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Abstract
Transactional memory promises to simplify multithreaded pro-
gramming. Hardware TM (HTM) implementations promise bet-
ter performance by augmenting processors with transactional state.
However, HTMs interact poorly with the operating system or vir-
tual machine monitor. For example, they often do not tolerate OS
actions that virtualize processors and memory, such as context
switching and paging. Without support for these actions, an HTM
may not execute programs correctly or guarantee forward progress.

We investigate virtualizing transactional memory in the context
of LogTM-SE. First, we describe an implementation of a kernel
module in OpenSolaris that implements transactional virtualization
and requires only 1120 lines of code. