

Computer
Sciences
Department

Solving Large Steiner Triple Covering Problems

Jim Ostrowski
Jeff Linderoth
Fabrizio Rossi
Stefano Smriglio

Technical Report #1663

September 2009

Solving Large Steiner Triple Covering Problems

James Ostrowski

Department of Management Sciences,
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1, Canada

jostrow@engmail.uwaterloo.ca

Jeff Linderoth

Department of Industrial and Systems Engineering,
University of Wisconsin-Madison

3226 Mechanical Engineering Building, 1513 University Avenue, Madison, WI 53706, USA

linderoth@wisc.edu

Fabrizio Rossi, Stefano Smriglio

Dipartimento di Informatica,
Università di L’Aquila

Via Vetoio I-67010 Coppito (AQ), Italy

rossi@di.univaq.it · smriglio@di.univaq.it

September 22, 2009

Abstract

Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to
small set covering instances that provide a computational challenge for integer programming
techniques. One major source of difficulty for instances of this family is their highly sym-
metric structure, which impairs the performance of most branch-and-bound algorithms. The
largest instance in the family that has been solved corresponds to a Steiner Tripe System of
order 81. We present optimal solutions to the set covering problems associated with systems
of orders 135 and 243. The solutions are obtained by a tailored implementation of con-
straint orbital branching, a method for branching on general disjunctions designed to exploit
symmetry in integer programs.

1

1 Introduction

A Steiner Triple System of order v consists of a set S with v elements and a collection B of
triples of S with the property that every pair of elements in S appears together in a unique
triple of B. Kirkman [7] showed that a Steiner Triple System of order v exists if and only if
v ≡ 1 or 3 mod 6. A covering of a Steiner Triple System is a subset C of the elements of S
such that C ∩ T 6= ∅ for each triple T ∈ B. The incidence width of the system is the size of its
smallest covering. The problem of computing the incidence width of a Steiner Triple System is
known as Steiner Triple Covering Problem. Fulkerson, Nemhauser, and Trotter [4] suggested
the following integer program for the Steiner Triple Covering Problem

zv
def= min

x∈{0,1}v
{eTv x | Avx ≥ 1}, (STS(v))

where Av ∈ {0, 1}|B|×v is the incidence matrix of the Steiner Triple System and ev is a vector
of ones of size v. The authors created instances based on STS of orders v ∈ {9, 15, 27, 45},
and posed these instances as a challenge to the integer programming community. The instance
STS(45) was not solved until five years later by Ratliff, as reported by Avis [1].

Feo and Resende [3] introduced instances STS(81) and STS(243). The instance STS(81)
was first solved to optimality by Mannino and Sassano [9] 14 years ago, and it remains the
largest solved instance in this family. STS(81) is also easily solved by the isomorphism pruning
method of Margot [10] and the orbital branching method of Ostrowski et al. [14], but neither of
these methods seem capable of solving larger STS(v) instances. Karmarkar, Ramakrishnan, and
Resende [6] introduced the instance STS(135). Odijk and van Maaren [12] have reported the
best known solutions to both STS(135) and STS(243), having values 103 and 198 respectively.
In this paper we prove that these values are indeed the optimal ones. We accomplish this task
by a tailored application of constraint orbital branching, a branching method illustrated in [15]
designed for highly-symmetric integer programs.

The subsequent paper is divided into six sections. In Section 2, we describe the form of the
STS instances. The instances are highly symmetric, a concept we formalize in Section 3. In
Section 4, we describe a tailored implementation of the constraint orbital branching method to
these instances. To prune the nodes of the branching trees, we rely on an enumerative technique
in combination with branch and bound, a method described in Section 5. Finally, in Section 6
the computational achievements are presented, and conclusions are offered in Section 7.

2 Steiner Triple Instances

The instance STS(27) was created from STS(9), and STS(45) was created from STS(15) using a
“tripling” procedure described by Hall [5]. We present the construction here, since the symmetry
induced by the construction is exploited by our method in order to solve larger instances in this

2

family. For ease of notation, let the elements in STS(v) be {1, 2, . . . v}, with triples Bv. In the
Hall construction, the elements of STS(3v) are the pairs {(i, j) | i ∈ {1, 2, . . . , v}, j ∈ {1, 2, 3}},
and the blocks B3v are created in the following manner:

1. {(a, k), (b, k), (c, k)} ∈ B3v ∀{a, b, c} ∈ Bv, ∀k ∈ {1, 2, 3},
2. {((i, 1), (i, 2), (i, 3)} ∈ B3v ∀i ∈ {1, . . . , v},
3. {(a, i), (b, j), (c, k)} ∈ B3v ∀ i, j, k ∈ {1, 2, 3}, i 6= j 6= k.

