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Chapter 3

Numerical Sequences and
Series

Exercise 3.1 Prove that convergence of {s,} implies convergence of {|s,|}. Is
the converse true?

Solution. Let ¢ > 0. Since the sequence {s,} is a Cauchy sequence, there
exists NV such that |s;, — sp] < e for all m > N and n > N. We then have
l[sm| — |8n]| < |8m — sa| < € for all m > N and n > N. Hence the sequence
{Isn|} is also a Cauchy sequence, and therefore must converge.

The converse is not true, as shown by the sequence {s,} with s, = (=1)".

Exercise 3.2 Calculate lim (v/n?+n—n).
ktamade ol

Solution. Multiplying and dividing by v/n? + n + n yields

n 1
Vn2+n—n= = )
~ Vnitndn 114

It follows that the limit is %

Exercise 3.3 If s; = /2 and

Sme1=1/2+En (n=1,2,3..)),

prove that {s,} converges, and that s, <2forn=1,2,3....

Solution. Since /2 < 2, it is manifest that if s, < 2, then sp47 < V2 +2 = 2.
Hence it follows by induction that v/2 < s,, < 2 for all n. In view of this fact,
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30 | CHAPTER 3. NUMERICAL SEQUENCES AND SERIES

it also follows that (s, —2)(sp +1) <O foralln >1,ie, sn >82—2=35,_,.
Hence the sequence is an increasing sequence that is bounded above (by 2) and
so converges. Since the limit s satisfies s?2 — s —2 =0, it follows that the limit
is 2.

Exercise 3.4 Find the upper and lower limits of the sequence {s,} defined by

S9m—
$1 =0; Som = 2’; S Some1 = 5t som.
Solution. We shall prove by induction that
11 1
82m=§—2—m' and 82m+1=1-§—n-{
for m = 1,2,.... The second of these equalities is a direct consequence of the

first, and so we need only prove the first. Immediate computation shows that
3o =0 and s3 = % Hence assume that both formulas hold for m < r. Then

1 1 1 1 1
sorer= o =5(1- ) =5~

This completes the induction. We thus have limsup s, =1 and liminf s, = %
n—00 n-—0o0 '

Exercise 3.5 For any two real sequences {a,}, {b,} prove that

limsup(an, + bn) < limsup a,, + limsup by,

=00 n—co T OO
provided the sum on the right is not of the form oo — co.

Solution. Since the case when limsupa, = +oo and limsupb, = —oo has

n—00 n-—>00
been excluded from consideration, we note that the inequality is obvious if
lim sup a,, = +oo. Hence we shall assume that {a,} is bounded above.
n—eoo
Let {n;} be a subsequence of the positive integers such that klim (Gn, +
-0

bn,) = limsup(a, + bn). Then choose a subsequence of the positive integers
n—0Q0

{km} such that
lim a,,_ =limsupan,,.
m—0Q m Fo— 00
_ The subsequence an, + buy., . still converges to the same limit as an, + b

i.e., to limsup(a, + b,). Hence, since a,, is bounded above (so that limsup an,
- nooo k=00

is finite), it follows that by, converges to the difference

A B, = (O F B ) =
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Thus we have proved that there exist subsequences {an,  } and {b,, } which

converge to limits a and b respectively such that a+ b = lim sup(a,, + b ). Since
nN—0oQ0

a is the limit of a subsequence of {a,} and b is the limit of a subsequence of
{b,}, it follows that a < limsupa, and b < limsup b,, from which the desired

inequality follows.

Exercise 3.6 Investigate the behavior (convergence or divergence) of 3" a,, if
(@) on = VAT T - Vi

) o = YRELZ VR,

)

an = ({/n - l)n;

1

1+2n
Solution (a) Multiplying and d1v1d1ng an by vn+1+ y/n, we find that
\/-— oy which is larger than ;—=— \/—-_ The series ) a,, therefore diverges

(b
(¢
(d) an

for complex values of z.

by comparison with the p series (p = 3).

Alternatively, since the sum telescopes, the nth partial sum is vn +1 — 1,
which obviously tends to mﬁmty
(b) Using the same trick as in part (a), we find that a, = m \/W gl which

is less than ‘W Hence the series converges by comparison with the p series
=3

(c) Using the root test, we find that ai %/n—1, which tends to zero as n — oco.
Hence the series converges. (Alternatlvely, since by part (¢) of Theorem 3.20
{/n tends to 1 as n — oo, we have a, < 2~ for all large n, and the series
converges by comparison w1th a geometnc series.)

(d) If |z| < 1, then |a,| > 2, so that a,, does not tend to zero. Hence the series
diverges. If [z[ > 1, the series converges by comparison with a geometric series
with r = l 1 < 1.

