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Chapter 8

Some Special Functions

Exercise 8.1 Define /a2
_Je o (z# 0),

Prove that f has derivatives of all orders at z = 0 and that f(™(0) = 0 for
n=1,23,.... ‘
Solution. We have lim zFe~1/%" = 0 for all k = 0,£1,£2,... by L'Hospital’s

z—0

rule. It is easily showzn by induction that there is a polynomial p, such that
F™(z) = pa(L)e~/*" for z # 0. Assuming (by induction) that f(0) =0,

1
we then have f(”+1)(0) = limb qn(;)e_l/xz = 0, where gn(z) = zp, (z).

Exercise 8.2 Let a;; be the number in the 4th row and jth column of the array

-1 0 0 0
5 -1 0 O
Py 1o
N

.......................

so that

Prove that



130 | q CHAPTER 8. SOME SPECIAL FUNCTIONS

Solution. This is a routine computation:
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Exercise 8.3 Prove that
PIDILEEDIPILE
i g P

if a;; > 0 for all 7 and 7 (the case +o00 = +00 may occur).

Solution. In fact the only case that we need to consider is the case when one
of the two sums is infinite. If either sum is finite, we merely invoke Theorem
8.3, which explicitly states that the two sums are equal. Hence if either sum is
infinite, then both are.

Exercise 8.4 Prove the following limit relations:

=1
=logb (b>0).

(a) lir%
(b) lim log(1+z) _ 1.
z—0 xr .

;3

(c) iil%(l +z) e.

@ (142)" =<

Solution. (a) Consider the function f(z) = b® = €185 The limit we are
considering is f’(0). By the chain rule

f(z) = e®1°8log .
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Now take z = 0. _
(b) Let y =log(1 +z), so that = = e¥ — 1. It is easy to justify the relation

log(1 1
-0 X ’ y—0 ey — 1 hmy——»O ev—-1
ev—1 ‘
since lim = F'(0).
y—=0 ¥y ‘
og!1+z

(c) Consider the function (14 z)Y/* =
el =e. ‘

\ zyn 2\ 1/ (=/m)]
(d) As above, we have <1 + E) = [(1 + H> } , and by part (c) the

limit of the expression inside the brackets is e.

. By part (b) lin%)(l + )% =

Exercise 8.5 Find the following limits

(a) limg—o M

b) limp o gn[ ni/m 1],
tanz—z
z(l—cosz)’

z—sinzx
d) hm-”’"’ tanz—zx°

(0)
(¢) imgz—o
(

Solution. (a) This limit is f'(0), where f(z) = (1 + z)Y/= (by part (c) of the
previous problem). Now for z # 0, we have

flz) =1+ [“ +2)log(1+ ) — a:}

z2(z +1)

Since we know that the limit of the first factor is e, we need only consider the
limit inside the brackets. Since
| z? - z?
(1+2z)log(l+z)= (a:———i-—}-) +m<x— 7—%—---),
we can cancel z° from the numerator and denominator of the expression in
brackets, and we see that the limit of this expression is 5 Hence the limit of
f(z) as z — 0 exists and equals £. It then follows from the mean-value theorem

that f/(0) equals this limit (see the corollary to Theorem 5.12).

(b) Write this expression as
e 5t 1
logn
n
Since I—"ﬁﬂ tends to 0 as n — oo, this fraction tends to the derivative of e at 0,
i.e., it tends to 1.
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(c) Write this expression as

SINT — T COST

zcosz(l —cosz)’

We can then use either Maclaurin series or L'Hospital’s rule to prove that the

limit is %

(d) Write this expression as

(z —sinz) cosz

sinz — zcoszx

and again either by Maclaurin series or L'Hospital’s rule the limit is %

Exercise 8.6 Suppose f(z)f(y) = f(z +y) for all real z and y.
(a) Assuming that f is differentiable and not zero, prove that

f(:E) = %%

where ¢ is a constant. }
(b) Prove the same thing, assuming only that f is continuous.

Solution. (a) Since f is not 0, it follows that f(0) = 1 (take z = y = 0 in the
basic relation that defines f). It then follows that f’(z) = f(z)f’(0), and hence
that the function g(z) = =2/ f(z) satisfies ¢’ (0) = 0 for all . Therefore
g9(z) = g(0) = f(0) = 1 for all z, i.e., f(z) = e°®, where c = f'(0).

(b) The relation f(z)f(y) = f(z + y) shows that either f(z) is always zero,
or it is never zero. In the latter case, since f is continuous, it cannot change
sign, and therefore (since f(0) = 1) it is always positive. Let g(x) = log[f(z)].
Then g(z +y) = g(z) + g(y), and g is continuous. It suffices then to show that
g(x) = cr for some constant ¢ = g(1). To this end, we note that the additive
property of g implies that g(0) = 0, g(—z) = —g(z), and (by an easy induction)
g(nz) = ng(z) for all integers n = 0,21, +2,... . Consider the set of z such
that g(z) = g(1)z. Obviously 0 and 1 belong to this set. If a belongs to this set,
so does na for any 7, since g(na) = ng(a) = ng(1)a = g(1)(na). Finally, if a
belongs to this set, so does 2, n=1,2,..., since g(a) = g(n2) = ng(%). That
is, g(2) = 2g(a) = %g(l)a = g(1)%. It now follows that  belongs to this set
for all rational numbers r, that is, the two continuous functions g(z) and gDz
have the same values at all rational numbers 7. Since the rational numbers are
dense, and the set of points at which two continuous functions are equal is a
closed set, it follows that g(z) = g(1)z for all z.

