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Chapter 2

Basic Topology

Exercise 2.1 Prove that the empty set is a subset of every set.

Solution. Let @ denote the empty set, and let £ be any set. The statement
@ C FE is equivalent to the statement, “If z € @, then z € E.” Since the
hypothesis of this if-then statement is false, the implication is true, and we are
done.

Exercise 2.2 A complex number z is said to be algebraic if there are integers
ag, . . . ,Qn, not all zero, such that

aoz" +a12"  +---+a,_1z2+a, =0.

Prove that the set of all algebraic numbers is countable. Hint: For every positive
integer N there are only finitely many equations with

n+laol +lai| + - +lan| = N

Solution. Following the hint, we let Ay be the set of numbers satisfying one of
the equations just listed with n+|ag|+|a1|+- - -+|an| = N. The set Ay is finite,
since each equation has only a finite set of solutions and there are only finitely
many equations satisfying this condition. By the corollary to Theorem 2.12 the

set of algebraic numbers, which is the union U Ay, is at most countable. Since

all rational numbers are algebraic, it follows that the set of algebraic numbers
is exactly countable

Exercise 2.3 Prove that there exist real numbers which are not algebraic.

Solution. By the previous exercise, the set of real algebraic numbers is countable.
If every real number were algebraic, the entire set of real numbers would be
countable, contradicting the remark after Theorem 2.14.
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Exercise 2.4 Is the set of irrational real numbers countable? -

Answer. No. If it were, the set of all real numbers, being the union of the
rational and irrational numbers, would be countable.

Exercise 2.5 Construct a bounded set of real numbers with exactly three limit
points.

Solution. Let E be the set of numbers of the form a + L, where a € {1, 2,3}
and n € {2,3,4,5,...,}. It is clear that {1,2,3} C E’, since every deleted
neighborhood of 1, 2, or 3, contains a point in E. Conversely, if z ¢ {1,2,3},
let § = min{|z — 1, |z — 2|, |z - 3|}. Then the set U of y such that |z —y| < §/2
contains at most a finite number of points of E, since the set V = (1,1 + %) U
(2,2+2)U (3,3 + £) is disjoint from U, and V contains all the points of the set
E except possibly the finite set of points a + ;11- for which n < %., If p1,...,pr
are the points of E in U, let 7 be the minimum of g and the |z — p;| for which
z # p;j. Then the set W of points y such that |y — z| < 7 contains no points of
E except possibly z. Hence z ¢ E’. Thus E’ = {1,2,3}. -

Exercise 2.6 Let E’ be the set _of all limit points of a set E. Prove that
E’ is closed. Prove that E and E have the same limit points. (Recall that
E=FEUE') Do E and E’ always have the same limit points?

Solution. To show that E’ is closed, we shall show that (E’)’ C E’. In fact, we
shall show the even stronger statement that (E)’ C E’. To do this let z € (E),
and let 7 > 0. We need to show that z € E’; that is, since r > 0 is arbitrary,
we need to find a point z € F with 0 < d(z,2) < 7. There certainly is a
point y of E such that 0 < d(y,z) < r. If y € E, we can take z = y, and we
are done. If y ¢ E, then y € E'. Let s = min (d(z,y),r — d(z,y)), so that
5 > 0. Since y € E', there exists z € E with 0 < d(z,2z) < s. But it then
follows that d(z,z) > d(z,y) — d(z,2) > 0 and d(z,2) < d(z,y) + d(y,2) <
d(z,y) + r —d(z,y) = r, and we are done in any case.

To show that E and F have the same limit points, we need only show the
- converse of the preceding containment. But this is easy. Suppose z € E’. Since
every deleted neighborhood of z contains a point of E, a fortiori every deleted
neighborhood of z contains a point of E. Hence E’ C (E)'.

Certainly E and E’ may have different sets of limit points. For example if
E={0,1,5,3,...,2,...}, then E' = {0}, while (E') = @.

Exercise 2.7 Let A;, A, A3, ... be subsets of a metric space.
(a) If B, = U™, A;, prove that B, = Ur_ A;, forn=1,2,3,....
(b) If B = U2, A;, prove that B D UR | 4;.
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Show, by an example, that this inclusion can be proper.

