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The idea behind using as few columns of A as possible to span b is motivated by the parsimonyprinciple of machine learning, known as Occam's Razor [26, 4], which says in essence: \simplest isbest". This principle is highly e�ective for generalization purposes [16, 25, 30] where, for example,one wishes to use the \solution" x of (1) on new data not represented by the rows of [A b] as wouldbe the case if either A or b is corrupted by noise. The use of the 1-norm will enable us to use a�nite algorithm based on the polyhedral concave minimization approach which, as indicated above,has been successfully used on di�cult machine learning problems. In particular we will eventuallycast the problem as that of minimizing a concave function on a polyhedral set and begin with thefollowing unconstrained minimization problem:minx2Rn (1� �)kAx� bk1 + �e0jxj�; � 2 [0; 1) (2)Here e is a column vector of ones, the prime denotes the transpose, j � j denotes the absolute valuefunction applied componentwise to a vector and (�)� is the step function applied componentwisealso. The step function takes the value 0 if its argument is nonpositive, and the value 1 if itsargument is positive. The vector b will be corrupted by a noise vector p in our application. Wenote immediately that when � = 0, problem (2) is the classical least 1-norm approximation problem.When � = 1, problem (2) is trivially solved by x = 0 and is of no interest. We are interested insolutions to problem (2) with � 2 [0; 1) that make e0jxj� � k for some desired k < n and such thatkAx� bk1 is acceptably small. In fact problem (2) can be viewed as a multiobjective optimizationproblem [8] with the the two objectives of parsimony in the number of nonzero components of xand smallness of the error kAx� bk1. By letting � range over the interval [0; 1] the cardinality ofthe nonzero elements of the solution x varies from a maximum of n to 0, while the error kAx� bk1will be nondecreasing monotonically. Depending on the problem, one of those x's will be the mostdesirable. In many of the machine learning applications small values of � such as 0:05 often gaveparsimonious results that improved tenfold cross-validation [6]. We shall call problem (2), with apossibly noise-corrupted b, the parsimonious least norm approximation problem (PLNA).Our approach here for solving (2) will be to convert it to a concave minimization problem ona polyhedral set (problem (12) below). We �rst show that this problem always has a solution(Theorem 2.1 below). We then replace the discontinuous step function in the objective function of(12) below by an exponential smooth function in problem (14) below, just as was done in [18, 6],and relate the two problems. Our novel theorem (Theorem 2.1 below) shows that the continuousproblem yields an exact solution of the discontinuous problem once a repeating optimal vertexis identi�ed for increasing but �nite values of the smoothing parameter �. We then prescribe alinear-programming-based successive linearization algorithm SLA 3.1 for the solution of the smoothproblem and establish its �nite termination in Theorem 3.2.For comparative purposes we shall also employ Vapnik's support vector machine approach [29, 3]of minimizing the size of the solution vector x as well as the error kAx � bk1, thereby decreasingthe VC dimension [29, p 76] (a capacity measure) and improving generalization. We shall do thatby parametrically minimizing the 1-norm of x as well as the 1-norm of the error Ax� b:minx2Rn (1� �)kAx� bk1 + �kxk1 (3)We shall call this problem, with a possibly noise-corrupted b, the least least norm approximation(LLNA) problem and solve it by solving the equivalent linear programming formulation:min(x;y;z)2Rn+m+n f(1� �)e0y + �e0z j � y � Ax� b � y; �z � x � zg (4)2



