b) Determine the set of all @ € K such that

(V)(f7 (@) =0.

(c) Show that one of the points p found in part (a) corresponds to a local
maximum of f;, one corresponds to a local minimum, and that the other two
are neither (they are so-called “saddle points”).

Which of the points q found in part (b) correspond to maxima or minima?
(d) Let A be an irrational number, and define g(t) = f(t, At). Prove that g is a
1-1 mapping of R' onto a dense subset of K. Prove that

g’ ()] = a? + A2(b+ acost)?.
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Solution. The range K is a torus obtained by moving a circle of radius a

~ with center on a circle of radius b, always keeping the planes of the two circles

perpendicular and each plane passing through the center of the other circle.
This can be seen by observing that in cylindrical coordinates the parametric
equations say r = b-+acos s, z = asinz, i.e., (r —b)% + 22 = a2, which, together
with the equation § = const, gives the equation of a circle with center at (b,0)
and radius a in the half-plane 6 = const..
(a) The equation (V f1)(s,t) = 0 says —asinscost = 0 and —(b+acos s)sint =
0. This second equation requires ¢t = km, and since these functions have period
27 in both s and ¢, we may as well assume ¢ = 0 or ¢ = w. In that case the
first equation implies s = 0 or s = w. Hence the only points p satisfying this
equation are the images of the points (0,0), (0,7), (,0), and (7, 7), i.e., the
points (b + a,0,0), (b - a,0,0), (=b+a,0,0), and (—=b—a,0,0).

3

(b) The equation (V f3)(s,t) = 0 says only that acoss = 0,1.e.,s = Fors= .
The image of these two conditions consists of the two circles of radius b about
the z-axis in the planes z = +a.

(c) The point (a + b,0,0) is the maximum possible value of f;(s,t), and occurs
only when coss = 1 and cost = 1. Likewise the point (—a — b,0,0) is the
minimum possible value, and occurs only when coss = 1 and cost = —1. The
other two points, which occur when s = 0,t = 7 and when s = 7, ¢ = 0, lie near
points of both larger and smaller values of fi(s,t). For example, when s = 0,
the point ¢t = 7 is a minimum for the function ¢(t) = f1(0,t) = bcost; but when
t = 7, the point s = 0 is a maximum of ¥(s) = fi(s,7) = —(b+ acoss). Hence
the point (0, 7) is neither a maximum nor a minimum for f;(s, ).

The points with z = +a are obviously absolute maxima of f3(s,t), while
those with z = —a are the absolute minima.

(d) Suppose g(t;) = g(t2). Then because asint; = asints, and

VL, M0V + (Fa(tn, 1)) = V/(f1 (B2, M2))2 + (falt2, M2))?

(that is, b+ acost; = b+ acosty), we have sint; = sinty and cost; = costs.
Therefore sin(¢; — t2) = 0, which means t, = ¢; + k7 for some integer k.
Because sint; = sinty, it follows that k& is an even integer, say k = 2m. It
then follows, since f;(t1,At1) = fi(ta, At2), A = 1,2, that cos \t; = cos Aty and
sin Af; = sin At. This in turn implies that Aty = Aty + 2r7 for some integer r.
Combining these two results, we find that mA = r. Since X is irrational, this
means that m =0 =r, ie., t2 = t;. Thus g(¢) is one-to-one.

To show that the range is dense in K, we need only show that the numbers
2mnA, n = 0+ 1,+£2,..., are dense “modulo 27,” meaning that for any real
number ¢ and any € > 0 there is are integers m and n such that |27n\ — 2rm —
6| < e. A proposition easily seen to be equivalent is that for any 7 > 0 and any
real number c there exist integers m and n such that |nA —m — ¢| < n. (This
statement is obvious (m = n = 0) if ¢ = 0.) To prove that, fix an integer r
larger than %, and consider the numbers 0, \—[A],2A—[2A],...,7A—[rA]. There

are 7 + 1 such numbers, all lying in the interval [0,1). Hence two of them must
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be closer than 1 to each other, say 0 < sA— [sA] — tA+ [tA] < L. In particular,
the number (s — ) lies within = of an integer (namely [sA] — [tA]. Thus we
have, say (s — t)A =k + §, where 0 <6 < % Let p be the unique integer such
that pé < ¢ < (p + 1)6. We then have p(s — t)A = pk + pd, and hence, taking
n = p(s —t) and m = pk, we find InA\—m—c|=[pd—c] <5< i<

This being established, consider any point in K, say the point p = (b +
-acos sg) costo, (b + acossg)sinto, asin so), and let € > 0 be given. According
to what was just established, there are integers m, n such that |2rmA — 27n —
(to — soA)| < 33555~ It then follows that

|cos ((so -+ 2rm)A) —costo| = |[cos ((s0 + 2rm)A — 27n) — costo]
£

< _——7
- 3a+3b

where we have used the inequality |cosu — cosv| < |u — v, with u = (so +
orm)A — 27n and v = to. A similar inequality applies with sin in place of cos.
It then follows that |g(so + 2mm) — p| < 2:,)—5 < €. Therefore the range of g is
dense in K.
The equation
lg’(t)]? = a® + X2(b+acos t)2

is a routine, though tedious, computation.