Exercise 3.7 Prove that the convergence of Xa, implies the convergence of

Y Vi

if a, > 0. |
Solution. Since (y/a, — 1)2 > 0, it follows that

o lae2)

-2 n?
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Now Xa2 converges by comparison with La, (since La, converges, we have
an < 1 for large n, and hence o}, < a,). Since £ also converges (p series,

p = 2), it follows that £¥2= converges.

n

Exercise 3.8 If Xa, converges, and if {b,} is monotonic and bounded, prove
that Xa,b, converges.

Solution. We shall show that the parﬁal sums of this series form a Cauchy
n

sequence, 1.e., giveh € > () there exists N such that ' Z akbk[ <egifn>

k=m<1
m 2 N. To do this, let S, = 37, ar (So = 0), so that a; = S, — Sk_1
for k = 1,2,.... Let M be an uppper bound for both lbn| and |S,]|, and let

S =) anandb=1limb,. Choose N solarge that the following three inequalities
hold for all m > N and n > N:
€

£ €
© |OpOn — = |bmSm —b = by — b —_—
|6, S, bS]<3 |bm.S S|<3 I |<3

Then if n > m > N, we have, from the formula for summation by parts,

n n—1
D anbn=bnSp = bmSm + Y (b~ bes1) S
k=m-+1 . k=m

Our assumptions yield immediately that |b,.S, — bmSm| < 235, and

n—1 n-1
l Z(bk - bk-&-l)Sk‘ <M Z b — bs1]-
k=m

k=m

Since the sequence {b,} is monotonic, we have

n-1 n-—1
Z |be — bta| = ¢k§n(bk - bk+l)] = |bm, = by| < 5%4—,

k=m

from which the desiréd inequality follows.

Exercise 3.9 Find the radius of convergence of each of the following power
series

@ Ynt, ) Y2

(¢) Z %;-z"', (d) Do,
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. . . . . . Qn
Solution. (a) The radius of convergenceis 1, since an = n3 satisfies lim =
1.

an -

) - . . 0 N n - .
(b) The radius of convergence 1s infinite, since a, = %;, satisfles lim =
' ’ n—0 Apy]

hm +1
e 2 |
(¢) The radius of convergence is 1, since an, = %1; satisfies
1 1\2 1
lim 2 = lim (14 =) =3,
n—oo Apy1p 10 2 n 2

. . o L
(d) The radius of convergence is 3, since an = 2 satisfies

lim :mw(”f:&

n—00 Qp+1 n—oo n+1

Exercise 3.10 .Suppose that the coefﬁcients of the power series Ya,z" are in-
tegers, infinitely many of which are distinct from zero. Prove that the radius of
convergence is at most 1.

Solution. The series diverges if |z| > 1, since its general term does not tend to
zero. (Infinitely many terms are larger than 1 in absolute value.)

Exercise 3.11 Suppose an > 0, 5n> =ay + - + an, and Ta, diverges.
(a) Prove that 3 ;22— diverges.
(b) Prove that
OGN+, Ly AN+k
SN+1 SN+k SN+k
and deduce that ) 22 diverges.

(c) Prove that

and deduce that 3 % converges.

(d) What can be said about
| a a
Z 14+ nap an Z 12a,

an
T does not tend to zero,
>

. diverges. If a, < M for all n, then >

an
+a'n. an

Solution. (a) If a, does not remain bounded, then

and hence the series ) g

a.. and hence again the series is divergent.
1+M ™ & 8
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(b) Replacing each denominator on the left by s N+k, We have

aN+1 aN+k 1 ‘
_ > (U,N+1+GN+2+'“+QN+I€)=
SN+1 SN+k SN+k
1 SN
= (Sn+k —sy)=1— -
SNk SN+k

It follows that the partial sums of the series Y 22 do not form a Cauchy
sequence. For, no matter how large IV is taken, if N is held fixed, the right hand
side can be made larger than -é— by taking k sufficiently large (since SN4k — )

(c) We observe that if n > 2, then

1 l_sn—sn_l__ a, >an
Sn—1  Sn Sn—1Sn  Sn—18n 82
= _1 1 1
Since the series Y sao: 3, converges to =, it follows by comparison that
- n

) n=2

> ‘;T: converges.
(d) The series 5 132~ may be either convergent or divergent. If the sequence
{na,} is bounded above or has a positive lower bound, it definitely diverges.
Thus if na, < M, each term is at least ﬁﬁan, and so the series diverges. If
nan > € > 0 for all n, then each term is at least ﬁ%, and once again the series
is divergent.