Exercise 8.7 If 0 < z < %, prove that

2 sinz

- < —xX1
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Solution. To show the left-hand inequality, consider the function f(z) = sinz —
2 on the interval 0 < z < 5. We have f(0) = f(§) = 0. Since f”(z) =
—sinz < 0, the function f'(z) is strictly decreasing on this interval. Therefore
it has at most one zero on this interval; by Rolle’s theorem, it has exactly one
zero. Since f”(z) < 0 at that point, the function f(z) has a maximum at that
point. Therefore f(z) >0for 0 <z < 3. :

The proof of the right-hand inequality is similar, but easier. The function
g(z) = z — sinx has derivative 1 — cosz, which is nonnegative. Therefore g(z)
is strictly increasing, and so g(z) > g(0) = 0 for all z > 0 (the restriction z < %
is superfluous in this case).

Exercise 8.8 For n=0,1,2,..., and z real, prove that
|sinnz| < n|sinz|.
Note that this inequality may be false for other values of n. For instance,
1 1 .
| sin §7r| > §|sm7r|.

Solution. The inequality is obvious if n = 0 or n = 1. Then by induction we
have

|sinnz| = |sin((n— 1)z + )|

Isin((n — 1)z) cosz + cos((n — 1)z) sin x|
|sin((n — 1)z)| + | sinz]

<
< (n-—1)|sinz|+ |sinz| = |n]|sinz|.

A stronger remark can be made: If ¢ is not an integer, then |sincr| >
le| | sin7|. Hence this inequality fails for £ = 7 unless c is an integer.

Exercise 8.9 (a) Put sy =1+ (%) +---+ (1/N). Prove that
J\}gnoo(sN — log N)

exists. (The limit, often denoted by 4, is called Euler’s constant. Its numerical
value is 0.5772... . It is not known whether + is rational or not.)

(b) Roughly how large must m be so that N = 10™ satisfies sy > 100?

' N+1
Solution. (a) We observe that log(N +1)—log N = / %dt, so that (sy+1—
N

log(N +1)) — (sv = log N) = 55 - fji.v-"l 1dt < 0. Thus the sequence is a
decreasing sequence. On the other hand, it consists of positive numbers, since
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< sy. It follows that the sequence

l'N—-/Nldt<1+1-‘— .+
must converge to a nonnegative number 7.

(b) The answer here depends on how “rough” an estimate is desired. We
observe that sjgv+1 — sy~ lies between 9 - ION(T@},—H) and 9 - ION(I—OIN), lLe.,
between 0.9 and 9. Hence by an easy induction 0.9N < s;ov < 9N. Thus
m = 112 will certainly work, and m must be at least 12.

Exercise 8.10 Prove that ) 1/p diverges; the sum extends over all primes.
(This shows that the primes form a fairly substantial subset of the positive
integers.)
Hint: Given N, let p1,...,px be those primes that divide at least one integer -
< N. Then - :

diy] 11
> o< [M+—+5+)
=1 j=1 i b
ko 11
= g(l‘ =)
)
< epo—-—.
. jzlpj

The last inequality holds because
(1-z)"t<e®®

f0<z<3 |
(There are many proofs of this result. See, for instance, the article by I.

Niven in Amer. Math. Monthly, vol. 78, 1971, pp. 272-273, and the one by R.
Bellman in Amer. Math. Monthlg, vol. 50, 1943, pp. 318-319.)

Solution. We observe that the primes py,...,pr form the set of all primes not
greater than N. Each of them is at least 2, and therefore each integer from
1 to N is a unique product of the form pi* ---pg* for nonnegative integers ey,
0 < e; < logy N. For simplicity let m be the greatest integer in logy N. Then

certainly ‘ '

SRS
IA
2
fu—
»

>

n=1 €1, =0 py - 'pk
£ 1 1
= [T+—++ =)
j=1 Pj J
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To establish the inequality (1—z)~! < €2* on [0, %], we simply observe that the
function f(z) = (1 — z)e?® has derivative (1 — 2z)e?®, which is positive on this
interval. Hence the smallest value this function has on the interval is its value
at x = 0, which is 1.

. We have now established the inequality

11 N g
= > Zlog ht
;pj %3 Og(;n)

for any integer N less than pryi. Since the right-hand side of this inequality
tends to oo, so does the left.