Exercise 9.13 Suppose f is a differentiable mapping of R into R® such that
[f(t)| = 1 for every t. Prove that £'(t) - £(¢) = 0.
Interpret this result geometrically.

Solution. This result is obtained by merely differentiating the relation f(t)-f(t) =
1. Geometrically it asserts that the velocity vector of a point moving over a
sphere is tangent to the sphere (perpendicular to the radius vector from the
center of the sphere to the point).

Exercise 9.14 Define f(0,0) = 0 and

3

f($>y)=m

if (z,y) # (0,0).
(a) Prove that D1 f and D, f are bounded functions in R?. (Hence f is contin-
uous. ) , ,
(b) Let u be any unit vector in R2. Show that the directional derivative
(D..f)(0,0) exists, and that its absolute value is at most 1.
(¢) Let v be a differentiable mapping of R! into R? (in other words, v is 2
differentiable curve in R2), with 4(0) = (0,0) and |/(0)| > 0. Put g(¢) = f(v(£))
and prove that g is differentiable for every t € R'.

If vy € ', prove that g € C'.
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(d) In spite of this, prove that f is not differentiable at (0,0).
Hint: Formula (40) fails. :

Solution. (a) For (z,y) # (0,0) we have

_ 2%z + 3y?) _22%y
Dy f(z,y) = NCCESTIEN D2f(%3\/) S T@Eian
It follows that
0< Dif(zy) < -5 <3
and
, z?

Also Dif(0,0) = lim f(m’o);f(o’o) - hr%a"'o = 1, and D,f(0,0) =
lim 10.9) - /(0.0 = lim 9 = 0. Hence, as asserted, f(z,y) is continuous.
y—0 Y L y—0y

f(tcosh,tsing) — £(0,0)

(b) Let u = (cosf,sin ). Then D, f(0,0) = %il’l’(l) . =

cos® .

(¢) Suppose u(t) and v(t) satisfy w(0) = 0 = v(0), o’ (t) and v’(t) exist for
every ¢, and u/(t) and v/(¢) do not both vanish at the same value of ¢. Setting
9(t) = f(u(t),v(t)), we find that g(t) is obviously differentiable at any value of
t where u(t) and v(t) are not both zero. Now suppose u(to) = v(to) = 0. Then,
since one of u(¢) and v(t) is one-to-one on a neighborhood of ¢, it follows that,

for small non-zero values of ¢t — ¢y we have (u(t‘))2 + (v(t))2 > 0, and then

9t) —g(to) _  flu(t),v(2)) — f(ulto), v(t)) -

t—to t=t
(ugttg-—_-?o(to)):)’
() ()
so that / | 3
o) = i 25000 - el

Thus g(t) is differentiable. Observe that if v(t) # (0,0), then

()" (8) + 3(u(t)o(t)*’ (t) — 2(u(t))®v()v'(2)
((w(®)? + (v())?)? '

The same argument used above to prove that g'(to) exists shows that

o W) )W) W)
N (S RS o) e v e A L8

g(t) =
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so that ¢’ is continuous at tg if v’ and v’ are. Continuity of g’ at other points
follows from the chain rule.
If f is differentiable at (0,0), we necessarily have

F(o) = £(0,0) + [&D1£(0,0) + yDaf(0,0)] +£(z,9),
where |

e(z,y) _
(zy)—(0,0) \/22 + 92

Since D1f(0,0) = 1 and D, f(0,0) = 0, it follows that

—zy?

| €(.’L’,y) = m7

and so we must have
lim oy’
1 e T2
(2.9)—(0,0) (22 4 92)3/2
But this is clearly not the case, as we see by taking x = y. (The limit is then
—273/2)

Exercise 9.15 Define f(0,0) = 0, and put

if (z,y) # (0,0).
(a) Prove, for all (z,y) € R?, that

43:4y2 S (.’1,'4 +y2)2.

Conclude that f is continuous.
(b) For 0 < 6 < 21, —o0 < t < 00, define

go(t) = f(tcosf,tsinb).

Show that gg(0) = 0, g4(0) = 0, g5 (0) = 2. Each g has therefore a strict local
minimum at ¢ = 0.
In other words, the restriction of f to each line through (0,0) has a strict
local minimum at (0,0).
(c) Show that (0,0) is nevertheless not a local minimum for f, since f(z,2?) =
4
—z*

Solution. (a) This inequality follows by squaring the inequality 222|y| < % +y?,
which in turn is equivalent to the inequality (z2 — [y|)2 > 0. Then, since f(z,y)
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is obviously continuous except at (0,0), the continuity at the remaining point
follows frem the inequality '

|f(z,y) = £(0,0)] < 22% + * + 222y,

which is easily derived from the inequality just proved and the definition of

f(=z,y).
(b) We observe that for ¢ # 0 we have

cos® 6sin? @
(t2 cos* 6 + sin? §)2’

go(t) = 12 — 2t* cos? sin 6 — 4¢*

from which it is routine computation to show that gy(0) = 0 = 95(0) and
95(0) =2.

(¢) The assertion that f(z,2?) = —z* is routine computation. It implies that
f(z,y) assumes negative values in any neighborhood of (0,0), and hence that
the f(z,y) does not have a local minimum at (0, 0).

Exercise 9.16 Show that the continuity of ' at the point a is needed in the
inverse function theorem, even in the case n = 1: If

F() =t +2sin (%)

for t # 0, and f(0) = 0, then f/(0) = 1, f’ is bounded in (=1,1) but fis not
one-to-one in any neighborhood of 0.

t
Solution. The assertion that f/(0) = 1 is proved by direct computation: fi ) =

1+ 2tsin (%—) — 1l ast— 0. Since f'(t) = 1+ 4tsin <—1—) — 2cos (%) for t # 0,
it follows that |f’(¢)] < 7 for all t € (—1,1). To show that f is not one-to-one
in any neighborhood of 0, we observe that f/(:L) = 1+ 2(~1)*, so that f(t) is
decreasing at t = ;L if k is odd and increasing if k is even. It follows that the

minimum value of f(¢) on the interval [(—%im, 7= is assumed at an interior
point, so that f(t) cannot be one-to-one on this interval.

Exercise 9.17 Let f = (fy, f2) be the mapping of R? into R2 given by

fi(z,y) = €% cosy,  fo(z,y) = e”siny.

(a) What is the range of f? :

(b) Show that the Jacobian of f is not zero at any point of R2. Thus every
point of R? has a neighborhood in which f is one-to-one. Nevertheless, f is not
one-to-oné-on R2.

(c) Put a = (0,7/3), b= f(a), let g be the continuous inverse of f , defined in a
neighborhood of b, such that g(b) = a. Find an explicit formula for g, compute
f'(a) and g'(b), and verify the formula (52).



163

(d) What are the images under f of lines parallel to the coordinate axes?
Solution. (a) The range of f is all of R? except the point (0,0). Indeed if
(u,v) # (0,0), choose y so that

u v

COSY = ———==—=, siny= ————-,
u? + 02 Vu? 4 v?

and let z = Inv/u? + v2, so that e = /a2 + 2. It is then obvious from the
equations defining y and z that u = e® cosy and v = e® sin y. Hence every point
except (0,0) is in the range of f. The point (0,0) is not in the range, since
u? + 0% =e2* > 0 for any point (u,v) = f(z,y).

(b) The Jacobian of f(z,y) is 2%, which is never zero. However, since f(z,y+
2m) = f(z,y), it follows that f is not one-to-one.

(¢) By our definition b = (1, —‘é—g) We can therefore take y = arctan (2)

for (u,v) near b, the arctangent being between —Z and %. Thus we have
g(u,v) = <1n Vu? + 02, arctan (;‘i—) We then have

(5 ) — [ €5 COSY —esiny , Y v or B
("Ea y) - ex sin ex cos ) g ('U'a ’U) - ~ u .
y Y uﬁ-{'-‘u§ 'u§+'v§

When we take u = e” cosy and v = e®siny, we find that

, N _ [ € Fcosy e Tsiny
g (f<:r7y)) - <__e—x siny e~ % COS:I/) :

It is then a routine computation to verify that g’ (f(z, y))f (z,y) = <1 0).

0 1
P (g(u0)) = ( ° L

Likewise we find

v U

and a routine computation shows that '(g(u, v))g (u,v) = < é ?)

(d) The family of lines z = ¢ maps to the family of concentric circles 12 +2? =
e%¢. The lines y = ¢ map to half-lines v = Ku, v > 0, where K = tan y. (Ifyis
an odd multiple of %, the half-line is either the positive or negative u-axis.