In general, however, the series > T f;'an may converge. For example let
an = 7z if n is not a perfect square and a, = :/_1__5 if » is a perfect square. The
sum of =2~ over the nonsquares obviously converges by comparison with the

1+na,
p series, p = 2. As for the sum over the square integers it is ) #;, which
converges by comparison with the p series, p = 2. ‘

Finally, the series 5 T7o%5— is obviously majorized by the p series with p= 2,
hence converges. -

Exercise 3.12 Suppose a,, > 0 and Y an converges. Put

oo
=3 an
m=n
(a) Prove that
a a r
LR S
'rm Tn Tm

if m < n, and deduce that > %f diverges.

(b) Prove that
Qn

n

<2(\rn — \/Tni1)
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and deduce that j——%; converges.

Solution. (a) Replacing all the denominators on the left-hand side by the largest
one (), we find

Oy Q. Ay + + -+ Ay T — Tntl Tr
_—— e — > = >1——,
Tm Tn Tm Tm Tm

since rp > Tnii.
As in the previous problem, this keeps the partial sums of the series } 2=
from forming a Cauchy sequence. No matter how large m is taken, one can

choose n larger so that the difference Z == is at least i 5, since r, — 0 as
Ic—-m

7 — 00.

(b) We have

(,/rn + /Tat1l) = @n + ap = <20, =2(rp — The1)-
‘\/ \/ n
Dividing both sides by /7, + /Tht1 now yields the desired inequality.

Since the series Y (1/Tn — /Tnt1) converges to /71, it follows by comparison
that > 2= converges.

Exercise 3.13 Prove that the Cauchy product of two absolutely convergent
series converges absolutely.

Solution. Since both the hypothesis and conclusion refer to absolute con-
vergence we may assume both series consist of nonnega,mve terms. We let

=3 pe08n In=p_obn,and U, =3 7_ OZZ o @ibk—i. We need to show
that U, remains bounded, given that S, and T,, are bounded. To do this we
make the convention that a_; = T_; = 0, in order to save ourselves from having
to separate off the first and last terms when we sum by parts. We then have

. n k
Up = Z Z arbg—;

k=0 l=0

n k
= > > a(Te-s — Te—i-1)

k=0 [=0
n k

= Y3 (T - Tj1)

k=0 j=0

n k
= 3> (k-5 — ar—-1)T;

k=0 j=0

= > (k-5 —ar—y-1)T;

7=0 k=j
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T
= Y anyT

n

< T Zam
m=0
< ST

Thus Uy, is bounded, and hence approaches a finite limit.

Exercise 3.14 If {s,} is a complex sequence, define its arithmetic mean o, by

PR Sn
o= 2T I 10,
n-+1

(a) If im s,, = s, prove that lim o, = s.
(b) Construct a sequence {s,} which does not converge, although lim o, = 0.
(¢) Can it happen that s, > 0 for all n and that limsup s, = oo, even though
limo, =07
(d) Put a, = s, — 8,7 for n > 1. Show that

1 n
Sp — Oy = m};kak.

Assume that lim(na,) = 0 and that {0, } converges. Prove that {s,} converges.
[This gives a converse of (a), but under the additional assumption that na, — 0.]

(e) Derive the last conclusion from a weaker hypothesis: Assume M < oo,
|na,| < M for all n, and limo, = o. Prove that lim $n = 0 by completing the
following outline:

If m < n, then

m+1 1
Sp — Op = (On — Om) + / m'Z(sn—si).
i=m-+1
For these 1,
(n—9)M < (n—m-1)M
i+1 = m+2
Fix £ > 0 and associate with each n the integer m that satisfies

|sn — si] <

n—¢
m< —— < m-+1.
l+e¢

then (m+1)/(n —m) < 1/e and |s,, — s;] < Me. Hence

limsup |s, — 0| < Me.
T~ 00



37

Since € was arbitrary, lim s, = 0. :
Solution. Let € > 0. Let M = sup{|s,|}, and let Ny be the first inﬁeger such
that |s, — s| < § for all n > Np. Let N = max (No, [Q(NO * 1)8(M+ BD})
Then if n > N, we have ) )

/

on —s| = I(SO’_S)—}—(sl—5)+...+(Sn_s)l

n+1
< '(80—s)+-~+(81vo—8)|+f
- n+1
-+’(SN0+1)"5)+"'+(Sn'—$)'.
n+1

¢ Wotl)(M+(s])

The first sum on the right-hand side here is at mos T

, and since

n+1> 2(N°+1)€(M+Is|), this sum is at most £. The second sum is at most
m—niflﬂl, which is at most 5. Thus |on, — 8] < € if n > N, which was to be
proved.