Exercise 8.11 Suppose f € R on [0,A4] for all A < o0, and f(z) — 1 as
T — +00. Prove that

oo
lim e f(x)dz=1 (t>0).

Solution. We first observe that the improper integral converges absolutely for
all t > 0, since

S ' .
/ |1 (@) dz < (e — ) =0,
R

where M = sup |f(z)], as R, S — 0.
>R :

We also note that
(o o) oo u
t/ : e‘“"f(a:)da::/ e f (=) du,
0 0 t

and this last improper integral also converges for all £ > 0. Hence we have

t/oooe"mf(m)dx—ll = /Oooe'“f(%)du—l

< [Tels(3) -1]en
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T‘

it follows t

Ak

have

It/oooe"‘mf(a:)dz—li < (K+1) ne"ﬁdu-}-/?]oo'f(%)—l}du

0
< (K +1)+ M,,,
where M, ; = sup |f{z) — 1|. Hence, given € > 0 we take n = 2(K+1) We then
z>
choose X > 0 so Iarge that |f( )=1l < £if 2> X, and we let § = . It then

follows that M, ; < £ if0 <t <é.

Exercise 8.12 Suppose 0 < § <7, f(z)=11if |z| <4, f(z)=0if § < |z| < 7,
and f(z + 27) = f(z) for all z.

(a) Compute the Fourier coefficients of f.
(b) Conclude that |

Zsm(né) _ T—06 (0<6<m).
n 2
n=1
(c¢) Deduce from Parseval’s theorem that

i sin(né) =6
— n2§ 2

n=1

(d) Let 6 — 0, and prove that =

[ =g

(e) Put 6 = 7/2 in (c). What do you get?

Solution. (@) Since f(z) is an even real-valued function, it makes sense to use the
real form of the Fourier series since symmetry shows that b, = 0 for all n. Then

1 2 [°
ap = 2‘5 , and forn > 1 we e have Gn = — f(z)cosnz dr = —/ cosnrdr =
T Jo

2sin n5

™
(b) Since f(z) satisfies the Lipschitz condition of Theorem 8.14 at z = 0, it
follows that the series actually converges to f(0) at that point, i.e.,

i sin( né)

n=1

-+

J o
2R
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so that

in(nd) mw—9

3
ANgL:
)
m'
[\

(c) Parseval’s theorem now implies that
26 1 [° 9, 1726\2 & 4sin’(néb)
L.z dr==(Z2 kel Sy
T ﬂ/_glf(x)l ’ 2(7r) +17.Z=:1 m2n2
Now multiplying both sides by Z—; gives the required result.

(d) Let R be any fixed number, N any positive integer, and let éy = %. As

N . 9 R .

5 2

N — oo we have E w — / (?ﬂ) dz, since the left- hand side of
=1 n 6N 0 X

this equality is a Riemann sum for this integral. Note that

i sin2(n5N)< 11
n26N N5N R

n=N-+1

(The 1nequahty results from the fact that En_k 7 < f PR —2- dt = 3=5.) Given
g, choose R > 3 such that

[T [ (2

if §> R. Then choose Ny > 2 so large that

}N: sin®(néy) _/R<sinx)2dm < €
77,26]\[ 0 x 3

n=1

<<
3

whenever N > No. Then for N > Ny, 6y = £ we have

=\ sin?(né) ® /sinzy 2
Y- (5

n=

0 o 2 _
/ <§2—%) dzr = lim ™oy =z.

(e) Taking § = 7/2 yields

< E.

Consequently

Z(2k—1
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~ Exercise 8.13 Put f(z) = z if 0 < z < 2w, and apply Parseval’s theorem to

conclude that -
=1
D=

n=1

o>=| A,

Solution. By computation we see that a,, = 0 for n > 0, and a9 = 27. Compu-

tation shows that b, = —Z Hence Parseval’s relation gives
8w? 1
T = -2- 27’(’ + 4; 59

so that
“— n? 6 |
There is another way of deriving this result. Since
SII
£ (2n)? —~ n?’

denoting this last sum by X, we find that

.M»—a

[e o] 7['2
—-X = —
X=X =Y =5

k=1

and hence, by part (e) of the previous problem

472 g2
x=2_T
S 8 6

Exercise 8.14 If f(z) = (m — |z])? on [—m, 7], prove that

co
W Z
= — cosnx
3 —-

and deduce that

i 1 72 i 1
n2 6’ nt 90"
n=1 n=1 .

(A recent article by E. L. Stark contains many references to series of the
form ) n~*, where s is a positive integer. See Math. Mag., vol. 47, 1974, pp.
197-202.)

Solution. Since f(z) is an even function, b, = 0 for all n. The a,,’s are computed
in a straightforward manner:

=;T2—/0#f(x) /(7(—:7: dx—-—/ xdngﬂ'z;



139

and

2 " 2 n2 " 2 |
an=— [ (r—z)*cosnzdr=(-1)"— | z°cosnzdz,

so that, eventually, we find a, = ;4;.