Exercise 9.18 Answer analogous questions for the mapping defined by

2

u=z%—1y? v = 2zxy.

Solution. (a) the range of the mapping f (z,y) = (2% — y?,27y) is the entire
plane R2. Indeed, every point (u,v) except (0,0) has two distinct preimages,

one of which is
Vu +12 44 VEZ+ 02—
z = Y Y= (sgnv) —

b)
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(The other preimage is —z, ~y, with this z and this y.)
(b) The Jacobian of f vanishes only at z = y = 0. Indeed,

, (2 -2y
f(xay) _‘A<2y 2t >

Hence the Jacobian is 4(z2 + y?). |
(c) Taking a = (3,4), so that b= (-7,24), we can take, locally

) — \/mﬂ \/m_u>

We then have

1
g | *V v (L )

e (- 1+ )

2 ( v )
Vul+oZ+u \Vuito?
\ \/u2—fv2 - ( \/u:+v2 )

Noting that the defining relations imply u? + v? = (22 + y?)?, we see that

T Y
2 2 2 2
g (f(z,y)) = <2(’”_t;“ Ao :'“>, '

2(z2+y?)  2(z%+y?)

LSS TR N T

from which we see easily that g'(f(z, y))f'(z,y) = L O) . The corrésponding

0 1
equality with g and f interchanged is likewise simple, though more cumbersome
to write out.

Exercise 9.19 Show that the system of equations

3r +y—z+u
T—-y+2z+u =
20 4+2y—3z4+2u = 0

can be solved for z,y,u in terms of z; for z, z,u in terms of y; for y, z, u in terms
of z; but not for z,y, z in terms of u.

Solution. Adding the last two equations and subtracting the first yields 3u—u? =
0, whence either u = 0 or v = 3. Hence unless u has one of these two values,
there are no solutions at all. Therefore the system cannot generally be solved
for z,y, z in terms of w. If one of these two equations holds, we can solve just
the last two equations for any two of the variables z,y, z in terms of the third.
The remaining equation will then automatically be satisfied. For example,

z Tz w=0 = 9+ 2 _3+7z
] - 4 ay“' 4

, u=3.
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We could also have ‘
60 + 4y 4y -3

4
L R TP = R T
Finally, we could also have
_ 60
y=-~7z, z=—4z, u=0; y= :1:460’ z2=0-4z, u=3.

Note that the matrix of the derivative of the transformation f(z,y, z,u) =
(3x+y-—-z+u2,x—y+22+u,2x+2y—3z+2u) is

, 3 1 =1 2u
f'(z,y,z,2u) =1 =1 2 1
2 2 -3 2

and any 3 x 3 submatrix containing the last column is invertible when u = 0
or u = 3. However, the first three columns of this matrix does not form an
invertible matrix.

Exercise 9.20 Take n =m = 1 in the implicit function theorem, and interpret
the theorem (as well as its proof) graphically.

Solution. The theorem asserts that if f (z,y) is continuously differentiable in a
neighborhood of (zo,%0), f(zo,%0) = 0, and Daf(zo,y0) # 0, then there exist
1) an interval I = (z¢ — 6,70 + 6), 2) an interval J = (%o ~n,90 + 1), and 3)
a continuously differentiable function ¢ : I — J such that for all (z,y)eIxJ
the equation f(z,y) = 0 holds if and only if y = ().

The proof amounts to the argument that, since D, f(zo,90) # 0 and f is
continuously differentiable, it must be that Dyf(x,y) # 0 for all (z,y) near
(Z0,%0). Hence the function g(y) = f (o, y) is strictly monotonic near y = yq.
Therefore, since g(yo) = 0, there is a small interval [yo — 1, yo + n] such that
9(% — ) and g(yo + 1) have opposite signs. By the continuity of f(z,y), it
follows that f(z,y0 — ) has the same sign as f (zo,y0 — 1) if = is near zo, and
similarly f(z,yo + 1) has the same sign as f(zo,yo + n) for  near zy. That
is, f(z,y0 — 1) and f(z,yo +n) have opposite signs if z is near . It follows
that there is a point ¢(z) € (yo — 7,90 + 1) such that flz,o(z)) = 0. By
restricting the neighborhood so that D, f (z,y) is of constant sign, we assure
that g;(y) = f(z,y) is monotonic on [yo —7,yo + 7] for each z near zo. It then -
follows that there can be at most one value of y in (o — 1, Yo +17) satisfying the
equation f(z,y) = 0. That is, the function ¢(z) is unique. This proves all but
the differentiability of .

The graphical interpretation is that, near a point on a smooth curve flz,y) =
0 where the tangent is not vertical (Daf(xo,0) # 0) the curve intersects each
vertical line exactly once.
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Exercise 9.21 Define f in R? by
f(z,y) = 22° — 32% + 2° + 34%.

(a) Find the four points in R? at which the gradient of f is zero. Show that f
has exactly one local maximum and one local minimum in R2. ,

(b) Let X be the set of all (z,y) € R? at which f(z,y) = 0. Find those points of
S that have no neighborhoods in which the equation f(z,y) = 0 can be solved
for y in terms of z (or for z in terms of y). Describe S as precisely as you can.

Solution. (a) We have Vf(z,y) = 6(z? — )i + 6(y% + y)j. Hence Vf(z,y) =0
precisely at the four points (0,0), (1,0), (0,~1), (1,~1). Since the Hessian

matrix of f is
122 — 2 0
0 12y + 2

this matrlx has a positive determinant when z > g Land y > = —— or when z < 2 3
and y < Z*. Thus (1,0) and (0, —1) are possible extrema. Smce 122-2>0 at
(1,0), that point is a minimum. Likewise (0, —1) is a maximum.

(b) Since f(z,y) = (:z:—%-y) [22% — 22y +2y% — 31+ 3y], the equation f(z, y) = 0 has
the real solution y = —z for every real value of z. In addition, if ——% <z < %,

it has the real solutions

_ 22 -3++9+12z — 1222 y~2m—3~—\/9+12x-—12x2
- 4 S 4 '

According to the implicit function theorem, the only possible points near which
there might not be a unique solution are for y in terms of z are those where
y=0or y = —1. The corresponding values of z are z = 0 and z = 3 fory=0
and:z::la,ndx_—— for y = ~1.

22 — 3+ /0 F 197 — 1222

We observe that both solutions y = —z and y =

tend to 0 as z — 0. Hence there is no unique solution for J ngar (0,0). As

T , the quantity under the radical sign tends to zero, and hence these two
solutlons converge toward the common value y = 0. Hence the point ( ,0), is
another point around whlch the solution for y is not unique. The two radicals
also tend to zero as z | —3, causing the two values of y both to tend toward
-1, so that ( — 3,~1) is not a pomt of unique solvability. Finally, as z — 1,
the three y values tend toward —1, 2 5, and —1. Since two of these values are
identical, there is no unique solution around the point (1, -1).

Finally, the three z-values corresponding to any y are

2y + 3+ /9 ~ 12y — 12¢2
4 )

T=—-Y, T=

where the quantity under the radical is nonnegative in the range ———- <y< <
The values where D;f(x,y) = 0 are z = 0 and z = 1, and the four pomts
near which a solution for 2 might not be unique are (0,0), (0,-2), (1,~1), and
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(1,4). Asy tends to zero, two of these tend to zero. Hence (0,0) is not a point
of unique solvability for z in terms of y. As y tends to —1, two of the z-values
tend to 1, so that (1, —1) is not a point of unique solvability for z. Finally, as Y
tends to —% or %, the radical disappears, and so once again two of the z values
tend to the same value, namely 1 as Yy — % and 0 as y — —%. Thus these four
points are not points of unique solvability for z.

In sum, the points near which the equation f(z,y) = 0 does not define either

y as a function of z or z as a function of y are (0,0) and (1,-1).

Exercise 9.22 Give a similar d‘iscussion for
fz,y) = 223 + 6zy® — 322 + 3y°.
Solution. The gradient is
| V6(2° + 32 — 2)i + 6(2zy + 1)

As we see from solving the appropriate equations, this gradient vanishes at
the points (0,0) and (1,0). The point (0,0) is a saddle point, since f(z,0)
is negative for z < 0 and f (0,y) is positive for y near zero. The Hessian
determinant is positive at (1,0), and the upper left-hand entry is also; hence
(1,0) is a minimum.

Because the equation f (z,y) = 0 can be written as

(6z + 3)y° = (3 — 22)22,

there will be real solutions y if and only if -3 <z <2 (Whenz = —2, the
equation does not contain y.) In this range there are two distinct values of Y
except for z = 0 and z = % Hence the two points on the locus of flz,y) =0
at which the equation cannot be solved for y are (0,0) and (£,0).

Since the equation is cubic in T, its solvability is more complicated from
this point of view. Every value of y gives at least one value of z (but those z-
values always lie between —% and %) To find the points where two of the three
(complex) z-roots coincide, we observe that at such points D; f(z,y) = 0, and
hence also 37 (23:, y)—zD; f(z,y) = 0. This last equation says 2% —4zy?+3y% = 0,

ie., y? = Pt Substituting this value of y2 into f(z,y) = 0, we get either
z=0and y=0or
22 =3
=7
Since we have to have —% < z, we must have z = ‘/75 , and this gives y? = &i"é.

Hence the points near which f (z,y) = 0 cannot be solved uniquely for z are
(0,0) and (l/g——g,:t@).
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Exercise 9.23 Define f in R® by

F(@,y1,92) = 22y1 + €% + 4.

Show that f(0,1,-1) =0, (D1f)(0,1,~1) # 0, and that there exists therefore
a differentiable funcmon g in some nelghborhood of (1,—1) in R? such that
9(1,—-1) =0 and

F(9(y1,92), 41, 92) = 0.
Find (D1g)(1,-1) and (D2g)(1, —1). |
Solution. The proof that f(0,1,~1) = 0 is a routine computation. We have
(D1f) (=, 91, 92) = 2zy1+€%, s0 that (D1£)(0,1,—1) = 1 # 0. To find the partial

derivatives of g we use the chain rule. Let 9(y1,y2) = f(g(¥1,%2),y1,%2) = 0.
Then

0 = D1%(y1,2) = D1 f(9(y1,¥2), 91, %2) D1g(1,92) + Do f (g1, y2), 1, 92),

so that )
0= (2ylg(y1,y2) + eg(yl’y2)>D19(y1,yz) + (9(y1,92)) "

- Similarly, setting

0= Dav(y1,92) = D1f(9(¥1,%2),y1,¥2)D29(y1,¥2) + D3 f(g(y1,%2), v1,%2),

we find
0= (2y19(y1,y2) + eg(“’”’)ng(ybyz) +1.

Taking y1 = 1, 1o = =1, ¢g(y1,72) = 0, we get
D1g(1,-1) =0, Dsg(1,-1)=~1.

Exercise 9.24 For (z,y) # (0,0), define f = (fi, f2) by

2 2

=2 Y =Y
fl(x,y)— .'232+y2, f2(x7y) $2+y2'

Compute the rank of f'(z,y), and find the range of f.
Solution. The matrix of f'(z,y) is
- dxy? —4z%y
(@2 + 922 (22 +¢7)?
y(? —2%)  z(z® —y?)
(22 +92)* (2% +172)?

Its determinant is 0 at every point. Hence its rank is either 0 or 1 at every
point. Since the point (0,0) is excluded from the domain, the rank is 1 at every
point. The range must therefore be 1-dimensional, i.e., there is some non-trivial
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relation connecting f; and f5. Indeed, it is easy to verify that if u = f(z,y)
and v = fo(z,y), then '

W+ d?=1
Thus the range of f is a subset of this ellipse. In fact, it is all of this ellipse. The
point (1,0) is its own image, and the point (—1,0) is the image of (0,1). For
any other point (u,v) on this ellipse we have -1 < v <1 and v = % 1~u?

The point (u,v) is the image of the point (1, +4/ ﬁ ) (and, of course, many
other points as well).

Exercise 9.25 Suppose A € L(R", R™), let r be the rank of A.

(a) Define S as in the proof of Theorem 9.32. Show that SA is a projection in R™
whose nullspace is N'(A) and whose range is R(S). Hint: By (68), SASA = SA.
(b) Use (a) to show that

dimN(A4) + dimR(A) = n.

Solution. We recall that S is defined by first choosing a basis for the range of
A, say {y1,...,¥r}, then choosing vectors {z1,...,2,} such that Az; = y; for
t=1,2,...,7. We then define Sy; = z; on the vectors y; (and S arbitrary
on any set of vectors y,41,...,¥m that can be adjoined to {¥1,.-.,¥r} so as
to make a basis of R™). Thus S is a left inverse of the restriction of A to the
subspace spanned by zi,...,z,. Since Ax belongs to the range of A, it follows,
as in (68), that ASAx = Ax, from which we conclude that SASAx = SAx,
le., SA is a projection. Then every vector x has the unique decomposition
x = SAx + (x — SAx), where the first vector on the right belongs to the range
of SA and the second to the nullspace of this projection. The two subspaces
have only the zero vector in common. Since S is an isomorphism of the range of
A, the range of SA has the same dimension as the range of A. Since A = ASA,
the nullspace of SA is the same as the nullspace of A. Thus n = dim N'(SA) +
dimR(SA) = dimN(A4) + dim R(A4).