A word about our notation and background material. All vectors will be column vectors unlesstransposed to a row vector by a prime superscript 0. For a vector x in the n-dimensional real spaceRn, jxj will denote a vector of absolute values of components xi; i = 1; : : : ; n of x. The scalarproduct of two vectors x and y in the n-dimensional real space will be denoted by x0y. For a linearprogram minx2X c0x, the notation arg vertex minx2X c0x will denote the set of vertex solutions of the linearprogram. For x 2 Rn; the norm kxk2 will denote the 2-norm: (x0x) 12 , while kxk1 will denote the1-norm: nXi=1 jxij: For an m � n matrix A; Ai will denote the ith row of A and Aij will denote theelement in row i and column j. The identity matrix in a real space of arbitrary dimension will bedenoted by I; while a column vector of ones of arbitrary dimension will be denoted by e. The baseof the natural logarithm will be denoted by ", and for y 2 Rm, "�y will denote a vector in Rm withcomponent "�yi ; i = 1; : : : ; m. For a function f : Rn ! R that is concave on Rn, the supergradient@f(x) of f at x is a vector in Rn satisfyingf(y)� f(x) � (@f(x))0(y � x) (5)for any y 2 Rn. The setD(f(x)) of supergradients of f at the point x is nonempty, convex, compactand reduces to the ordinary gradient rf(x), when f is di�erentiable at x [22, 23]. For a vectorx 2 Rn, card(x) will denote the cardinality of the nonzero elements of x.2 The Concave Minimization ProblemIn this section we shall consider the minimization problemmins2S f(s) + �h0jsj�; (6)where f is a concave function on Rk which is bounded below on S, � is a nonnegative real number,h is a nonnegative vector in Rk and S is a polyhedral set in Rk not containing straight lines thatgo to in�nity in both directions. Note that if the objective function of (6) is concave (which itis not in general because of the nonconcavity of h0jsj�) then by [23, Corollary 32.3.3] problem (6)has a solution and by [23, Corollary 32.3.4] it has a vertex solution since S contains no straightlines that go to in�nity in both directions. However despite this lack of concavity we shall showprecisely the existence of a vertex solution by a novel approach which approximates the step func-tion on the nonnegative real line from below by an exponential. This smooth approximation willalso serve as a means for generating a �nitely terminating algorithm at a stationary point of (6).Another important feature is that an exact solution of (6) is obtained from a solution of the smoothapproximation for a �nite value of the smoothing parameter.We state now our smooth approximation of (6) as followsmins2S f(s) + �h0(e� "��jsj); (7)where � is a positive number. We have the obvious relationh0jsj� � h0(e� "��jsj); 8s 2 Rk: (8)Hence the smooth problem (7) minimum provides an underestimate to the minimum of problem(6). This fact will be used to establish exact solution of the latter by the former in the followingprincipal theorem of the paper which also provides a method of solution as well.3



Theorem 2.1 Existence of Exact Vertex Solution for Finite Value of Smoothing Pa-rameter Let f : Rk �! R be bounded below on the polyhedral set S that contains no straight linesgoing to in�nity in both directions, let f be concave on Rk, let h � 0 and let � be a �xed positivenumber. Then for a su�ciently large positive but �nite value �0 of �, the smooth problem (7) hasa vertex solution that also solves the original nonsmooth problem (6).Proof Note �rst that the smooth problem (7) is equivalent to the following concave minimizationproblem min(s;z)2T f(s) + �h0(e� "��z); where (s; z) 2 T := f(s; z) jjj s 2 S; �z � s � zg: (9)Since the objective function of this problem is concave in (s; z) on R2k and is bounded below on T,it follows by [23, Corollaries 32.3.3 and 32.3.4] that it has a vertex (s(�); z(�)) of T as a solutionfor each � > 0. Since T has a �nite number of vertices, one vertex, say (�s; �z), will repeatedly solveproblem (9) for some sequence f�0; �1; : : :g " 1. Hence for �i � �0,f(�s) + �h0(e� "��i�z) = f(s(�i)) + �h0(e� "��iz(�i))= min(s;z)2T f(s) + �h0(e� "��iz)= mins2S f(s) + �h0(e� "��ijsj)� infs2Sf(s) + �h0jsj�; (10)where the last inequality follows from (8). Letting i �! 1 it follows thatf(�s) + �h0j�sj� = limi�!1f(�s) + �h0(e� "��i�z) � infs2S f(s) + �h0jsj�: (11)Since �s 2 S, it follows that �s solves (6). Since (�s; �z) is a vertex of T , it follows that �s is a vertex ofS. 222This theorem immediately suggests an algorithmic approach for solving our problem (2) asfollows. We �rst rewrite (2) as the following equivalent problemmin(x;y)2S (1� �)e0y + �e0jxj�; S := f(x; y) jjj x 2 Rn; y 2 Rm; �y � Ax� b � yg; � 2 [0; 1) (12)By making the identi�cationss =  xy!; k = n+m; f(s) = e0y; � = �1� �; h =  e0!; (13)problem (12) and hence problem (2) becomes a special case of problem (6) which we shall solvein its smooth version (7). More speci�cally the smooth version of (2) is the following concaveminimization problem:min(x;y;z)2T (1� �)e0y + �e0(e� "��z); where T := f(x; y; z) jjj � y � Ax� b � y; �z � x � zg: (14)By solving this problem for a su�ciently large positive � it follows by Theorem 2.1 that we havesolved our original problem (2). We turn our attention now to solving (14) by a �nitely terminatingsuccessive linearization algorithm. 4