(b) Let s, = (=1)™. Here 05 is 0 if n is odd and =5 if n is even. Thus 0, — 0,

though s, has no limit.
(c) Let s, = L if n is not a perfect cube and s, = ¢/ if n is a perfect cube.
Then if k* <n < (k+1)® we have

n

1 ' 1 1
< Z_ .
In = n+1 m_*_n—i-l_z‘7
m=1 J=1

1 1 1 k(k+1)
B n+1(;}ﬁ>+n+1' 2

The first sum on the right tends to zero by part (a) applied to the sequence
so = 0 sp, = + for n > 1. As for the last term, since n > k3, it is less than

5 + T which tends to zero as k — co. Since (k +1)% > n, it follows that &
tends to infinity as n tends to infinity, and hence we have on — 0, even though
Sp3 — 0.

(d) If we set ag = sg, we have s, = i ar. Then
k=0
So+S1+ -+ 8,
n+1
= (a0+al+"'+an—l 'l'a'n)—
(n+1ag+mna; + -+ 26,1 +an
n+1 .
a;+2a3+ -+ (n—1ap—1 + na,
n+1

Sp —0Opn = Sp—

I

which was to be proved. If na, — 0, then the expression on the right-hand side
tends to zero by part (a) with s,, replaced by na,. Hence s, — o, — 0.
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(e) If m < n we have

So+ S,  So+:-F Sm
n+1 m+1

1 1 54
= (so+~-+8n)<n+1—m+‘l)+ > —

i=m-+1

m—-n 1

= o3 —_— S;.
m+1 "+m+1 Z

Op — Oy =

If we multiply both sides of this equation by %““—L and then transpose the

—n)

left-hand side to the right and the term o, to the left, we obtain

1 1 -
._O'n:'.:m+ (O’n-—O’m)— Z S;.

n— n—m
m i=m-+1

n-—-m

We then have

Adding s, = 2=3"T | s, to both sides then yields the result.

1 1 (n—-z)M
}5n—si]=|ai+1+---+an[SM(m—-{—“--i—g) S—;ﬁ—

22 — 24l _ 1 is decreasing, the maximal value of the right-

z+1 — z+1
hand side here is reached with 2 = m + 1, so that |s, — s;] < (1::_”";__:2&_1‘{

asserted.
When we choose m to be the largest integer in 225, we clearly have m < n.
n—e

}, 1+4+e?
Since ¢ is fixed, we can assume m > &. The inequality 7. <m+1 can easily
n—e

Since the function

, as

n—m-—1

be converted to likewise becomes

< ¢, and the inequality m <

m~2 14-¢

mtL < 1. The first of these implies that m — co as n — oo, and we have

1
|sn — 0n] < E]O'n — 0|+ Me

for all n. This implies that the limit of any subsequence of |8y, — 0| is at most
Me, and since ¢ is arbitrary, every convergent subsequence of |5 —0n| converges
to zero. This, of course, implies that s, — o, tends to zero, so that if o,, — s,
then s, — s.

Exercise 3.15 Definition 3.21 can be extended to the case in which the an lie
in some fixed R¥. Absolute convergence is defined as convergence of . |a,|.
Show that Theorems 3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55
are true in this more general setting. (Only slight modifications are required in
any of the proofs.)
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Solution. (Theorem 3.22). > a, converges if and only if for every € > 0 there

is an integer N such that
m

S a

k=n

<eg

ifm>n>N. .
It is a trivial remark that, since |a; — b;] < Ja—b| < |ay — b1+ -+ + |ax — by,
the sequence {a,} converges if and only if each sequence of components {an;}
converges, j = 1,..., k. Hence the sequence of vector-valued functions converges
if and only if each sequence of its components is a Cauchy sequence, and by the
same inequalities, this is equivalent to saying that the vector-valued sequence is
a Cauchy sequence. ‘

(Theorem 3.23) If 3 a, converges, then lim,—o a, = 0.

Using the remark made in the previous paragraph, if ) a,, converges, then each
sum of components | a,; converges. Hence for each j we have an; — 0, which,
again by the remark, means a, — O.

(Theorem 3.25 (a)) If |an| < ¢ for n > Ny, where Ny is some fized integer,
and if 3 ¢, converges, then Y a, converges.

Again, the hypothesis implies that |a,;] < ¢, for n > Np, so that > a,; con-
verges for each 7 = 1,2,...,k. Once again, by the remark, this means that
> a, converges.

(Theorem 3.33) Given Y a,, put & = limsup ¥/|a,|. Then

n—0o
(a) if a <1, Y a, converges;
(b) ifa>1, > a, diverges;

(¢) if a =1, the test gives no information.

Part (a) follows from the remarks made above, since ¥/lan;| < /lan]. (If
a < 1, then each component series converges.)