Exercise 9.26 Show that the existence (and even the continuity) of D5 f does
not imply the existence of D;f. For example, let f(z,y) = g(z), where g is
nowhere differentiable.

Solution. The second sentence in the exercise s its solution. Since Dsf is
identically zero, Di»f is also identically zero, hence certainly continuous.

Exercise 9.27 Put f(0,0) = 0, and

_zy(z® —y?)
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(z,y) # (0,0). Prove that
) f, D1f, and Do f are continuous in R?:
) Di2 f and Do f ex1st at every point of R?, and are contmuous except at

Solution. (a) The continuity of f is obvious at every point except (0,0); at
(0,0) it follows from the inequality |f(z,y)| < 1(@? + y?). It is also clear
that le(0§ 0) = 0 = D5f(0,0). Fosr (x,y3) 2# (0,40) we have D;f(z,y) =
rty + 4oy — r° —4zyt —x
y(xz " y) Y and Doy f(z,y) = @ +yy2)2 i
partial derivatives at every point except (0,0) is obvious. It is easy to see that
these derivatives satisfy the inequalities |D; f(z,y)| < 2|y| and |Dof(z,y)| <
2|z|, so that D;f and Dy are also continuous at (0,0). —

(b) Since f(z,y) is a rational function with non-zero denominator for (z,y) #
(0,0), it has continuous partial derivatives of all orders on this set.

(¢) Since Dy f(0,y) = —y and Do f(z,0) = z, it follows that Doy f(0, y)= -
for all y and Dy f(z,0) = 1 for all .

. The continuity of the

Exercise 9.28 For ¢ > 0 put

(e (0 <z <VE)
o( )={—x+2\/¥ (VI <z < 2v%)
0 (otherwise),

and put p(z,t) = —¢(z, |t]) if ¢ < 0.
Show that ¢ is continuous on R?, and

(D2¢p)(2,0) =0

for all z. Define

1
F(t) = / o(a,t)dz.

-1
Show that f(t) = ¢ if |t| < ;. Hence

/(0) 5 [_ (Dap)(@,0) dz.

Solution. This function is zero in the (closed) left half-plane of the zt-plane and
on the positive z-axis. Since the functions by which it is defined are continuous,
we need only verify that they agree on the boundary curves z = v/ and z = 2\/—
in the first quadrant that separate the three different regions of definition. This
is a routine computation.

Likewise the computation showing that (D2¢)(z,0) = 0 is routine, since for
each z > 0 ¢(z,t) = 0 for 0 <t < %22, while p(z,t) =0 forall t if z < 0.
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If0<t< i then

Vi r2vi y
flt) = zdr + —z 4+ 2Vtdt
a\ /0 /\/E

= %t—%(4t—t)+2\/i(2k/i—\/i)

t 3t

- — — t—2t=t.

2 5 + 4

Obviously f(0) =0, and if ¢ < 0, then f(t) = —f(=t) = t. Therefore (0 =1.
However .
| (D:)(z 0z =0,
-1
Note: This result is possible only because Dsyp(z,t) is not bounded on [-1,1] x
[~a, a] for any @ > 0. Also note that having —1 as the lower limit of the integral

was a needless complication. The problem would have been more effective it
the lower limit had been 0. ' ‘

Exercise 9.29 Let E be an open set in R™. The classes C'(E) and C” (E)
are defined in the text. By induction C*)(E) can be defined as follows for all
positive integers k: To say that f € C (®)(E) means that the partial derivatives
Di1f,...,Dnf belong to C+=1(E). _

Assume f € C*)(E), and show (by repeated application of Theorem 9.41)
that the kth-order derivative '

Diliz...ikf = DilDiz R -D’L}cf

Is unchanged if the subscripts 4y, . . . , %% are permuted.
For instance, if n > 3, then

D1213f = Dayyaf

for every f € C(4),

Solution. If the permutation leaves i, fixed, this follows from the result for k — 1
applied to D;, f. To get the general result, we observe that by the case k& = 2
we have D;, ., f = Diyir_ f. Hence the result holds for any permutation
that maps 51 to 4;. But any permutation that maps i; to 4 (7 # k, k—
1) can be written as the composition of a permutation that maps ; to ix_1,
leaving i, fixed, followed by the interchange of ix_; and iy, followed by a second
permutation that leaves iy, fixed. Therefore the result applies to all permutations
whatsoever. ‘
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Exercise 9.30 Let f € C'™(E), where E is an open subset of R™. Fixae E,
and suppose X € R™ is so close to 0 that the points '

p(t) =a+tx
lie in E whenever 0 < ¢ < 1. Define
h(t) = f(p(t))

for all t € R! for which p(t) € E. ‘
(a) For 1 < k < m, show (by repeated application of the chain rule) that

