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LIGHT-ASSISTED COLLISION RATE
CALIBRATION

A quantitative analysis of the collective frequency en-
hancement requires an initial atom number measure-
ment. In the absence of light-assisted collisions, the dis-
tribution of collected fluorescence counts s for N atoms
after time ¢ would be a Gaussian distribution Gy (s, 3)
with a mean 5 = NT't and a standard deviation oy = /3.
Here I is the single-atom photon detection rate, typically
8-9 photons/ms, so that with > 3 ms of detection time
the assumed Gaussian distribution is a good approxima-
tion to the actual Poisson distribution.

Interpretation of fluorescence measurements is compli-
cated by significant two-body loss from light-assisted col-
lisions over ms timescales. Since this loss rate is roughly
proportional to N2, large atom numbers will be signifi-
cantly underestimated, as illustrated in Figure 1(a). To
this end, we measure and account for the two-body losses.

The probability py of finding atom number N is given
by the differential equation

C%V - § (N +2)(N + 1)pnya(t)
~N(N = Dpn ()], (1)
pw(0) = Py (N) @)

where (3 is the two-body loss rate, and Py(N) is the
Poisson distribution at N with mean N.

For large N such that after the exposure time there is a
small probability of being left with the asymptotic values
of 0 (even) or 1 (odd) samples, we use the simplified
continuous model given by:

U — sn(e) (8 (1) -1). Q

Then the mean camera signal, 5, generated by an initial
mean N atoms, during an integration time ¢ is given by:

5(N,t) = gln [1+ (e —1) N], (4)

By fitting the camera signal to Equation (4) we deduce
B and N. An example is shown in Figure 1(a).

MULTIATOM MEASUREMENTS

Once B is known, and assuming Poisson loading statis-
tics, the mean atom number can be measured with a fixed
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FIG. 1. (a) The integrated camera signal is shown along with
the fit (solid green) to Eq. (4). The best fit parameters are
n = 26.5 and § = 0.0170/(atom ms). The camera signal
in the ideal case of no two-body loss is shown as the dashed
yellow line to demonstrate the magnitude of the light-assisted
collision effect. (b) An example camera signal distribution is
shown (blue bars), with a fit to Eq. (5) (solid green) using
B = 0.0158/(atom ms) giving N = 6.68 atoms, as compared
to the expected distribution in the limit of no loss (dashed
red).

camera integration time short enough so that s(N,t) is
still close to linear in time. The resulting camera signal
in bin s is a Poisson weighted sum of Gaussian distri-
butions centered around the mean signals 5(N,t) for N
atoms:

N=ny

= 2 Py

where o¢ is the background signal standard deviation.
For our normal 3 ms integration time oy = 0.188 atoms
and o7 = 0.448 atoms. The only free parameter in the
fit is the Poisson mean N. An example data set and fit
are shown in Figure 1(b).

For longer exposure times, the signal distribution dis-
torts from 2-body losses. This is important for N < 3
where long exposure times are needed to get sufficient

)Gn(s,3(N,t)) (5)
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FIG. 2. (a) A Monte Carlo simulation of readout signals ob-
served for a two-atom cloud, including two-body losses, and
compared to our analytical model of Eq. (7). (b) A nor-
mal single atom readout with 10 ms exposure with minimal
two atom signal. (c) An example of N = 2 Fock State data
with significant number of two atom occurances. The individ-
ual atom signal components are shown for comparison. Note
that the gap between the background and 1 atom peaks is not
preserved due to the ”tail” of the 2 atom distribution from
the two body loss.

signal. It is also important for small N to deduce the
atom number distribution, as that allows us to isolate
single-atom and two-atom Rabi flopping.

When N = 0, 1 there is no two-body loss so both signal
distributions are Gaussian. When N = 2 there are two
possible outcomes:

1. no collision occurs so both atoms scatter for the full
readout time. This has a probability e~2/;

2. a two-body collision occurs and the atoms are
ejected at time ' with a probability e~ dt’.

The signal due to no loss event is Gaussian, whereas for a
loss event during the readout the two atoms scatter pho-
tons until the loss occurs. This gives a signal distribution

t
Gi(s,4) = / dt'e=?P" Gy (s, 2T (6)
0

We have neglected a small correction in G% from the back-
ground counts, which slightly smear the data near s = 0,
as seen in Fig. 2(a). The resulting model for the N < 2
camera distribution S(s,t) is therefore

S(s,t) = poGo(s,0) + p1G1(s,Tt)
+p2 [e7?Go(s,2T't) + (1 — e 2P1)G5(s,t)] -
(7)

To illustrate the effects of light-assisted collisions on the
signals, we show in Fig. 2(a) a Monte Carlo simulation
of a ps = 1 distribution, compared to the model. The
observed signal distribution for the combined case of 0,1
and 2 atoms is shown in Fig. 2(c). An integration time
of t = 10 ms was chosen to minimize the overlap integral
between the single and double atom distributions. For
this integration time, o9 = 0.0883 atoms, o; = 0.236
atoms.