As for part (b), if a > 1, then |a,| > 1 for infinitely many n, and hence the
series diverges. '

(Theorem 3.34) The series Y an,

(a) converges if lim sup [2n 1]

n—00 lan‘

<1,

a o
(b) diverges if L|—ni|}—i > 1 for n > ng, where ng is some fized integer.
an

(a) The inequality implies that for some constant A and some fixed r < 1 we
have |a,| < Ar™, so that > |a,| converges. Therefore by 3.25 the series Y a,
also converges.

(b) As in the numerical case, this inequality implies that a, does not tend to
zero, so that the series must diverge. '

(Theorem 3.42) Suppose
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(a) the partial sums A, of > a, form a bounded sequence;
(0) bo > by 2 by > |
(¢) lim b, =0.

TL~=r OO

We reduce this to Theorem 3.22 by showing that the partial sums of the series
> bra, form a Cauchy sequence. In fact

} i bnanj = ( qi(bn ~bns1)Ap + bgA, — prp_lf
= =

< ~M< $- b, = b1 | + by + bp)

< 2Mb:p

Now, given ¢ > 0 choose N so large that b, < 757 for all p > N. Then if
q 2 p> N, we have
: g
I Z bnan,

n=p

< 2Mb, < e.

This proves that the partial sums form a Cauchy sequence, as required.

(Theorem 3.45) If 3" a,, converges absolutely, then 3 a, converges.

Again this is a consequernce of 3.25, with ¢, = |a,|.

(Theorem 3.47) If S a, = A and > b, =B, then Y(a, + b,) = A + B and
>_ca, = cA for any fized c.

This theorem holds for each component of the vectors involved, hence it holds
for the vectors themselves.

- (Theorem 3.55) If 2. an is a series of vectors which converges absolutely, then
every rearrangement of »_ ay, converges, and they all converge to the same sum.

Let A be the sum of the series in its original arrangement, and let ¢ > 0. Choose
N so large that Yorem laz] < 5ifn >m > N. Then of course ’ D ey @ —A} <

5 if n > N. For any arrangement of the series > an,, Choose N; so large

that {1,2,...,N} C {n1,n9,...,nn,}. Then if m > Ny and N, is such that
{nl,...,nm}g{l,...,Ng} have,

o-af < [San-Safe[Fa-a]

<X lad+g

k=N+1
< €



41

Exercise 3.16 Fix a positive number a. Choose z; > 1/, and define x,, z,
Zs,..., by the recursion formula

Ipy1 =

<

MO

(mn-l-i\.
\ Ty’

(a) Prove that {z,} decreases monotonically and that limz, = +/a.
(b) Put € = z, — /&, and show that

. g2 < g2
1 T e
"9z, 2va

so that, setting 8 = 21/«

n

Ens1 < ﬂ(%)z (n=1,2,3,...,).

(c) This is a good algorithm for computing square roots, since the recursion
formula is simple and the convergence is extremely rapid. For example, if o = 3

and z; = 2, show that £, /8 < 11—0, and that therefore

£5 <4-1071% g5 <4-107%2

Solution. (a) We note that z,-is always positive, and that if z,, > /&, then
22, —a= 3z, - %)2 > 0. Thus z, > /& for all n. Since z, > /o, it

T
follows that f—;— < v/a < z,. Hence z,, — Zpi1 = %(mn - %) > 0, and so {z,}
decreases to a limit A > \/a, which must satisfy A = £, i.e, A = y/a.

(b) We have 55-57; = Za=ZnVate %(zn +2) -Va=2n —v/a=cnp1. The

22, Tn

2
inequality then results from the simple fact that z, > /a. Thus g5 < %L =
2
E'n.

1
, We find En+1 < vl <

B ( %)2 By induction, if we suppose that ¢, < 8 ( %)gn

c 2ﬂv
8(%)" . ,
(d) Taking z; = 2, @ = 3, we certainly have 8 < 4. And, since V3 > %, we

deduce that 12v/3 > 20, so that 2v/3 > 10(2 — \/5), ie, e = 2—+/3 and

B = 23 satisfy &1/8 < &, as asserted. It follows that e, < 4 - 10~2""' In
particular €5 < 4-1071% and g5 < 4 - 10732,

Exercise 3.17 Fix o > 1. Take 21 > /&, and define

a+z, a—z2

=z, + .
1+ 2z, " l4z,

Tnt1 =

(a) Prove that 17 > 23 > 25> - --
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(b) Prove that zo < x4 < 26 < --- .
(c) Prove that limz, = \/a.

(d) Compare the rapidity of convergence of this process with the one described
in Exercise 16.