RO @) =Y (Diy. i PO, - 25,

The sum extends over all ordered k-tuples (i1, ... ;%) in which each i; is one of
the integers 1,...,n.
(b) By Taylor’s theorem (5.15)

& p) (m)
) = 3 T o

k=0

for some t € (0,1). Use this to prove Taylor’s theorem in n variables by showing
that the formula

m—1
Fatx) =Y =3 Dy )@z, ..z, +r(x)
k=0

represents f(a + x) as the sum of its so-called “Taylor polynomial of degree
m — 1,” plus a remainder that satisfies -

lim & _ g
x-—0 lxlm—l
Each of the inner sums extends over all ordered k-tuples (41,...,%k), as in

part (a); as usual, the zero-order derivative of f is simply f, so that the constant
term of the Taylor polynomial of f at a is f(a).

(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as written
in part (b). For instance Dj;5 occurs three times, as D13, D131, D31;. The
sum of the corresponding three terms can be written in the form

3(DiDsf)(a)zizs.

Prove (by calculating how often each derivative occurs) that the Taylor polyno-
mial in (b) can be written in the form

S OFDEN@E L

---x .
P e
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Here the summation extends over all ordered n-tuples (s1,...,s,) such that
each s; is a nonnegative integer, and 81 + -+ -+ s, <m - 1.

Solution. (a) This formula is a simple application of the chain rule together
with the fact that Dp(¥(t) = z;. The proof proceeds by induction on k.

(b) The formula is an immediate application of the fact that p(1) = a + x, so
that A(1) = f(a + x). The right-hand side is then an immediate application
of the fact that p(0) = a. The only assertion that requires verification is that
on the order of the remainder. The one-variable Taylor’s theorem gives r(x) =
Y (Diy, i f(P()i, -+ - x4, for some t € (0,1), so that |r(x)] < Klx|™ for
some constant K. The assertion as to the order of r follows from this fact.

(¢)If s34+ -+s, < m—1, the number of terms having the derivative combination

DS ...Dinf s (Sl * “'+3n> _ (& +,"'+f”)!-
S1y-+-458n 81:°°°8p:

in the one-variable Taylor's theorem is (s; + --- + sp)!; and when the terms

are consolidated, this factor cancels the numerator of the multinomial symbol,

effectively being replaced by si!---sp!.

Thus the k! that occurs

Exercise 9.31 Suppose f € C® in some neighborhood of a point a € R2, the

gradient of f is O at a, but not all second-order derivatives of f are 0 at a. Show

how one can then determine from the Taylor polynomial of f at a (of degree 2)

whether f has a local maximum or a local minimum, or neither, at the point a.
Extend this to R™ in place of R2.

Solution. Let us simply do R™ in the first place and save the trouble of doing

R2. According to Taylor’s theorem

flatx) = f(8) = 5 3" (Duinf) @)z 25, +7(x),

1,82

where |x|™2r(x) — 0 as x — 0. Note that the Taylor polynomial can be
concisely written as %(Ax, x), where A is the n x n Hesslan matrix whose i, j
entry is D;;f(a) and the angle brackets denote the inner product. If A is
positive-definite, i.e., if (Ax,x) > 0 when x # 0, there is a positive constant c
-such that (Ax,x) > c|x[>. (The constant c is the minimum value of (Ax,x) on
the unit sphere x| = 1.) Hence if § > 0 is chosen so that |r(x)| < c|x|?> when
0 < |x| < 6, we see that fla+x) — f(a) > 0if 0 < [x| < 4, ie., a is a local
minimum of f. Likewise if A is negative-definite, then a is a local maximum of
f. - '
It is well-known from linear algebra that a necessary and sufficient condition
for positive-definiteness of the matrix A is that the principal minors be positive,
i.e., the kxk-submatrix consisting of the elements in the first k¥ rows and columns
of A has a positive determinant. For negative-definiteness the corresponding
criterion is that this minor have the same sign as (—1)~.

There are no other resonably regular cases that guarantee a maximum or
minimum. A nonnegative-definite or nonpositive-definite matrix may well fail
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to guarantee a maximum or minimum, even in R!. If the quadratic form (Ax,x)
assumes both signs, then the point a is definitely not either a maximum or a
minimum. (If (Ax;x) > 0, then f(a+tx)— f(a) > 0 for small values of ¢, while

1 A~v v\ - +then ffo 2t fla) 0

£/ - - ‘e arall vraliraa ~F +
1L L2, Ay N Uy LI a. T UA} J \a./ ~
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