Solution. We first show that EUF = EUF, which follows from the stronger
fact that (EUF) = E’UF’. To show this, in turn, we note that if z € E’, then
certainly z € (E U F)’, and similarly if z € F’. Hence E'UF' C (EUF T“’ To
show the converse, suppose z ¢ E’ U F’. Then there is a positive . number 7 such
that there is no element y of E with 0 < d(z,y) < r, and a positive number s
such that there is no element y of F' with 0 < d(z,y) < s. Hence if t = min(r, s),
then ¢t > 0, and there is no element y of E U F with O < d(z,y) < t. Therefore
z¢ (EUFY.
The general result of (a) now follows easily by induction on m, since

B, = U4
| A U UL 4
= A UULA;
= A; UUL,4;
= UL, 4;.

H

Part (b) amounts to the trivial observation that, since B 2 A; for all 2, then
B 2 A; for all 4, and so _

If we let A; = {r;}, where {ry,72,...,7n,...} isan enumeration of the ratio-
nal numbers, then B is the full set of rational numbers. Hence B = R!, while
A; = A, for each i, i.e., UA; is the set of rational numbers.

Exercise 2.8 Is every point of every open set E C R? a limit point of E.
Answer the same question for closed sets in RZ.

Answer. Yes. Every point of an open set F is a limit point of E. To see this,
let E be an open set in R?, let (z1,73) € E, let s be such that (y;,y2) € E if
V(Y1 —11)2 + (y2 — 72)2 < s, and let 7 > 0. Then the point (21, 22) = (21 +
£ min(r, s),z2) belongs to E and satisfies 0 < \/(z1 — 21)? + (22 — 22)% < 7.

There are closed sets for which this statement is not true. For example, any
finite set E is closed, yet £’ = @ for a finite set.

Exercise 2.9 Let E° denote the set of all interior points of a set E.
(a) Prove that E° is always open. '
(b) Prove that E is open if and only if E° = E.
(¢) If G C E and G is open, prove that G C E°.
(d) Prove that the complement of E° is the closure of the complement of E.
(e) Do E and FE always have the same interiors?
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(f) Do E and E° always have the same closures?

Solution. (a) Let 2 € E°. Then there exists 7 > 0 such that ye Fifd(z,y) <r.
We claim that in fact y € E° if d(z,y) < r, so that z € (E°)°. Indeed if
d(z,y) < r, let s =r —d(z,y), so that s > 0. Then if d(z,y) < s, we have
(by the triangle inequality) d(z, z) < r, and so z € E. By definition this means
y € E°. Since y was any point with d(z,y) < r, it follows that all such points
are in E°, and so z € (E°)°. ,

(b) By definition E is open if and only if each of its points is an interior
point, which says precisely that £ = E°.

(c) If G C E and G is open, then G = G° C E°.

(d) Part (c) shows that E° is the largest open set contained in E, ie., the
union of all open sets contained in E. Hence its complement is the intersection
of all closed sets containing the complement of E, and this, by Theorem 2.27
(c), is the closure of the complement of E.

(e) Emphatically not. If E is the rational _numbers in the space R, then
E° = @, while E = R!, so that the interior of E is R!.

(f) Emphatically not. If E is the rational numbers in the space R!, then
E = R!, while E° = &, so that E° = &,

Exercise 2.10 Let X be an infinite set. For p € X and g € X, define

o= {5 G525

Prove that this is a metric. Which subsets of the resulting metric space are
open? Which are closed? Which are compact?

Solution. It is obvious that d(p,q) > 0 if p # q and d(p,p) = 0; likewise it
is obvious that d(p,q) = d(q,p). To show the triangle inequality d(z,z) <
d(z,y) + d(y, 2), note that the maximal value of the left-hand side is 1, and can
be attained only if z # 2. In that case y cannot be equal to both z and z, so
that at least one term on the right-hand side is also 1.

Bach one-point set is open in this metric, since B 1 (z) € {z}. Therefore
every set, being the union of all its one-point subsets, is open. Hence every
set, being the complement of its complement, is also closed. Only finite sets
are compact, since any infinite subset has an open covering (by the union of its
one-point subsets) that cannot be reduced to a finite subcovering.