3 The Concave Minimization AlgorithmThe �nite method that we shall propose is the successive linear approximation (SLA) method ofminimizing a concave function on a polyhedral set which is a �nitely terminating stepless Frank-Wolfe algorithm [9]. In [18] �nite termination of the SLA was established for a di�erentiable concavefunction, and in [20] for a nondi�erentiable concave function using its supergradient. We state nowthe SLA for problem (14) which has a di�erentiable concave objective function.Algorithm 3.1 Successive Linearization Algorithm (SLA) Start with a random x0 2 Rn,y0 = jAx0 � bj; z0 = jx0j. Having (xi; yi; zi) determine(xi+1; yi+1; zi+1) 2 arg min(x;y;z)2T(1� �)e0y + ��("��zi)0z (15)Stop when (xi; yi; zi) 2 T and(1� �)e0yi + ��("��zi)0zi = (1� �)e0yi+1 + ��("��zi)0zi+1 (16)By [18, Theorem 4.2] we have the following �nite termination result for the SLA algorithm.Theorem 3.2 SLA Finite Termination The SLA 3.1 generates a �nite sequence f(xi; yi; zi)gwith strictly decreasing objective function values for problem (14) and terminating at an �i satisfyingthe minimum principle necessary optimality condition(1� �)e0(y � y�i) + ��("��z�i)0(z � z�i) � 0; 8 (x; y; z) 2 T (17)4 Application and Numerical TestingWe wish to determine whether x-component suppression or x-norm reduction of an observed linearsystemAx = b+p which is a corruption of a true systemAx = b, leads to an improved approximationof the true system. One can relate this to a machine learning framework by treating the �rst systemas a training set, and the second system as a testing set [12]. The linear systems used are basedupon ideas related to signal processing [10, 28] and more speci�cally to an example in [1, Equation(8)].We consider the following true signal g(t) : [0; 1]�! R:g(t) = 3Xj=1 xj"�aj t; t 2 [0; 1]; a = [0 4 7]0; x = [0:5 2:0 � 1:5]0: (18)We assume that the true signal g(t) cannot be sampled precisely, but that the following observedsignal can be sampled:~g(t) = (g(t) + error); sampled at times : ti = i4 t; 4t = 0:04; i = 0; 1; : : : ; 25: (19)We further assume that we do not know the true signal g(t) (18), and we attempt to model itas: ĝ(t) = 10Xj=1 xj"�aj t; t 2 [0; 1]; a = [0 4 7 0:1 2 3 3:9 4:1 6:9 7:1]0: (20)5