By construction, small instances from the family are embedded into larger instances, as evidenced
by the block diagonal structure of the integer program:

min
xi∈{0,1}v ,i={1,2,3}

eTv x
1 + eTv x

2 + eTv x
3

Av

Av

Av

I I I

D1 D2 D3

 x1

x2

x3

 ≥ e (STS(3v))

where Av is the incidence matrix of STS(v) and the matrices Di (of size 6 · |Bv|×v) have exactly
one “1” in every row. The embedded nature of the instances can be used to generate valid
inequalities and strengthen the formulation STS(3v). For example, since the first v columns of a
solution to STS(3v) must also be a cover for STS(v), the inequality λvx ≥ zv, with λv

def= [ev, 02v]
is valid for STS(3v). Similarly, since the Hall construction process is recursive, the inequality
σvx ≥ zv, where σv

def= [ev, 08v] is valid for STS(9v).

3 Symmetry in Integer Programs

To describe symmetry in integer programs requires some definitions from algebra. The set Πn

is the set of all permutations of In = {1, . . . , n}. This set (along with the binary operation
of composition) forms the complete symmetric group of In. Any subgroup of the complete
symmetric group is a permutation group. For a permutation group Γ acting on set of points Z
and a point z ∈ Z, the orbit of z under the action of the group Γ is the set of all elements of Z
to which z can be sent by permutations in Γ, or orb(Γ, z) def= {π(z) | π ∈ Γ}. The stabilizer of a
set S with respect to a Γ is the set of permutations in Γ that send S to itself: stab(S,Γ) = {π ∈
Γ | π(S) = S}. The stabilizer stab(S,Γ) is a subgroup of Γ.

The Steiner Triple Covering Problems are strongly characterized by their symmetric struc-
ture. If we let F be the incidence vectors of coverings (or feasible solutions), the symmetry group
G of STS(v) is the set of permutations of the variables that maps each feasible solution onto
a feasible solution of the same value. Since in the original formulation of STS(v) all objective
coefficients are equal, the symmetry group is

G def= {π ∈ Πn | π(x) ∈ F ∀x ∈ F}.

3

Solutions x and π(x), for any π ∈ G, are called isomorphic.
Computing the symmetry group G of an integer program is NP-hard and typically more

difficult than solving the instance itself. As a result, practical methods aimed at exploiting
symmetries are forced to use a subgroup of the symmetry group that is found by examining the
problem formulation. Let (A, b) be a formulation of STS(v), i.e. F = {x ∈ {0, 1}v, Ax ≥ b}.
Given a permutation π ∈ Iv and a permutation σ ∈ Im, let A(π, σ) = PσAPπ be the matrix
obtained by permuting the columns of A by π and the rows of A by σ, for permutation matrices
Pσ and Pπ. Applying the permutation to the right hand side vector gives σ(b) = Pσb. The
formulation group G(A, b) of STS(v) is the set of permutations

G(A, b) def= {π ∈ Πn |∃ σ ∈ Im such that A(π, σ) = A and σ(b) = b}.

Computing the formulation group G(A, b) can be accomplished by using software (such as nauty
[11] or saucy [2]) designed computing the isomorphism group of a related graph. More details of
the construction are available in the papers [13, 8]. The formulation group G(A, b) is a subgroup
of G. In fact, there may be many formulations (A′, b′) of the problem, and the symmetries
present in any formulation group may be used by symmetry-exploiting methods. Since adding
valid inequalities may reduce the size of the formulation group, in our computations we exclude
valid inequalities like λvx ≥ zv in the formulation group evaluation, while we include such
inequalities in evaluating bounds on the optimal solution value.

Given a valid inequality aTx ≤ b for an integer program with a symmetry group G, all
symmetrically equivalent forms dTx ≤ b, with d ∈ orb(G, a), are also valid inequalities for the
integer program. The inequality λvx ≥ zv is valid for STS(3v), and by construction, the vectors
µ1 = [0v, ev, 0v] and µ2 = [02v, ev] are elements of orb(G(A3v, λ)). Thus, the symmetrically
equivalent inequalities µ1x ≥ zv and µ2x ≥ zv may be added to strengthen the formulation.
Similarly, many valid inequalities may be constructed from permutations of σt = [et, 08t], for
t = v/3.