Solution. Most of the work in this problem is done by the following three
identities, whose proofs are routine computations:

I+ zn)(I+2p1) =2(1+2,) + (@ — 1),

e[ e o
%21-1-1 —a= (o~ 1) 3 (xzx—l —a)=

(14 2,)2(1 + zp-1)

[ a—1 ]2 (22 )
= 1= Q).
(@=1)+2(1+zh_y) n=1

The second of these identities shows that T, and z,4 lie on opposite sides
of \/a. The third shows that z,.; is closer to va than z,_;. Hence, since
z1 > w/a by hypothesis, parts (a) and (b) are proved. As for (c), the third
relation shows that |22, — | < r?|22_, — o, where r = s9—s < 1. It follows
that |22 o, — | < 72|22 — al, and the right-hand side of this expression tends
to zero as £ — oo. Thus klim Zpaokr = v/a whether n is odd or even, and so

v =00

lim z, =+/a.

n—oco
The convergence in this case is geometric, but not quadratically geometric,

as in Exercise 16. The rate of convergence will depend on the size of o. For

1 < a £ 2 we certainly have z, > o — 2 for all n, and so in this case r < %A, ie.,
2 1y,.2 | SRR T no1t+V/a

|Zn+1—0| < glz2_;—c|. This implies that lzn+1—va| < %%;j?\/%lxn_l—\/al.

If n is odd, we have zp,_1 < Zny1, and 80 |Tpyy ~ Va| < glzn-1 —al. If nis

even, we can at least assume z; < 1.5 (since a < 2), and so Zr=itve 1.5, so

. 15 $n+1+\/(_1_
that |zn41 — Vol < 32z, — Val.

Exercise 3.18 Replace the recursion formula of Exercise 16 by

p—1

1

o
- —p1
Tpt1 = Tn + —z; P,

where p is a fixed positive integer, and describe the behavior of the resulting
sequences {z,}.

Solution. (Exercise 16 is the case p = 2, of course.) The main work is done by
the following easily derived formulas, which hold if Ty > .

1
i 1. /p—1 l//7ar
mia et = (e -ad)|(B0) - () +

(57
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= (mn_a%)Q 1 [ﬁ_2+xp 3ou°+ -+« P2]
pf’:n
y 24
_1\2
< (m-ady L
par

Thus we can guarantee quadratic-geometric convergence if we start w1th
T — aF = =g <fB= —1;‘-‘—%5 In that case we obtain the same inequalities as in

i
Exercise 16, and z, — a®.

Exercise 3.19 Associate to each sequence a = {ay,}, in which o, is 0 or 2, the
real number
. w a
TL
r) =Y 32

n=1
Prove that the set of all 2(a) is precisely the Cantor set described in Sec. 2.44.

Solution. We note that the open middle third removed at the first stage of the
construction is precisely the set of points whose ternary expansions must have
a 1 as their first digit. (The numbers £ and % can be written with a 1 in this
- place, since

1 1.0 0
3 T 3FgTitmtv
2 1 2 2
3 - 3Tt
However, these numbers can also be written as
3 3 9 3"
2 2.0 0
3 - 3Tt tmT

Thus the points retained in the Cantor set after the first dissection are precisely
those whose ternary expansions may be written without a 1 in the first digit.
The same argument shows that the points retained in the Cantor set after the
nth dissection are precisely those whose ternary expansions may be written
without using a 1in any of the first n digits. It then follows that the Cantor
set is the set of points in [0, 1] whose ternary expanions can be written without
using any 1’s, i.e., it is precisely the set of numbers z(a) just described.
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Exercise 3.20 Suppose {p,} is a Cauchy sequence in a metric space X, and
some subsequence {p, } converges to a point p € X. Prove that the ful] sequence
{pn} converges to p.

Solution. Let € > 0. Choose N so large that A(Pm,pn) < s if m > Ny and
n > Ni. Then choose N > N; so large that d(pn,,p) < £if k> N. Then if
n > N, we have

d(pnyp) S d(pn,pnN+1) + d<pnN+1 ?p) <e.

For the first term on the right is less than S sincen > Nj and n N+1>N+1>
Ny. The second term is less than < by the choice of V.

Exercise 3.21 Prove the following analogue of Theorem 3.10(0): If {E,} is a
sequence of closed and bounded sets in 3, complete metric space X LB, D By,
and if

nlir{.lo diam E,, = 0,

then N$°E,, consists of exactly one point.