This gives the stated Fourier series, and since f(z) satisfies the Lipschitz
condition of Theorem 8.14, the series converges to f(z) at every point. Taking
xz = 0 gives the first of the two desired equalities:

Parseval’s theorem yields
ot 1 (T 0 or =1
o=y P =63

which easily transforms to the desired relation.

Exercise 8.15 With D, as defined in (77), put

1 N

Kn(x) = m i Dn(x)

Prove that L1 (N +1)
. — COS + 1)z
K —
n(z) N+1 1 —cosz
and that
(G’)anoa
1 [7 )
(b)2—ﬂ_ *wKN(m)d:L'—-l.
(€) Kn(z) < ——— 2 _if0<6< |z <
M= N4+11—cosé = 1F =

If sy = sy(f;x) is the Nth partial sum of the Fourier series of f, consider

the arithmetic means
R e

N+1

ON

Prove that

1 ™
GN(f; $) = -2— f(.’L‘ - t)KN(t) dt
7ol
and hence prove Fejér’s theorem:

If f is continuous, with period 27, then on(f;x) — f(z) uniformly on
[—m, 7).
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8

\]
%)
(&5}

Hint: Use properties (a), (b), (c) to proceed as in Theore

Solution. Using the formula 1 — cos = 2sin %97 and the fvrmula D,(z) =
w we deduce that

sin x

1

1
N1l Zsm —zsin(n + = )a:

n=0

(1 —cosz)Kn(z) =
Now, however, sin asin 8 = 3 cos(a — §) — cos(a + ), so that

N
(1—cosz)Kn(z Z cos(nz) — cos((n +1)z)) =
n=0 .

= NI ——— (1 —cos(N + 1)z).

The formula is now established. Notice that it could also be written

Kn(z) 1 [Sin<-]y—}lx)]2
T) = .
y N+1l siniz
(a) The nonnegativity of Ky(z) is an immediate consequence of either of
the formulas just written.

(b) It was established in the text that 51; D,(z)dx = 1, and so the
same result for Ky(z), which is an averpge of the bn (z), must follow by routine
computation.

(c) This inequality is an immediate consequence of the facts that cos(V +
1)z > ~1 and that cosz is decreasing on [0, 7].

The formula for oy(f;z) is an immediate consequence of the definition of
on(f;z) and the corresponding formula for sn(f; ).

Now let M = sup|f(z)|, the supremum being taken over all z. By (a) and
(b) we have

@) =@ = |5 [ -0 - ek
< 5 [ 160 - @it a
< & [ -0 sk s
+1(” 5>N+11—iosa2M
< s |f@ - 1) - f(a)
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AM(r—6
where Q6 = .,r(N+1)((7r1—c)osé)'

Given £ > 0, we first choose § > 0 so small that sup |f(z —t) — f(:v)l <
' [t1<6

for all z. With this § fixed, we then have |on(f;z) — f(z)| < eforall N >
and all z.

m [NE N

Exercise 8.16 Prove a pointwise version of Fejér's Theorem:
If f € R and f(z+), f(z—) exist for some x, then

SUF(e+) + fa-)l

]\}i_r}flco on(fiz)=
Solution. We need only a slight modification of the argument just given, namely
the formula

ow(f;2) = 5lf(z+) + fl@-)] =

1

0
— o [ Ve - fe-Nkn@dt+ - [ 1fa=1) - feIRn () o

Each of these two integrals can be broken up into an integral over a half-
neighborhood of 0 and an integral outside that neighborhood. The first of
the integrals can be made small if the neighborhood is taken small enough
(independently of N). With that neighborhood fixed, the second integral in
each case can be made small if N is large enough using the same inequalities
just stated.

Exercise 8.17 Assume f is bounded and monotonic on [-7,7) with Fourier
coefficients c,, as given by (62).

(a) Use Exercise 17 of Chap. 6 to prove that {nc,} is a bounded sequence.

(b) Combine (a) with Exercise 16 and with Exercise 14(e) of Chap. 3, to conclude
that ‘

Jim s (f52) = 517 (e+) + f(a-)

for every z.
(¢) Assume only that f € R on [—, 7| and that f is monotonic in some segment
(e, B) C [-m,m]. Prove that the conclusion of (b) holds for every z € («, ).

(This is an application of the localization theorem.)

Solution. (a) by Exercise 17 of Chap. 6 we have

1 ™ _ s

o). f(x)e dz = 5

from which it‘ follows that

o1 () — (=)

Ine,| <
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(b) Since f(z+) and f(z—) exist at every poirt, it follows from the previous
exercise that on(f;z) — $[f(z+) + f(z—)]. Then Exercise 14(e) of Chap. 3
assures us that s,(f;z) has the same limit. - ; o '

(c) Let g(z) = f(z) for o < z < B, g(z) = f(a) for 0 < z < a and
g9(z) = f(B) for B < z < 2r. Then sy(g;z) — slg(z+) + g(z—)] for all z by
part (b). Since sy(g;z) — sn(f;z) — 0 for @ < ¢ < B8 by the Corollary to
Theorem 8.14, it follows that sy (f;z) — [g(z+) +g(z-)] = sUf (z+)+ f(z-)]
for these values of z.