The problem now is to compute the coe�cients xj ; j = 1; : : : ; 10; of ĝ(t) (20) so that wecan adequately recover g(t), given only the noisy data ~g(ti) (19). Notice that by substituting thefollowing coe�cient vector x� into (20), ĝ(t) = g(t):x� := [0:5 2:0 � 1:5 0 0 0 0 0 0 0]0: (21)Thus the true linear system (testing set) Ax = b is then given by:Aij = "�aj ti ; bi = g(ti); i = 0; : : : ; 25; j = 1; : : :10; (22)and is solved exactly by x� of (21).The observed linear system (training set) Ax = b+ p is then given by:* Aij = "�aj ti ; bi = g(ti);pi = random number with mean = 0 & standard deviation = 1;i = 0; : : : ; 25; j = 1; : : : ; 10: + (23)We will refer to a solution of problem (14), with b of (14) replaced by b + p, computed by theSuccessive Linearization Algorithm (SLA 3.1) as a PLNA solution. Similarly, we shall refer to asolution of problem (4), with b replaced by b + p as an LLNA solution. We note here that for allexperiments, the value of � in the negative exponential of (14) is 5.0. Scalars are considered zeroif they are in the interval [�1e � 8; 1e � 8]. The components of the initial starting point x0 forSLA 3.1 were sampled from a normal distribution with mean = 0 and standard deviation = 1. Thecomponents of the initial point were sampled then �xed for all runs as:x0 = [�0:5077 0:8853 �0:2481 �0:7262 �0:4450 �0:6129 �0:2091 0:5621 �1:0639 0:3516]0:(24)We now focus our attention on four approaches and compare solutions obtained by the PLNAand LLNA methods with solutions obtained by least squares and by a combinatorial search.4.1 Comparison of PLNA, LLNA and Least SquaresWe compute solutions of the observed system Ax = b+ p, where A; b; and p are de�ned in (23),by PLNA, LLNA and by least squares. These solutions are then evaluated by the observed system(training set) residual kAx � b � pk1 and the true system (testing set) residual kAx � bk1 andgraphically comparing the recovered signal ĝ(t) (20) to the true signal g(t) (18).The PLNA solution x(�) of Ax = b+ p, for a given � is computed by solving by SLA 3.1 theconcave minimization problem (14) with b replaced by b+ p as follows:min(x;y;z)2T (1� �)e0y + �e0(e� "��z); T := f(x; y; z) jjj � y � Ax� b� p � y; �z � x � zg: (25)The LLNA solution x(�) of Ax = b+p, for a given � is computed by solving the linear program(4) with b replaced by b+ p as follows:min(x;y;z)2Rn+m+n f(1� �)e0y + �e0z j � y � Ax � b� p � y; �z � x � zg: (26)6



The least squares solution is a minimizer of kAx � b � pk2 and is a solution to the normalequations: A0Ax = A0(b+ p): (27)Although the 26 � 10 matrix A de�ned by (23) has rank 10, the matrix A0A is numericallysingular with smallest eigenvalue less than 10�14. Thus we resort to a singular value decompositionapproach for solving (27).We determine an approximate solution x(ls) to (27) by the following method which utilizes thesingular value decomposition [27]. Ordinary MATLAB [21] commands such as x = An(b+ p) forour perturbed system Ax = b+ p give an x with an error kx � x�k2 = 2:1379e+ 08 compared tokx� x�k2 = 2:6675e+ 03 given by the method described below, where x� is e�ned by (21) and theperturbation vector p components are sampled from a normal distribution with mean = 0, standarddeviation = 1.Algorithm 4.1 Least Squares via Singular Value Decomposition. Let A 2 Rm�n withm � n. Let � be a small positive tolerance.1. Determine the economy singular value decomposition of A [21, svd(A,0)], U 2 Rm�n; S 2Rn�n; V 2 Rn�n : A = USV 0; (28)where U 0U = V 0V = In (the n � n identity matrix), and S = diag(�1; : : : ; �n); �i � �i+1 �0; i = 1; : : : ; n� 1.2. Determine the index r such that �i � � for i = 1; : : : ; r.3. Set ~U 2 Rm�r to be the �rst r columns of U , ~V 2 Rn�r to be the �rst r columns of V and~S 2 Rr�r to be diag(�1; : : : ; �r).4. Compute x(ls) = ~V ~S�1 ~U 0(b+ p), which is a solution to:minx2 ~T 12x0x; ~T := fx j ~V 0x = ~S�1 ~U 0(b+ p) g � fx j A0Ax = A0(b+ p)g: (29)For all runs � was �xed at 0.0001, which for our speci�c matrix A de�ned by (23), led to r = 6in the above algorithm. That is we discarded the last 4 columns of U and V .The PLNA problem (25) and the LLNA problem (26) were both solved for values of � 2f0; 0:01; 0:05; 0:10; 0:20; : : : ; 0:90; 0:95; 0:99; 1:0g. Figures 1 - 3 display results averaged over 5 noisevectors p 2 Rm with elements sampled from a normal distribution with mean = 0, standarddeviation = 1. The average kpk1 = 21:1008 and kbk1 = 20:1777.In Figure 1 we plot averages of kAx(�) � b � pk1 for the various values of �, measuring how\well" the PLNA and LLNA solutions solve the corrupted observed linear system. Also plottedis the average of kAx(ls) � b � pk1, measuring how \well" the least squares solution (Algorithm4.1) solves the observed system Ax = b+ p. As can be proved, the PLNA and LLNA errors are anon{decreasing functions of � and are worse than the corresponding least squares error. Howeveron the true system the results are reversed. See next paragraph.In Figure 2 we plot averages of kAx(�)� bk1 for both PLNA and LLNA for various values of�, measuring how \well" the PLNA solution (25) solves the true linear system. Also plotted is the7
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average of kAx(ls)� bk1, measuring how \well" the least squares solution (Algorithm 4.1) solvesAx = b.In Figure 3 we compare averages of 1-norm distances from the true solution x� (21) to thePLNA and LLNA solutions x(�) and the averages of 1-norm distances from x� to the least squaressolution x(ls). Recall that the true solution x� is such that Ax� = b. Note that for � � 0:01, thePLNA and LLNA distances are smaller than the least squares distance. For � � 1, x(�) � 0 andeven though kx(�)� x�k1 is small, this solution is poor from a signal recovery point of view sincethe zero vector gives the worst discrepancy between the true signal and the recovered signal at 26discrete points (see Figure 2).In Figure 4(a) we plot the true signal, the observed signal and the signal recovered by solving,for one noise vector p, PLNA (25) with � = 0:30 and LLNA (26) for � = 0:80. Figure 4(b) displaysthe true signal, the observed signal and signal recovered for the same problem by least squares(27) solved by Algorithm 4.1. This is probably the most signi�cant result. The signal recovered byboth PLNA and LLNA is considerably closer to the the true signal than that obtained by the leastsquares solution.4.2 Comparison of PLNA and LLNA with Combinatorial SearchIn this section, we reformulate our PLNA problem so that the solution x(�) has a �xed number ofnonzero elements, for k 2 f1; 2; : : : ; ng:(x(�); y(�); z(�))2 arg min(x;y;z)2T(1� �)e0y + �e0"��z (30)T := ((x; y; z) ����� �y � Ax� b� p � y; �z � x � z;# of nonzero elements of x = k )We also formulate the LLNA similarly as follows:(x(�); y(�); z(�))2 arg min(x;y;z)2T(1� �)e0y + �e0z (31)Similarly, for k 2 f1; 2; : : : ; ng, the combinatorial search solution xc is obtained by solving:xc 2 arg minx2RnfkAx� b� pk1 j # of nonzero elements of x = kg: (32)Notice that xc is determined by enumerating all subsets of size k of a set of n elements, or �nk�subsets. This is a rather expensive procedure computationally requiring two orders of magnitudemore time than PLNA and LLNA.Figure 5 displays results averaged over 5 noise vectors p 2 Rm with elements sampled froma normal distribution with mean = 0, standard deviation = 1 (average kpk1 = 21:1008, kbk1 =20:1777). Plotted are averages of kAx(�)� b� pk1 and kAxc � b� pk1 for each k measuring how\well" the PLNA, LLNA and combinatorial solutions solve the observed system. Also plotted areaverages of kAx(�)� bk1 and kAxc � bk1 for each k, measuring how \well" the solutions solve thetrue system.Figure 6 displays the average 1-norm distance between x� of (21) and the solutions obtained byPLNA, LLNA and combinatorial search. The averages are over 5 noise vectors p.Figure 7(a), which for convenience duplicates Figure 4(a), displays the true signal, the observedsignal and the signal recovered by solving PLNA (25) for the value of � = 0:30 and the signal10
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Figure 5: Comparison of PLNA (30) and LLNA (31) with combinatorial search (32). AveragekAx(�) � b � pk1 is 'x' for PLNA and '3' for LLNA. Average kAxc � b � pk1 is 'o'. AveragekAx(�) � bk1 is '2' for PLNA and 4 for LLNA. Average kAxc � bk1 is '+' for combinatorialsolution xc.
13