Solution. Choose Tn € E,. (We use the axiom of choice here.) The sequence
{zn} is 2 Cauchy sequence, since the diameter of E, tends to zero as n tends
to infinity and E,, contains En+1. Since the metric space X is complete, the
séquence z, converges to a point z, which must belong to E,, for all n, since E,
is closed and contains ZTm for all m > n. There cannot be a second poin’t\y in
all of the E,, since for any point ¥ # z the diameter of E, is less than d(z,y)
for large n. '

Exercise 3.22 Suppose X is a complete metric space, and {Gr} is a sequence
of dense open subsets of X. Prove Baire’s theorem, namely that NeG, is
not empty. (In fact, it is dense in X .) Hint: Find a shrinking sequence of
neighborhoods E,, such that E,C Gr, and apply Exercise 21.

Solution. Let F, be the complement of G, so that Fy, is closed and contains
no open sets. We shall prove that any nonempty open set U contains g point
not in any F,, hence in all Gn. To this end, we note that U is not contained
in Fy, so that there is a point z; € U\ Fy. Since U \ F} is open, there exists
71 > 0 such that By, defined as the open ball of radius r; about Z1, 1s contained
in U\ Fy. Let E; be the open ball of radius 3 about z1, so that the closure of
E, is contained in B;. Now F, does not contain E4, and so we can find a point
T2 € £y \'F,. Since F; \ F; is an open set, there exists a positive number 7y
such that By, the open ball of radius R3 about 5, is contained in E;\ F3, which
in turn is contained in U \ (F1UFy). We let E, be the open ball of radius 2
about zs, so that E, C Bs. Proceeding in this Wway, we construct a sequence of
open balls Ej;; such that Ej 2 Ej11, and the diameter of E; tends to zero. By

the previous exercise, there is a point z belonging to all the sets Ej, hence to
all the sets U\ (LU U-- - UF,). Thus the point z belongs to U N <ﬂ‘f° Gn>.
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Exercise 3.23 Suppose {p,} and {g,} are Cauchy sequences in a metric space
X. Show that the sequence {d(p,,qn)} converges. Hint: For any m, n,

d(Pn,qn) < d(

it follows that
” |d(Pns gn) — d(Pms Gm)]

is small if m and n are large.

Solution. The inequality in the hint, which is an extension of the triangle
inequality, shows that

d(Pn,qn) — A(Pm,Gm) < d(PnyPm) + A(Gm, @n);

and since the same inequality holds with m and n reversed, it follows that

id(pna Qn) - d(pm, Qm)l < d(Pmpm) + d(QmaQn)'

Now if € > 0, choose N; and Ny so that d(pp,pm) < $ifm > Nj,n > Ny,
and d(gn,gm) < § if m > Ny, n > Ny Then let N = max(N1, Np). It follows
immediately that |d(pn,qn) — d(Pm,qm)| < € if m > N and n > N. Since the
real numbers are a complete metric space, it follows that {d(pn,g.)} converges.

Exercise 3.24 Let X be a metric space.
(a) Call two Cauchy sequences {p,}, {g»} in X equivalent if

lim d(pn,qn) = 0.
T~ OO0

Prove that this is an equivalence relation.

(b) Let X™* be the set of all equivalence classes so obtained. If P € X* and
Q€ X", {pn} € P, {gn} € Q, define

A(P,Q) = lim d(pn,gn);

by Exercise 23, this limit exists. Show that the number A(P, Q) is unchanged
if {p,} and {g,} are replaced by equivalent sequences, and hence that A is a
distance function in X*.

(c) Prove that the resulting metric space X* is complete.

(d) For each p € X, there is a Cauchy sequence all of whose terms are p; let P,
be the element of X* which contains this sequence. Prove that

A(Pyp, Fy) = d(p, q)

for all p,g € X. In other words, the mapping ¢ defined by ¢(p) = P, is an
isometry (i.e., a distance-preserving mapping) of X into X*.
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(e) Prove that o(X) is dense in X ; and that p(X) = X* if X is complete.
By (d), we may identify X and ©(X) and thus regard X as embedded in the
complete metric space X*. We call X* the completion of X :

Solution. (a) We need to show that: 1) {pn} is equivalent to itself; 2) if {p,} is
equivalent to {g,}, then {g,} is equivalent to {pn}; and 3) if {p,} is equivalent
to {gn} and {g,} is equivalent to {rn}, then {p,} is equivalent to {r»}. These
follow from the properties of any metric. Thus 1) follows, since (P, pn) =0
for all n; 2) follows since d(Pn;s Gn) = d(gn, ps); and 3) follows from the triangle
inequality, i.e., d(p,,r,) < d(PrsGn) + d(gn,7y), so that if d(Pn,qn) — 0 and
d(gn,mn) — 0, then d(pryTn) — 0.

(b) Let {p,} be equivalent to {r,.} and {g,} equivalent to {g,,}. Then, since
we know in advance that all the limits exist, we have

lim d(p},,q},) < lim (d(p;,pn)+d(pn,qn)+d(qmq;)) = lim d(p,,qy,).
=0 N—00 T OO

By symmetry, however, we must also have the opposite inequality, so that the
two limits are-actually equal.