Exercise 8.18 Define

flz) = 2°—sin®ztanz

2av—-ar:tama:.

g(z) = 2x%—sin
Find out, for each of these two functions, whether it is positive or negative for
all z € (0,7/2), or whether it changes sign. Prove your answer.

Solution. Both functions tend to —oo as z — 5. Hence the only question is

whether they ever become positive. We note that the derivative of the first

function is 372 — sin® z — tan2z. By writing sin®z as L — —%—cos 2z and making

2
d
repeated use of the formula — tan®z = ktan*—!z + ktan®+! z, we find that

x
the first six derivatives of this function vanish at 0, and that the sixth derivative
is _

~32sin 2z — 272tanx — 1232 tan3 z — 1104 tan® z — 144 tan” z,

which is negative on (0, %) Hence all of the first six derivatives are negative on

this interval, and therefore the function itself is negative.

The same technique applies to the second function. All of its first five deriva-
tives vanish at x = 0 and the fifth is

~[16sin 2z + 16z + 80tanz + 136z tan?z +
+ 200 tan® z + 240z tan® z + 120 tan® £ + 120z tan® z],
which is negative on (0, g) Hence this function is always negative on that
interval. ‘

Exercise 8.19 Suppose f is a continuous function on Rl f(z+2m) = f (z),
and o/ is irrational. Prove that

A 1 /7
]\}gnoo'ﬁ;f($+na)=§7—r/_ﬂf(t)dt

for every z. Hint: Do it first for f(z) = e*=,
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Solution. Following the hint, we observe that both sides of the desired equality
equal 1 trivially when k£ = 0. In any other case the right-hand side is zero, and

the left-hand side is .
1 _ ez(n-r—l)ka

: tkx +
S
which tends to zero as N — oo. ‘ '

Since both sides are linear functions of [ it now follows that the relation
holds for all trigonometric polynomials. Finally, since both sides are bounded
by the supremum of f, given €, we can approximate f uniformly within e by a
trigonometric polynomial. It then follows that all the means on the left, for ¥
sufficiently large, are within 2 of the integral on the right. Since ¢ is arbitrary,
it follows that the limit on the left equals the integral on the right.

Exercise 8.20 The following simple computation yields a good approximation
to Stirling’s formula.
Form =1,2,3,..., define

flz)=(m+1~2)logm — (z —m)log(m + 1)
ifm <z <m+1, and define
‘ z
9(z) = E—-l+logm

ifm—3 <z < m+L. Draw the graphs of f and g. Note that f(z) < logz < g(z)
if £ > 1 and that

/1 flz)dz = log(n!) — %Iogn > —é +/1 g(z) dz.

Integrate log z over [1,7n]. Conclude that

7 1
= (n!) — 2 log
5 < log(n!) (n—}— 2)logn+n <1

forn=2,3,4,.... (Note: log /27 ~ 0.918. .. .) Thus

!
7/8 ni
<s7———=<e
(n/e)/n

- Solution. We first draw the graphs of f and g in the range}x =1ltoz =10 We

note that f is merely the broken set of chords joining the points on the graph
of log z at integer values of z, and 9 is made up of segments of the tangents at
these points (g is not continuous). Because the downward side of the graph of
log z is convex, f(z) <logz < g(z) for all z. The estimate for the integral of f
is straightforward: The integral is the sum of the areas of one triangle and n — 2
trapezoids with base 1 and parallel sides logk and log(k+1) (k=2,... ,n—1).
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We find it equal to $logl+log2+logd+---+log(n—1)+ 1 5 logn = log(n!) —
= logn as asserted. Meanwhﬂe the mtegral of g(z) is also a sum of trapezoids

and two frmno]eq and eauals é + 1no (:nl\ — &L Ingrn - élﬁ Hence we have

= Gaale TS

1 n : 1 1 1 1 1
(n)— = log . = (n)— = log 17— — Z4] N=Z1logn.
log(n!) 210gn</1 logzdz < 8+10g(n) 2logn ™ < 8+ og(n!) 210gn

Now straightforward computation reveals that
» n
/ logzdz = (nlogn—n) — (1log1 - 1) =nlogn —n + 1.
1 ,

The desired inequalities are now deduced by taking exponentials of the three
expressions.

Exercise 8:21 Let

1 iy
Ln:_ nt = g &g hgonafe
5 | IDa@ldi (n=1,2.3,..)

Prove that there exists a constant C > 0 such that
Ln > Clogn (n=1,2,3,...),
or, more precisely, that the sequence
{Ln - ;;15 log n}
is bounded. |
Solution. We observe that

1 /2*31—1 sin(n + 1)

L.o= = dt +
n smlt
2m(k+1) '
(-DFsin(n+ L)t 1 [T (=1)"sin(n+ L)t
S dt + = — dt
sin 1t T 2ox sin 51

The substitution u = (n+ 1)t changes the first and last terms into the sum

1 /" sinu du+/(n+ )77 (—1)nsm“ d
1 u
7 Jo (n+1) sin(z47) nw (n + 3) sin( 1)

S 1 1
The first of these terms tends to — sinudu = — as n — o0o. The second
T

tends to 0 (for u € [nm, (n + ) ] we have sin(5%7) 2 sin 525, which tends to
1 asn — o0).
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Thus we ﬁnd that

n—1 2w (k1)
1 1 2Rl 1 d L
—+ent —_——_in(”lk“)\l - sin(n + = )t t < Ly,
k=1 TS 57 ) ' 5T

whereen—>0asn-—>oo'
" If we take out the first two terms of the sum instead of just the first, we find
similarly that

47 . 1
1 Zn+T sin{n + =)t
an_/ [sin(n + )] (, 12)]dt+
T Jo sin 5t
55 (~1)Fsin(n + Lyt 1 [™ (=1)"sin(n+ 1)t
+ E / 2 dt+ ~ / 27 dt.
sin ;t v 285 sin %t

Again the substitution v = (n + 1)t changes the first and last terms into
the sum

1/27r sinu du+/(n+ T (=1)"sinu du
T Jo (n+2)sm(2n+1) nmw (n+%)Sin(2n1f}-1)

2
The first of these terms tends to — / Isinu|du = = as n — oo, and once
s

again the second tends to zero.
Thus we find that

27(k+1)

) n-l proe)
Ln<—-+nn+z————’/ sin(n + = )tdt
Vi e 7rsm 2n+1

where 1, — 0 as n — 0. :
Once again, in each of the integrals under the sigma in the last two inequal-
ities we make the substitution u = (n + 3)t. When we do so, we have

n—1
2 2 2
—+e+ ~ <Lp<-— —+ 7+ )
,;1 (n+ %)7( sin( 2(:1;)) kZz (n+ % )7r s1n(2”f_1)
where €, — 0 and n, — 0. It therefore follows that
l-l—.ﬁ: <L —n_1—2—‘ = <2+77 =
g " " = T(n+ )sin(%%l) m " (n+ %)Sin'(Zn-{-l)

The extremes in these inequalities are both bounded. Hence we will be done if
we can show that .
n—

2 1
;Iogn— Z 1\ .. 7r§k:+1))

ko (n+ 3) sin( 2nt1
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remains bounded. To do this, we use the fact that there is a constant K such

that
| 1 1) N
— —— S Az
Ismx z

for 0 < z < Z. This fact in turn is a consequence of the fact that, by L’Hospital’s
rule, :
’ r—sinz 1
im ————— = — =,
z—0 z2sinz - 2

We thus have

Lo

~1

' 1
W(k+l)> = En + Z

7k ?
sm< =+ DS
where
n—1
1 m(k+1)
E <K =
|Bnl < n+ % 1; 2n+1

2K & 2K  [(n+1)(n+2) 1
=“—22k+1:w(2n+1)2 9 _1}'

Since the right-hand side tends to £ as n — oo, we see that E, remains
bounded as n — oco. We will be finished if we can show that

n—1 1

logn — —_—
k=1 k +1

remains bounded. But this was done in Exercise 9 above.

£

Exercise 8.22 If o is real and —1 < z < 1, prove Newton’s binomial theorem

a—-n—i—l)xn

= afa —
1+z)*=1+)_

n=1

Hint: Denote the rlght side by f (x) Prove that the series converges. Prove
that 4

1+2)f(z) = af ().

and solve this differential equation.
Show also that

A-z7=), Pgr?a(;) z"

n=0

f-l<z<landa>0.
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Solution. Following the hint, we use the ratio test to establish that the radius
of convergence of the power series that defines f(z) is 1. This amounts merely

to the statement that
QX — N

lim = 1.

n—00 i’n +1 I
The differential equation then results from termwise operations on the series
and the fact that

ala=1)---(a~mn) +a(a—1)---(a——n+1) _ala=1)---(a— n+1)

n! (n—1) = n!
Then, given that f(0) =13 0, it follows that for = near 0 we have
 fl@) _ o
f(z)  1+z

so that log f(z) and log(1 + z)* have the same derivative, and hence differ by
a constant, which turns out to be zero, since both equal 1 at z = 0. It thus
follows that f(z) = (1 + z)*.

To prove the other relation, we merely observe that

l"(n—{-a)u

(—a(—a=1)---(~a-n+1)= (-)"e(a+1)---(@+n—-1) = (=1)" o)

Exercise 8.23 Let v be a continuously differentiable closed curve in the com-
plex plane with parameter interval [a,b], and assume that y(t) # 0 for every
t € [a,b]. Define the indez of v to be

7@ 4
nd{7) = 2m o ’Y(t)
Prove that Ind (v) is always an integer.