1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Nonzeros k in Solution x

A
ve

ra
ge

 D
is

ta
nc

e 
to

 T
ru

e 
S

ol
ut

io
n:

 ||
x−

x* || 1

Figure 6: Comparison of PLNA (30) and LLNA (31) with combinatorial search (32). Averagekxc � x�k1 is 'x'. Average kx(�)� x�k1 is '2' for PLNA and 4 for LLNA. The true solution x� issuch that Ax� = b.
14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

2.5

Observed

Actual

PLNA
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� = 0:8 produced an average 1-norm true system residual that was 52.98% less than the leastsquares residual.3. For values of � > 0:1 tested, the average kx(�)�x�k1, determined by both PLNA and LLNA,was 2 orders of magnitude less than the average kx(ls)� x�k. Hence the PLNA and LLNAsolutions were \closer" to recovering the true signal g(t) (18). See Figure 3.4. Figure 4, shows the most signi�cant comparison between PLNA, LLNA and least squares:A much more accurate recovery of the true signal by both PLNA and LLNA than by leastsquares.We note the following with respect to the comparison between the PLNA, LLNA solutions andthe solutions obtained by combinatorial search.1. For k = 3; 4; 5; 6; 7, the average PLNA kAx(�)�bk1 was strictly less than the average kAxc�bk1. For k = 1; 2, the average PLNA kAx(�) � bk1 was less than or equal to 1.634 timesthe average kAxc � bk1. For k = 3; 5; 6; 7, the average LLNA kAx(�) � bk1 was strictlyless than the corresponding average true system residual with the combinatorial solutions.For k = 1; 2; 4, the average LLNA kAx(�) � bk1 was less than or equal to 1.114 times thecorresponding average kAxc � bk. See Figure 5.2. For k � 3, the average kx(�)� x�k1, for both PLNA and LLNA, was strictly less than theaverage kxc � x�k1 by orders of magnitude. For k = 0; 1; 2, average kx(�) � x�k1 was lessthan or equal to average kxc � x�k1. See Figure 6.3. The minimum over k = 1; : : : ; 7 of the true system 1-norm residual of 5.3867 occurs for k = 2with the solution obtained by combinatorial search. The true system residual for PLNAwith k = 2 is 5.7330 and the true system residual for LLNA is 6:0022. We note that whencomputing the PLNA and LLNA solutions for k = 2, the �rst value of � found (by a bisectionsearch) such that the solution has 2 nonzero elements was chosen. This fact accounts for thediscrepancy between the true system residuals in Figure 5 and Figure 2.4. Figure 7 shows recovery of the true signal by both PLNA and LLNA which is as good or evenbetter than the recovered signal by a lengthy combinatorial search.The time needed by each approach to compute a solution was determined by performing asingle run on a Sun SparcStation 20 with 96 megabytes of memory running MATLAB 5.1, usingthe commands \tic" and \toc" [21]. All linear programs were solved with CPLEX [7] interfacedwith MATLAB. Solving the PLNA problem with � = 0:5 with initial point (24) and � = 5 took0.4603 seconds. Solving the LLNA problem with � = 0:5 took 0.1978 seconds. Determining theleast squares solution by Algorithm 4.1 with � = 0:0001 took 0.0224 seconds. Determining thesolution by combinatorial search with k = 3 took 13.2008 seconds.Solutions computed by PLNA and LLNA were at most superior or at least comparable to thoseobtained by combinatorial search (32), yet needing two orders of magnitude less time to compute.5 ConclusionA theoretically justi�able fast �nite algorithm has been proposed for solving linear systems cor-rupted by noise or errors in measurement. The parsimonious approach (PLNA) attempts to set16
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