Exercise 2.11 For z € R! and y € R!, define

di(z,y) = (z-y)?

d?(x7y) = v ’x—yla
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d3(may> = ICL‘2 - yZI,

dy(z,y) = |z =2y,
=y

dS(way) - 1+l9~"—’yl’

Determine, for each of these, whether it is a metric or not.

Solution. The function d;(z,y) fails the triangle inequality condition, since
d1(0,1) +d1(1,2) =1+ 1=2 <4 =4d;(0,2).

The function da(z,y) meets the triangle inequality condition, since

Vi =2 < Vie =yl + VIy -2,

as one can easily see by squaring both sides. Hence ds is a metric.

The function d3(z,y) fails the positivity condition, since da(1,~1) = 0. (Re-
stricted to [0,00), d3 would be a metric.)

Since d4(1, 3) = 0, the function da(z,y) likewise fails the positivity condition.
It also fails the symmetry condition, since dy(z,y) # da(y, ) in general.

The function ds(z,y) is a metric. In fact we can prove more generally that
if d(z,y) is a metric, so is p(z,y) = 1_‘:_5;22’2) It is obvious that p meets the
nonnegativity and symmetry requirements, and we need only verify the triangle
inequality, which in this case says that

d(z,z) _ _dzy) d(y, 2)
1+d(z,2) = 1+d(z,y) 1+d(y,z)

To do this, let a = d(z, 2), b = d(z,y), and ¢ = d(y,z). We need to show that

if a < b+ ¢, then
a b c

< + .
14a - 1+b 1+c
Clearing out the denominators, we find this inequality to be equivalent to

a -+ ab + ac + abc < b+ ¢ + ab + ac + 2bc + 2abc,

which is clearly true.

Exercise 2.12 Let K C R! consist of 0 and the numbers 1/n, for n = 1, 2,
3,... . Prove that E is compact d1rect1y from the definition without using the
Heme—Borel theorem.

Solution. Suppose K C Uy, where U, is open. Then 0 must be in some set Us,.
Since U,, is open,-there exists § > 0 such that (- 6 8) C Uy In particular
1/n € Uy, if n > 1 . Let N be the largest integer in 5, and let o, j=1,..., N,

be such that € Uy, Then K C U Ug; -
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Exercise 2.13 Construct a compact set of real numbers whose limit points
form a countable set.

Solution. Let K ={0}U{+:n=1,2,..3U{2+L:n=mm+1,...;m=
1,2,...}. It is clear that 0 and the points ;11— are limit points of K. We need
only show that these are all the limit points. Since z > 0 for all z € K and
for any positive number ¢ there is only a finite set of numbers in K larger than
1 -+ ¢, it is clear that no negative number and no number larger than 1 can be
a limit point of K. Hence we need only consider positive numbers z satisfying
0 <z < 1. If zis such a number and z is not one of the points L. let p be

such that == < z < =, and let € = $ min(z — #,% — z). The intersection

p+1
of the set K with the interval (z — ¢,z + ¢) is contained in the set of points
{Gh+i:p+1<k<iIU{EZ+l:m<n< -shim=pt2,. 42,
which is a finite set. Therefore z cannot be a ﬁmit point of K.

Exercise 2.14 Give an example of an open cover of the segment (0,1) which
has no finite subcover.

Solution. Let A, = (£,221), n =3,4,.... If0 <z < 1, then z € A, if

n
n > 1/min(z,1—z), so that oLjs Ay covers (0,1). However, the union any finite
n=

1 k=1

collection {A1,...,Ax} is an interval (%, %), which fails to contain the point

L
2k

Exercise 2.15 Show that Theorem 2.36 and its Corollary become false (in R,
for example) if the word “compact” is replaced by “closed” or “bounded.”

Solution. Theorem 2.36 asserts that if a family of closed subsets has the finite
intersection property (any finite collection of the sets has a non-empty inter-
section), then the entire family has a non-empty intersection. To see why this
fails for sets that are merely bounded or merely closed, let 4, = (0, 1) and
B, = [n,00). The sets A, are bounded, and the sets B, are closed. Any finite
intersection of the A s is nonempty, and any finite intersection of the B’ s is

o0 oo
nonempty, yet 721 A, =0 = ngl B,.

The corollary asserts that a nested sequence of nonempty compact sets has
a nonempty intersection, and the examples just given show that compactness
cannot be replaced by either closedness or boundedness.

Exercise 2.16 Regard Q, the set of all rational numbers, as a metric space,
with d(p,q) = |p— g|. Let E be the set of all p € Q such that 2 < p? < 3. Show
that F is closed and bounded in @, but that E is not compact. Is F open in Q7
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Solution. Suppose z € @ \ E. We claim that z is an interior point of the
complement of E (which by definition means F is closed)‘. In fact if 22 < 2,
then 22 < 2, since there is no rational number whose square is 2. If z = 0, let

6 = 1; otherwise let § = min(\/_é;ST—z, Z?me_r) Then if y € (x — 6,z + §), we have
y? < 2. This is obvious if z = 0 and § = 1. In the other case let y = z+h, where
Al < 6. Then y? = 22 +2zh+h% < 22 4+ 2|6+ 6% < 22 + 2(2—2%) + 2522 = 2.
Hence z is an interior point of the complement of E.

Similarly suppose z2 > 3. Since there is no rational number whose square is
3, we must have 22 > 3. Since z # 0, we let § = %Izlé Thenify € (z—6,z+6),
we have y? > 3. For since y = z + h, with |h| < §, and so 42 = 22 + 2zh + A2 >
z? — 2|2]6 = 3. Thus again r is an interior point of the complement of E.

Hence in all cases Q \ E is open, so that E is closed.

That E is bounded is obvious, since E C [-2,2].

To show that E is not compact, let U, = {p: 2 < p2 < 3— Ln=23,....
The argument that will be used below to show that E is open shows that U, is
open. The sets U, cover E, but no finite collection of them covers E. Thus E
is not compact.

The set E is also open, since if 2 < 22 < 3, we can let § be the minimum of
3—‘3—,?—2-, éé_l:cif’ and_%zl—;—lg. Then if y € (z — 6,2 4 6), we must have 2 < 32 < 3,
by the same set of inequalities that was used above.

Exercise 2.17 Let E be the set of all z € [0, 1] whose decimal expansion con-
tains only the digits 4 and 7. Is E countable? Is E dense in [0,1]? Is E compact?
Is E perfect?

Solution. The set E is not countable, since for any hypothetical list of its
elements a1, as,...,a,,... we can always produce an element a of E not in the
list by taking the nth digit of a to be 4 if the nth digit of a,, is 7 and equal to
7 if the nth digit of a,, is 4.

The set E is not dense in [0, 1], since E ¢ [0.4, 0.8]

The set E is closed and bounded, and therefore compact. To show that F
is closed, let z € [0,1] \ E, i.e., the decimal expansion of z contains a digit
different from 4 and 7. Let the first such digit occur in the nth place (z,). Let
y be any element of F, and let the first digit in which z and y differ be the mth

o0
digit (m < n, Zm # Ym). Then |z —y| > 107™ —¢, ¢ < > 107F|z, — Yil.
: . k=m+1
Since yi € {4,7} and 7 € {0,1,2,3,4,5,6, 7,8,9}, it follows that |7y — | < 7.
Hence ¢ < £10™™, and it follows that lz —y| > 511—%; > 535+ Thus z is an
interior point of [0,1] \ E, and so E is closed.

The set E is perfect. For each z € F and each ¢ > 0 we can find a point
y € E with 0 < |z —y| < € by changing the nth digit of z from 4 to 7 or from 7
to 4 in the nth place for any n > 1 — log,pe. Hence z € E/, i.e., E C E’. Since
we already know E is closed, it follows that E = E'.
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Exercise 2.18 Is there a non-empty perfect set in R* which contains no ratio-
nal number?

Answer. Yes. Let {ri,r2,...,7n,. ..} be the rational numbers in the interva]
[—m,7]. Let Ep = [—m,n]. Now assume that Ej has been chosen for k < n,
in such a way that E} is a pairwise disjoint union of at most 25+1 — 1 ¢losed
intervals with irrational endpoints, each of positive length at most ( 2)er and
that E) does not contain r; if 7 < k. (All of these conditions hold tr1v1ally for
k = 0.) Define a set Fy.1, which is obtained from E; by removing first the
middle third of each of the intervals that constitute Er. The result is a set of
at most 22 — 2 pairwise dlSJOlnt intervals having irrational endpoints, each
interval being of length at most (2)¥+17. If rpq ¢ Fryy, let Epyq = Fiiq.
If rg+1 € Fiyi, then riog is not the endpoint of the interval I = la,b] of
Fy11 that it belongs to. Hence let § be an irrational positive number less than
the minimum of r¢41 —a and b — 441, and let Exy; be obtained from Frq
by removing the interval (rg4+1 — §,7k+1 + 6) (which has irrational endpoints).
Then Fjy41 consists of at most 25+2 — 1 pairwise disjoint closed intervals, each
of positive length at most ( 2)k+1r and each having irrational endpoints.

The sets Fj form a nested sequence of nonempty compact sets. Hence the
intersection F = kﬂ is a nonempty compact set. By construction it contains no

rational numbers. To show that it is perfect, we merely observe that if z € E,
then for each k there is a unique interval I = [ag,br], among the finite set of
closed intervals constituting the set Ex such that z € Iy. Let yi = ay, if ay # T,
otherwise let yx = bg. In either case y, € F (since in our construction no
endpoint of any E} is ever removed) and |y, — x| < 2-37%7. Therefore z € E'.

Exercise 2.19 (a) if A and B are disjoint closed sets in some metric space X,
prove that they are separated.

(b) Prove the same for disjoint open sets.

(c) Fixp € X, 6 > 0, define A to be the set of all ¢ € X for which d(p, q) < 6,
define B similarly with > in place of <. Prove that A and B are separated.

(d) Prove that every connected space with at least two points is uncountable.
Hint: Use (c).
Solution. (a) We are given that AN B = @. Since A and B are closed, this
means AN B = @ = AN B, which says that A and B are separated.

(b) Since X \ B is a closed set containing 4, it follows from Theorem 2.27
(c) that X \ B D A4, i.e., that AN B = @. Similarly AN B = .

(¢) The sets A and B are dlSjOlnt open sets, hence by part (b) they are
separated. |

(d) Let z € X and y € X, and let d(z,y) = d > 0. Then for every 6§ € (0,d),
there must be a point z such that d(z, 2) = 6. (If not, the sets A and B defined

in part (c) would separate X.) Hence there is a subset of X that can be placed
in one-to-one correspondence with the interval [0,d], and so X is uncountable.
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Exercise 2.20 Are closures and interiors of connected sets always connected?
(Look at subsets of R2.)

Answer. The closure of a connected set is connected. Indeed if E is connected
and E C F C E, then F is connected. For, suppose F' = G U H, where G and
H are separated, nonempty sets. The set E cannot be contained entirely in G.
(If it were, since H is nonempty, H would contain a limit point of E, hence
a limit point of G, contrary to hypothesis.) For the same reason E cannot be
contained entirely in H. Hence G; = ENG and H; = EN H are nonempty
separated sets such that F = G U Hj, and FE is not connected.

The interior of a connected set may fail to be connected, as we see by letting
E be the union of two closed disks in R? that are tangent to each other.

Exercise 2.21 Let A and B be separated subsets of some R*, suppose a € 4,
b € B, and define

p(t) = (1-t)a+tb

for t € R'. Put A9 = p~1(4), Bo = p~1(B). [Thus t € Ap if and only if
p(t) € 4]

(a) Prove that Ap and By are separated subsets of R!.

(b) Prove that there exists to € (0,1) such that p(to) ¢ AU B.

()

¢) Prove that every convex subset of R* is connected.

Solution. (a) The definition shows that Ay and By are disjoint. We need only
show that neither contains a limit point of the other. Let z be a limit point of
Ao, and suppose x € By. This means that for any § > 0 there exists t € Ay
withO0< |z -t <6, p(t)=(1-t)b+tb e A and p(z) =(1-z)a+zb € B.
Now d(p(t),p(z)) = |p(t) — p(z)| = |z — t[|]a — b| < |z —¢[(|a] + |b]) < M§,
where M = |a| + |b|. Since ¢ is arbitrary, this means that B contains a limit
point of A, contrary to hypothesis. This contradiction shows that By contains
no limit points of Ap Likewise Ay contains no limit points of By, and so Ag and
"By are separated.

(b) If p(t) € AUB for allt € [0, 1], then [0,1] C AoUBgy. Hence [0,1] = GUH,
where G = [0,1] N Ap and H = [0,1] N By are both nonempty (0 € G and
1 € H) and separated. This would mean [0,1] is not connected. Therefore
p(to) ¢ AUB for some t; € [0,1], and necessanly to € (0,1), sincep(0) =ac 4
and p(1)b € B.

(c) By definition a convex set C' is one for which the mapping p has the
property p(t) € C for all t € [0,1] provided p(0) =a € C and p(1)=b € C.
Hence by part (b) there cannot be separated nonempty sets A and B such that
C=AUB. '
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Exercise 2.22 A metric space is called separable if it contains a countable
dense subset. Show that R* is separable. Hint: Consider the set of points
which have only rational coordinates. :

Solution. We need to show that every non-empty open subset E of R* contains
a point with all coordinates rational. Now E contains a ball Br(x), and this ball
contains all points y such that (z; — yj)2 < -,1; for j=1,2,..., k. Each interval
(z;— 719-, z;+ %) contains a rational number 7}, and so the point r = (ry,...,7%)
belongs to E. Thus E contains a point with only rational coordinates.

Exercise 2.23 A collection {V,,} of open sets of X is said to be a base for X
if the following is true: For every z € X and every open set G C X such that
z € G, we have z € V,, C G for some a. In other words, every open set in X is
the union of a subcollection of {V,}.

Prove that every separable metric space has a countable base. Hint: Take all

neighborhoods with rational radius and center in some countable dense subset
of X.

Solution. Let {z1,Z2,...,Zn,...} be a countable dense subset of X. For
each positive integer m and each positive rational number r let V,, ., = {y :
d(y,zm) < r}. The collection V,, » is countable.

Let z € X, and let G be any open subset of X with € G. Then there
exists § > 0 such that Bs(z) C G. The open ball Bg (x) contains a point zj

for some k. Let r be a rational number such that d(zx,z) < r < g. Then

z € B.(zr) C Bs(z) C G, and we are done.

Exercgise 2.24 Let X be a metric space in which every infinite subset has a limit
point. Prove that X is separable. Hint: Fix 6 > 0, and pick z, € X. Having
chosen z,...,z; € X, choose z;_, € X if possible, so that d(zj,x;—y) 2 6 for
i=1,...,7. Show that this process must stop after a finite number of steps,
and that X can therefore be covered by finitely many neighborhoods of radius
5. Take 6 =1/n (n=1,2,3,...), and consider the centers of the corresponding

neighborhoods.

Solution. Following the hint, we observe that if the process of constructing ;
did not terminate, the result would be an infinite set of points z;, 7 =1,2,...,
such that d(z;,z;) > 6 for i # j. It would then follow that for any z € X,
the open ball B 5 (z) contains at most one point of the infinite set, hence that

no point could be a limit point of this set, contrary to hypothesis. Hence X is

totally bounded, i.e., for each § > 0 there is a finite set T,,...,Tn.s-such that
Nb— :
X = U Bs(zj).
il &
. . Nn .
Let Tpy,...,Znn, be such that X = U Bi(zn;), n =1,2,.... We claim
RN

that {zn;: 1 <j < Np;n=1,2,...} is a countable dense subset of X. Indeed
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ifz € X and 6 > 0, then x € B1(z,;) for some Zn; for some n > %,_-and hence
d(z,Zn;) < 6. By definition, this means that {z,;} is dense in X.

Exercise 2.25 Prove that every compact metric space K has a countable base,
and that K is therefore separable.” Hint: For every positive integer n, there are
finitely many neighborhoods of radius 1/n whose union covers K.

Solution. It is easier simply to refer to the previous problem. The hint shows
that K can be covered by a finite union of neighborhoods of radius 1/n, and
the previous problem shows that this implies that K is separable.

It is not entirely obvious that a metric space with a countable base is sep-
arable. To prove this, let {V,,}52, be a countable base, and let z,, € V,,. The
points V,, must be dense in X. For if G is any non-empty open set, then G
contains V), for some n, and hence z, € G. (Thus for a metric space, having a
countable base and being separable are equivalent.)

Exercise 2.26 Let X be a metric space in which every infinite subset has a
limit point. Prove that X is compact. Hint: By Exercises 23 and 24, X has a
“countable base. It follows that every open cover of X has a countable subcover
{Gn}tn=1,n=1,2,3,.... Ifno finite subcollection of {G,} covers X, then the
complement Fy, of G1 U---UG,, is nonempty for each n, but NF, is empty. If
FE is a set which contains a point from each F,,, consider a limit point of E, and
obtain a contradiction.

Solution. Following the hint, we consider a set E consisting of one point from
the complement of each finite union, ie., z, ¢ Gy U---UG,. Since there are
infinitely many finite unions and every point is in some set of the covering, the

set £ cannot be finite. (If {z;,,...,z;, } is any finite subset of E, there are sets
Gjys---,Gjy, such that z;, € Gj, for each k. Since E contains a point not in
Gj, U---UGj,, it contains a point different from zi,...,z,. Hence E is not
finite.)

Now by hypothesis E must have a limit point z. The point z must belong
to some set Gn; and since G, is open, there is a number § > 0 such that
Bs(z) € Gn,. But then Bs(2) cannot contain ., if m > n, and so z cannot be
a limit point of {z,,}. We have now reached a contradiction.

Exercise 2.27 Define a point p in a metric space X to be a condensation point
of a set E' C X if every neighborhood of p contains uncountably many points of
Suppose E C R*, E is uncountable, and let P be the set of all condensation
points of E. Prove that P is perfect and that at most countably many points of

E are not in P. In other words, show that P¢N E is at most countable. Hint:
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Let {V,} be a countable base of R, let W be the union‘-of those V,, for which
ENV, is at most countable, and show that P = We.

Solution. Following the hint, we see that E N W is at most countable, being a
countable union of at-most-countable sets. It remains to show that P = we,
and that P is perfect.

If z € W¢, and O is any neighborhood of z, then z V. € O for some
n. Since z ¢ W, V;, N E is uncountable. Hence O contains uncountably many
points of E, and so z is a condensation point of E. Thus z € P,ie., WeCP.

Conversely if z € W, then z € V,, for some Vi such that V,, N E is countable,
Hence z has a neighborhood (any neighborhood contained in V;,) containing at
most a countable set of points of E, and so z ¢ P,ie., W C P¢. Hence P = Wwe.

It is clear that P is closed (since its complement W is open), so that we need
only show that P C P’. Hence suppose z € P, and O is any neighborhood of
z. (By definition of P this means O N E is uncountable.) We need to show that
there is a point y € PN (O \ {z}). If this is not the case, l.e., if every point y
in O\ {z} is in P, then for each such point y there is a set V;, containing y
such that V,, N E is at most countable. That would mean that y € W, i.e., that
O\ {z} is contained in W. It would follow that O N E C{z}UWNE), and
so ONE contains at most a countable set of points, contrary to the hypothesis
that z € P. Hence O contains a point of P different from z, and so P c P.
Thus P is perfect.

Remark: This result has now been proved to be true in any separable metric
space, not just R¥,

Exercise 2.28 Prove that every closed set in a separable metric space is the
union of a (possibly empty) perfect set and a set which is at most countable.
(Corollary: Every countable closed set in R* has isolated points.) Hint: Use
Exercise 27.

Solution. If E is closed, it contains all its limit points, and hence certainly all
its condensation points. Thus E = P U (E'\ P), where P is perfect (the set of
all condensation points of F), and E \ P is at most countable. '

Since a perfect set in a separable metric space has the same cardinality as
the real numbers, the set P must be empty if E is countable. The at-most-
countable set F \ P cannot be perfect, hence must have isolated points if it is
nonempty.

Exercise 2.29 Prove that every open set in R! is the union of an at most
countable collection of disjoint segments. Hint: Use Exercise 2.

Solution. Let O be open. For each pair of points z € O, y € O, we define an
equivalence relation  ~ y by saying z ~ y if and only if [min(z, y), max(z,y)] C
O. This is an equivalence relation, since z ~ (z, 2] cOifz € 0);if £ ~ v,
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then y ~ z (since min(z,y) = min(y,z) and max(z,y) = max(y,z)); and if
z ~yand y ~ z, then z ~ z ([min(z, z), max(z, z)] C [min(z,y), max(z,y)] U
[min(y, ), max(y, 2)] € O). In fact it is easy to prove that :

min(z, z) > min (min(z,y), min(y, z))

'~ and ,
max(z, z) < max ( max(z,y), max(y, z)).

It follows that O can be written as a disjoint union of pairwise disjoint equiva-
lence classes. We claim that each equivalence class is an open interval.

To show this, for each 2 € O; let A={z: [2,2] CO} and B= {z: [z,2] C
O}, and let a = inf A, b = sup B. We claim that (a,b) C O. Indeed if a < 2 < b,
there exists ¢ € A with ¢ < zand d € B with d > z. Then z € [¢,z]U|[z,d] C O.
We now claim that (a,b) is the equivalence class containing z. It is clear that
each element of (a, b) is equivalent to x by the way in which @ and b were chosen.
We need to show that if z ¢ (a,b), then z is not equivalent to z. Suppose that
z < a. If z were equivalent to z, then [z, z] would be contained in O, and so
we would have z € A. Hence a would not be a lower bound for A. Similarly if
z>band z ~ z, then b could not be an upper bound for B.

We have now established that O is a union of pairwise disjoint open intervals.
Such a union must be at most countable, since each open interval contains a
rational number not in any other interval.

Exercise 2.30 Imitate the proof of Theorem 2.43 to obtain the following result:

If RF = USF,, where each F), is a closed subset of R, then at
least one F), has a nonempty interior.

FEquivalent statement: If G, is a dense open subset of R*, for
n=1,2,3,..., then N{°G,, is not empty (in fact, it is dense in R*).

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for the
general case.)

Solution. The equivalence of the two statements is easily established. Sup-
pose the first statement is true, and G, is a dense open subset of R* for
n=1,2,3,.... Let F, = R*\ G,. Then F, is a closed subset of R* having
empty interior (if the interior of F}, were non-empty, G, would not be dense).
Hence by the first statement, the union of the set F;, cannot be all of R*, and
hence the intersection of their complements is not empty.

Conversely, if the second statement holds and F,, are closed subsets of R*
- whose union is all of RE, let Gy, be the complement of F,. Since the intersection
of the G,’s is empty, at least one of them must fail to be dense in R, which
means that its complement contains a non-empty open set.

We now prove the second statement, including the parenthetical remark.
Let G, be a sequence of dense open sets in R*, and let O be any non-empty
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open set in.R*. Since O is an open set and G is dense, it must intersect G,
In a non-empty open set O;. Let z1 € Oy, and choose 71 > ( such that the
closed ball By, (z1) is contained in O;. Then the open ball B, (z1) is non-
empty, and hence must intersect G5 in a non-empty open set Os. Let z, ¢ O,,
and choose ro > 0 such that the closed ball By,(z3) is contained in Os. In
@is way we obtain L a nested sequence Qf nonempty compact sets (closed balls)
Bi2By;D2---2B,D---. Ifz e NB,, then z € O, for each n, and hence
r € ONG, for each n. Thus NG, intersects each non-empty open set O in at
least one point, which says precisely that NGy, is dense in R*. Notice that the
whole proof works exactly the same way if R* is replaced by O, since G, N0 is
dense in O. '

Remark: The stronger form of the second statement that we have proved
shows that the first statement can also be strengthened. If {F,} is a sequence
of closed sets whose union is all of R* and O is any non-empty open set, then
the interior of F,NO is non-empty for at least one n. (Simply apply the original
statement with R* replaced by O and F;, by F, N 0.)