Hint: There exists ¢ on [a, b] with ¢’ = v/, p(a) = 0. Hence yexp(—¢) is
constant. Since y(a) = v(b), it follows that exp(p(a)) = exp(p(b)) = 1. Note
that (b)) = 2milnd (7). :

~ Compute Ind (7) when 4(t) = e, a =0, b= 27.
Explain why Ind () is often called the winding number of v around 0.

Solution. Again, following the hint leaves very little to do. We define

p(z) = / i 7,((t)) dt,

so that we automatically have ¢/(t) = % The fact that vexp(—¢) is con-
stant is now a consequence of the chain rule. It then follows immediately that
exp(p(b)) = 1, so that ¢(b) = 2min for some integer n. v

Routine computation shows that Ind (y) = n if v(t) = ™, 0 < t < 2.
Since this curve winds counterclockwise about 0 a total of n times, the name
winding number is appropriate.
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Exercise 8.24 Let v be as in Exercise 23, and assume in addition that the
range of v does not intersect the negative real axis. Prove that Ind (y) = 0.
Hint: For 0 < ¢ < oo, Ind (v + ¢) is a continuous integer-valued function of c.
Also, Ind (v + ¢) — 0 as ¢ — oo.

Solution. Following the hint, we observe that

_ 1 [P
o) =54 /a S+

is a continuous function of ¢ on [0, o), since

A -c) B
/a (v(®) + e)(7(t) + c2) dt < Kley — cal,

Fle) = fea)l = 5

1P :
where K = 53 / |v'(t)| dt and 7 is the supremum of the integrand for ¢, co >
2 J,

0 and 0 < t < 27. (This supremum is finite, since the integrand tends to zero
as either ¢; or ¢y tends to infinity.) Furthermore

R 40)
|f<c>ls2m/a 1 o

and this last expression tends to 0 as ¢ — co. It follows, since f assumes only
integer values, that f(c) = 0. In particular f(0) = Ind (y) = 0.

Exercise 8.25 Suppose v; and 7y, are curves as in Exercise 23, and

M) =@ <) (a<t<b)

Prove that Ind (1) = Ind (72).

Hint: Put v = y2/. Then |1 — | < 1. Hence Ind (y) = 0 by Exercise 24.
Also, :
Y_%_m
Y om
Solution. The hint leaves almost nothing to be done. The inequality established
for v shows that the real part of «y is always positive, so that the hypotheses
~ of Exercise 24 are satisfied. The relation for 7,7l is a routine computation, and
shows in general that Ind (v6) = Ind () + Ind (6).

Exercise 8.26 Let v be a closed curve in the complex plane (not necessarily
differentiable) with parameter interval [0,27], such that () # 0 for every
t €[0,2n]. :
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Choose § > 0 such that |y(t)] > 6 for all t € [0,27]. 1t Py and P, are
trigonometric polynomials such that |P;(¢) — ()| < 6/4 for all t € [0,27], (their
existence is assured by Theorem 8.15), prove that ‘

Ind (P;) = Ind (P?)

by applying Exercise 25.

Define this common value to be Ind (7).

Prove that the statements of Exercises 24 and 25 hold without any differen-
tiability assumptions.

Solution. Since |Py(t) — Pa(t)] < § < |Py(t)], (because |Py(t)] > |£(t)] — [f(t) -
Py (t)| > %5), the equality of the indices follows from Exercise 25, as stated.

Exercise 24 remains valid, since if () does not intersect the negative real
axis, there is a positive number § > 0 such that |y(t) — z| > 6 for all z < 0.
Then if |P;(t) — y(t)| < 6 for all ¢ € [0,27], it follows that P;(t) also does not
intersect the negative real axis, hence has winding number 0.

Exercise 25 remains valid, since if |7y;(t) —v2(t)| < |71(¢t)] for all ¢, we can let
6 = ming |71 (¢)] — |71 (t) — 12(t)|. Then if |P;(t) — v(t)| < 6/4 for all ¢, it follows
that [Py(t) — Po(t)] < () — 12(8)] + (6/2) < In(®)] — (6/4) < [Pr(®)], and so
Ind (P;) = Ind (P2), by Exercise 25.

Exercise 8.27 Let f be a continuous complex function defined in the complex
plane. Suppose there is a positive integer n and a complex number ¢ # 0 such
that

lim 27"
lz|—o0

1(z)=c.

Prove that f(z) = 0 for at least one complex number 2.
Note that this is a generalization of Theorem 8.8.
Hint: Assume f(z) # 0 for all z, define

1 (t) = f(re'*)

for 0 <r < o0, 0 <t <2, and prove the following statements about the curve
7.
(@) Ind () = 0.
(b) Ind (y») = n for all sufficiently large r.
(¢) Ind (vy,) is a continuous function of r on [0, o).
(In (b) and (c), use the last part of Exercise 26.]

Show that (a), (b), and (c) are contradictory, since n > 0. ‘
Solution. (a) Since o(t) = f(0) for all ¢, we have 44(t) = 0 for all ¢, and hence
by definition Ind (o) = 0.