4 Constraint Orbital Branching

Constraint orbital branching, introduced by Ostrowski et al. [15], is a branching method designed
to exploit symmetry in integer programs. Given a constraint aTx ≤ b with (a, b) ∈ Zn+1, the
method is based on the fact that either an equivalent form of aTx ≤ b holds for one of the
members of orb(G, a), or the inequality aTx ≥ b + 1 holds for all of them. This result is
summarized in Theorem 1.

Theorem 1 If x is a feasible solution to an integer program with symmetry group G, and aTx ≤
b, then there exists a feasible solution y ∈ orb(x,G) that satisfies dT y ≤ b, for d ∈ orb(a,G),

Proof Let π ∈ G be any permutation mapping a to d, with associated permutation matrix Pπ.

4

Then
aTx = aTP Tπ Pπx = (Pπa)T (Pπx) = dTPπx ≤ b.

Letting y = Pπx = π(x) completes the proof. ♦

The application of Theorem 1 leads to the following constraint orbital branching disjunction:

(
aTx ≤ b

)
∨

 ∧
d∈orb(G,a)

dTx ≥ b+ 1

 . (1)

To solve STS(3v), we apply the disjunction (1) on constraints obtained from the optimal solution
to smaller embedded STS instances. Specifically, we branch on the constraints λvx ≤ k, where
k ∈ {zv, zv + 1, . . .} or on the constraints σv/3x ≤ q, where q ∈ {zv/3, zv/3 + 1, . . .}.

Figure 1 shows the branching tree obtained by applying this methodology to solve STS(135).
The constraints added on the right branch of the tree (like µTx ≥ 31 ∀µ ∈ orb(G, λ)) greatly
improve the lower bound obtained by solving the linear programming relaxation. In fact, the
nodes D, F , and G in Figure 1 are pruned by bound, as the value of the linear programming
relaxation at these nodes exceeds 102, and a solution of value 103 is known.

Figure 1: Branching Tree for Solution of STS(135)

A

λT x ≤ 30

B

λT x ≤ 31

C

λT x ≤ 32

D

σT x ≤ 9

E

λT x ≤ 33

F

σT x ≤ 11

G

µT x ≥ 12
∀µ orb(G,λ)

µT x ≥ 34
∀µ orb(G,λ)

µT x ≥ 10
∀µ orb(G,σ)

µT x ≥ 33
∀µ orb(G,λ)

µT x ≥ 32
∀µ orb(G,λ)

µT x ≥ 31
∀µ orb(G,λ)

Figure 2 shows the branching tree for solving STS(243). In this case, the nodes C, E, and
H in Figure 2 are pruned by bound.

5 Enumerating Solutions

Based on the bounds obtained after applying the orbital branching disjunction, in order to solve
STS(135), we must only devise a procedure for processing the nodes A, B, C, and E of the
branching tree of Figure 1. Likewise, to solve STS(243), the only the nodes A, B, D, F , and G
of the branching tree of Figure 2 need be processed.

One mechanism for processing the nodes would be to solve them with a black-box or com-
mercial IP solver. Processing all nodes in this fashion did not appear to be computationally

5

Figure 2: Branching Tree for Solution of STS(243)

A

λT x ≤ 61

B

λT x ≤ 62

C

σT x ≤ 18

D

λT x ≤ 63

E

σT x ≤ 19

F

λT x ≤ 64

G

σT x ≤ 21

H

µT x ≤ 22
∀µ orb(G,σ)

µT x ≥ 65
∀µ orb(G,λ)

µT x ≥ 20
∀µ orb(G,σ)

µT x ≥ 64
∀µ orb(G,λ)

µT x ≥ 19
∀µ orb(G,σ)

µT x ≥ 63
∀µ orb(G,λ)

µT x ≥ 62
∀µ orb(G,λ)

feasible. An alternative for processing nodes is based on enumeration. By the construction
of STS(3v), for any feasible x∗ = [x1∗ , x2∗ , x3∗] with λvx

∗ ≤ k, the first v components of the
solution, x1∗ ∈ {0, 1}v, must be a feasible solution to STS(v) with cardinality at most k. Note
that in each branching tree, the first branch enforces the constraint with k = zv, so for x∗

to be feasible, x1∗ must be an optimal solution to STS(v). The branching tree continues by
incrementing k in λvx ≤ k, or in some cases by branching on σv/3x ≤ q.

Based on this construction, one technique for processing a node that is defined by the branch-
ing inequality λvx∗ ≤ k begins by enumerating all solutions {y1, y2, . . . yT } to STS(v) of value k.
Then, then for each solution k = 1, . . . , T , fix the first v variables of STS(3v) to yk and solve the
smaller IP. Clearly, all feasible solutions to STS(3v) exist in the feasible region of at least one
of the integer programs whose first v components are fixed in this manner. A key point about
this enumerative procedure is that it suffices only to enumerate all non-isomorphic solutions to
STS(v) of value k, as summarized in Theorem 2.