Now X* is a metric space; for A(P,Q) > 0, by definition A(P,Q) = 0 means
P = @, and symmetry and the triangle inequality on X* follow from the same
properties on X.

(c) Suppose {Py} is a Cauchy sequence in X*. Choose Cauchy sequences {Pkn}
in X such that {pgn} € Py, k = 1,2,.... For each k, let N be the first positive
integer such that d(pin, pem) < 2-F if m 2 Ny and n > Ni. Let p, = Dk, -
Observe that d(pg, pps) < 2% for any n > Ny, so that lim,_, ., d(pr, Prn) < 2%,
(This limit exists since the sequence all of whose terms equal px is a Cauchy
sequence.) Also, for any k, 1, and n we have

d(pr, p1) < d(pr, Pin) + A(Prn, Pin) + d(Pin, py).

Hence, taking n sufficiently large and assuming k£ < [, we obtain
Upr,pr) S27F+ AP, P) +27% 497l < 3. 97k A(Py, P).

It follows that {py} isa Cauchy sequence. Let P be the element of X* containing
{Pc}. We claim P, — P in X*. For

A(PIHP) = lim d(pknypn)

< lim (d(pen, p) + d(px, pn))
< 27k g limsup A(P;, P,) +3-27%,

Nn=—r00

| - log
Thus if € > 0, choose N; = 2 + [ logg;]’ and N, such that AP, P) < s
ifk>Nyand 1 > N, Let N = max(Ni, Na). We claim that if & > N,
then d(P;,P) < e. Indeed this follows, since we then have 9—k+2 < £ and
limsup,_,  A(P, P,) < £. We have thus finally proved that X* is complete.
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(d) The assertion A(P,, Py) = d(p,q) is the trivial assertion that if p, = p and
gn = q for all n, then

(e) Let P be any element of X*, and let £ > 0. We shall find p € X such that
A(P, P,) < e. To this end, let {p,} € P and let N be such that d(pn,pm) < §
ifn> N and m > N. Let p = pyt1. Then A(P,P,) = limd(p,,p) < §, and
we are done.

If X is already complete, then for each P € X* and {p,} € P there exists
p € X such that p, — p. This p is obviously the same for any sequence
equivalent to {p,}, and it is clear that P = P,. Hence ¢(X) = X* when X is
complete.

It should be remarked that X* is unique, in the sense that if ¥ and Z are
any two complete metric spaces, each containing a dense subset isometric to
X, then Y is isometric to Z. Indeed let ¢ and 9 be isometries of X into V'
and Z respectively, such that ¢(X) is dense in ¥ and ¥(X) is dense in Z.
We construct an isometry of Y onto Z as follows. For each y € Y, there is
a sequence {z,} C X such that ¢(z,) — y. The sequence {z,} is a Cauchy
sequence in X, and hence {%(z,)} is a Cauchy sequence in Z (since 7 preserves
distance). Since Z is complete, there is an element z such that ¥(z,) — z. We
define 8(y) = z. We claim first of all that this definition is unambiguous. For if
y is given and some other sequence {z/,} in X is such that {¢(z;,)} converges
to y, then dz(¥(zs), ¥(z)) = dx(zn,z,) = dy(@(zn), p(x7,) — 0, and hence
¥(z)) — z also. The mapping 6 is an isometry, since if 43 = lim p(z1,) and
Yo = lim ¢(z2, ), then

dz(0(y1),0(y2)) = limdz(P(z1n),¥(22n))
= limdx(Zin,Z2n)
= hde(‘P(‘”ln)v 90(3:271))
= dy(y1,%2)-

(Here we have used the fact that if p, — p and g, — ¢, then d(ps,n) — d(p,9),
* which in turn follows from the inequality

|d(p, @) — d(Pn,qn)| < d(p,pn) + d(g,9n)

proved in Exercise 23 above.)
Finally 8(Y) = Z, since one can easily define an inverse mappingn: 2 — Y
by merely reversing the steps used to define 6. '

Exercise 3.25 Let X be the metric space whose points are the rational num-
bers, with the metric d(z,y) = |t — y|. What is the completion of this space?
(Compare Exercise 24.)
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Answer. By the remarks at the end of Exercise 24, the completion of a metric
space X is any complete metric space containing a dense subset isometric to
the space X. Since the real numbers have this property, the completion of the
rational numbers is the real numbers. A Cauchy sequence of rational numbers
converges to a unique real number, of course, and two sequences are equivalent
if and only if they converge to the same real number. Hence we have also a
more direct reason for claiming that the completion of the rational numbers is
the real numbers. '