(b) Choose R so large that |z7™f(2) — | < L;—] whenever |z2| > R. Then
for all 7 we have Ind (7,) = Ind (yr1) + Ind (72), where v,1(t) = r?e** and
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©
N

x

g(z)

Figure 8.1: The Bfouwer fixed-point theorem

ro(t) = r~me~ it f(re'). By Exercise 25 we have Ind (yy2) = 0 for r > R, and
by direct computation we have Ind (yr1) =n for all 7.

(¢) Fix 7o > 0, and let ¢ = min |7 (roe')|. Then choose § € (0,70) such
’ o<tL2n

that |f(roe®) — f(re™)| < eif |r — ro| < 6. Then by Exercise 25 we again have
Tnd(7,) = Ind (v,,) for |r—ro| < 6. Hence Ind (v,) is a locally constant function
of r. By the connectivity of [0, 0), it follows that it is globally constant, which
contradicts (a) and (b). '

Exercise 8.28 Let D be the closed unit disc in the complex plane. (Thus
z e D if and only if |z| < 1.) Let g be a continuous mapping of D into the unit
circle T. (Thus |g(z)| = 1 for every z € D))

Prove that g(z) = —z for at least one z € T..

Hint: For 0 <r <1,0<t< 27, put

Ve (t) = g(re'),

and put ¥(t) = e~y (t). If g(2) # —z for every z € T, then ¥(t) # —1 for
every t € [0,27]. Hence Ind (¥) = 0, by Exercises 24 and 25. It follows that
"Ind (7;) = 1. But Ind (7o) = 0. Derive a contradiction, as in Exercise 27.

Solution. The hint tells us that 1(t) does not meet the negative real axis, hence
has index 0, by Exercise 24. Hence by Exercise 25, m has index 1. Again, since
vo = g(0) # 0 (since g(0) # —0 = 0), it follows that Ind (7o) = 0. But, as
before, since |g(z)| = 1 for all z, it follows that Ind (7-) is locally constant and
hence by the connectivity of [0, 1], globally constant. Thus, once again, we have
a contradiction.

Exercise 8.29 Prove that every continuous mapping f of D into D has a fixed
point in D.
(This is the 2-dimensional case of Brouwer’s fixed-point theorem.) _
Hint: Assume f(z) # z for every z € D. Associate to each z € D the point
g(z) € T which lies on the ray that starts at f(z) and passes through z. Then
gmaps Dinto T, g(2) =zifz€ T, and g is continuous, because

g(z) = z = s(2)[f(2) - 2,
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where s(z) is the unique nonnegative root of a certain quadratic equation whose
coefficients are continuous functions of f and z. Apply Exercise 28.

Solution. The number s = s(z) is a nonnegative real number because of the
geometry of the situation (see figure). The quadratic equation in question is
given by the relation |g(2)[2 = 1, i.e,, ‘

If(2) — 2?52 + 2(|z|2 - Re (Ef(z)))s +1z2 - 1=0.

It is well-known that a quadratic equation az2 + bz + ¢ = 0 has one and only
one nonnegative root if'a, b, and ¢ are real and ac < 0. We can write explicitly

_ 1P~ Re (3f(2)) + /(PP —Re GF@E £ 1) = 2P0 =)
s(z) = REECD |

which makes it clear that s(z) is a continuous function of z. Hence g(2) is
continuous.

We now know that there must be a value at which 9(z) = —z. But this is
impossible, since |g(z)] = 1 for all z and g(z) = z if |z| = 1.

Exercise 8.30 Use Stirling’s formula to prove that

. T(z+e¢)
o T )

for every. real constant c.
Solution. We need Stirling’s formula in the form
: I'(z)
lim - TS
Fmoe (2270 fon(z — 1)

Applying this result with 2=z +c and z = z, we get

lim Nz+c)

z—oo z¢(x) B

= lim f(z)- Llate) EDT Ve - 1)
oot (B )srel on(z o — 1) L(z) ’

= L LI FEET_ (s g ey
Ce (B Vool T Tel-Lp(i-h)1 Vo1

Since z* — 1 as z — o0, it now follows that lim f(z) = 1, which, combined

x
with Stirling’s formula, gives the desired result.
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Exercise 8.31 In the proof of Theorem 7.26 it was shown that

' 2 4
— n > —.
/ (1 T ) dx 3‘/_

—1
4

J =

forn =1,2,3,... . Use Theorem 8.20 and Exercise 30 to show the more precise
result N ‘

lim \/ﬁ/ (1—2zH)"dz = /.

n—00 J-1 _

Solution. Let u = z2 in the integral, so that dz = -é—u‘% du. We then have

: 1 o 1 n ~1 o _ VAL(n+ 1I(3)
\/'ﬁ/_l(l——xz) dm—\/ﬁ/o (1—w)"u"2du= F(n+21) 2=

and taking ¢ = % in Exercise 30, we find that this last expression tends to

r(}) = vi.