Theorem 2 Let G3v be the symmetry group for STS(3v). For any two solutions to STS(v)
x1 and y1, if there is a π ∈ stab(G3v, {1, . . . , v}) with π(x1) = y1, then π maps every feasible
solution to the subproblem formed by xv to a feasible solution to the subproblem formed by yv. In
other words, if the subproblem formed by xv contains an optimal solution, so will the subproblem
formed by yv.

Proof: Let x = [x1, x2, x3] be any solution to the subproblem generated by x1. Permuting x
by π gives π(x) = [π(x1), π(x2), π(x3)] = [y1, π(x2), π(x3)]. So, π(x) is a feasible solution the
subproblem generated by y1. ♦

Theorem 2 remains true for any subgroup of the symmetry group G3v. Note that the stabilizer
of the symmetry group of STS(3v) is used, not the symmetry group of STS(v). However, in this
case, it is easy to verify that the symmetry found in STS(v) is equivalent to stab(G3v, {1, . . . , v}),

6

so our procedure relies on enumerating solutions of STS(v) that are nonisomorphic with respect
to its symmetry group (or a formulation group of STS(v)).

Enumerating all the non-isomorphic solutions to STS(v) of value at most k is computationally
viable for values of k not significantly greater than zv. The enumeration procedure was done
with an extension of the branch-and-bound-based, isomorphism pruning algorithm of Margot
[10]. In this variant, branching and pruning operations are performed until all variables are
fixed. Nodes may not be pruned by integrality, only by bound, infeasibility, or isomorphism.
All unpruned leaf nodes of the resulting tree are feasible solutions to the integer program whose
objective value is k.

6 Solution to STS(135) and STS(243)

In this section, results of the computation proving the optimality of the cardinality 103 covering
of STS(135) and the optimality of the cardinality 198 covering of STS(243) are presented.

6.1 STS(135)

The best solution known to STS(135) has value 103, and was reported by Odijk and van Maaren
[12]. In the STS(135) branching tree shown in Figure 1, the nodes D, F , and G all have a lower
bound obtained by solving the LP relaxation of value at least 103. To process nodes A, B,
C, and E, the enumerative procedure outlined in Section 5 was undertaken. First, the flexible
isomorphism pruning code of Ostrowski, Linderoth, and Margot [13] was run (on a 2.4GHz Intel
Xeon processor) to enumerate all solutions to STS(45) of value at most 33. This required 662
seconds, 86428 nodes of the enumeration tree, and produced 2080 solutions. Next, the code was
run again to enumerate all solutions to STS(45) of value 33 that also obeyed the appropriate
permutations of σ15x ≥ 10. (These constraints enforce that each of the three blocks of 15 in
STS(45) must have at least 10 ones). This required 4894 seconds, 693692 nodes, and produced
16,849 solutions. To solve the 2080 + 16849 = 18929 integer programs necessary to prove the
optimality of the solution of value 103 to STS(135), the orbital branching code of Ostrowski et
al. [16] was used. An upper bound of value 103.1 was used to prune the branch and bound
tree. Note that since the objective function may take only integer values for feasible solutions,
a bound of 102 could have been used, but 103.1 was used to ensure that the methodology and
software was able to reproduce the best known solution. The integer programs were solved on a
pool of heterogenous workstations managed by the Condor resource management system at the
University of Wisconsin. Table 1 contains a summary of the computation, listing for each node
of the branch and bound tree of Figure 1, the number of non-isomorphic solutions generated
(also the number of integer programs that need to be solved to process that node), the total
number of nodes required, and the total CPU time required to solve all of the integer programs.
All told, slightly more than ten million CPU seconds (or roughly 126 CPU days), were required

7

for the computation. However, since the integer programs were solved in parallel, the total wall
clock time was 20 hours and 19 minutes. One solution of value 103 was found, and this solution
was isomorphic to the one reported by Odjik and van Maaren. This computation establishes
that the optimal solution to STS(135) has value 103.

Table 1: Statistics for STS(135) IP Computations

Node # Sol Nodes CPU Time

A 1 10041 13m 37s
B 56 2738242 2d 2h 26m 8s
C 2023 40634479 30d 9h 41m 40s
D zroot = 105
E 16849 114346449 93d 16h 52m 0s
F zroot = 103
G zroot = 108

6.2 STS(243)

Odijk and van Maaren [12] have reported a solution of value 198 to the instance STS(243), and
based on the structure of the solution, they conjecture the solution to be optimal. We are able
to confirm that the optimal solution does have value 198. In the STS(243) branching tree shown
in Figure 2, the nodes C, E, and H are all pruned by bound. To process nodes F and G, the
orbital branching code of Ostrowski et al. was run on the integer programs without enumerating
solutions to STS(81) and fixing variables in STS(243). A bound of 198.1 was used for pruning
the branch and bound tree, and processing both nodes required just over two CPU hours, as
detailed in Table 2.

To process nodes A, B, D, the enumerative procedure described in Section 5 was employed.
All non-isomorphic solutions to STS(81) of value at most 63 were enumerated. This required
1021 seconds and 2420 nodes of the enumeration tree. Only 4 such solutions were found. To
solve the 4 integer programs to process these nodes, the flexible isomorphism pruning code of
Ostrowski, Linderoth, and Margot was used [13], and an upper bound of 198.1 was used for
pruning. A summary of the computation is given in Table 2. All 4 integer programs were
solved on a Intel Core 2 CPU, clocked at 2.4 GHz. The total CPU time required for the entire
comutation, including enumeration was just over 51 hours.

Two solutions of value 198 were found, but they were both isomorphic to the solution reported
by Odijk and van Maaren. Thus, the optimal solution to STS(243) has value 198. It is interesting
that (likely due to the high quality of the solution of value 198), that significantly less CPU effort
was required to solve STS(243) than the smaller instance STS(135).

8

Table 2: Statistics for STS(243) IP Computations

Node # Sol Nodes CPU Time

A 1 33575 17h 47m 31s
B 1 46145 1d 4h 10m 25s
C zroot = 198
D 2 2428 2h 38m 58s
E zroot = 199
F N/A 379 11m 27s
G N/A 59 11m 51s
H zroot = 198

7 Conclusions

We have been able to prove the optimality of solutions for two new Steiner Triple Covering
Problem, with systems of order 135 and 243. In both cases, the solution reported by Odijk and
van Maaren was found to be an optimal solution. The instances were solved by a combination
of symmetry-exploiting branching methodology, the enumeration of solutions to embedded sub-
problems, and parallel computing. We continue to attempt to solve the next larger instances in
family, of sizes 405 and 729, and we suspect these instances will prove a challenge to the integer
programming community for some time.

Acknowledgment

The work of the second author was supported by National Science Foundation (NSF) under
grant DMI-0522796 and by the US Department of Energy under grant DE-FG02-09ER25869

References

[1] D. Avis. A note on some computationally difficult set covering problems. Mathematical
Programming, 8:138–145, 1980.

[2] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting structure in
symmetry generation for CNF. In Proceedings of the 41st Design Automation Conference,
pages 530–534, 2004.

[3] T. A. Feo and G. C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8:67–71, 1989.

9

[4] D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter. Two computationally difficult set
covering problems that arise in computing the 1-width of incidence matrices of Steiner
triples. Mathematical Programming Study, 2:72–81, 1974.

[5] M. Hall. Combinatorial Theory. Blaisdell Company, 1967.

[6] N. Karmarkar, K. Ramakrishnan, and M.Resende. An interior point algorithm to solve
computationally difficult set covering problems. Mathematical Programming, Series B,
52:597–618, 1991.

[7] T. P. Kirkman. On a problem in combinations. Cambridge and Dublin Mathematics Journal,
2:191–204, 1847.

[8] L. Liberti. Reformulations in mathematical programming: Symmetry. Mathematical Pro-
gramming, 2009. To appear.

[9] Carlo Mannino and Antonio Sassano. Solving hard set covering problems. Operations
Research Letters, 18:1–5, 1995.

[10] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–
90, 2002.

[11] B. D. McKay. Nauty User’s Guide (Version 1.5). Australian National University, Canberra,
2002.

[12] Michiel A. Odijk and Hans van Maaren. Improved solutions to the Steiner triple covering
problem. Information Processing Letters, 65(2):67–69, 29 January 1998.

[13] J. Ostrowski, J. Linderoth, and F. Margot. Flexible isomorphism pruning. Working paper.

[14] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. In M. Fischetti
and D. Williamson, editors, IPCO 2007: The Twelfth Conference on Integer Programming
and Combinatorial Optimization, pages 104–118. Springer, 2007.

[15] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint orbital branching. In
IPCO 2008: The Thirteenth Conference on Integer Programming and Combinatorial Op-
timization, volume 5035 of Lecture Notes in Computer Science, pages 225–239. Springer,
2008.

[16] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical
Programming, 2009. To appear.

10

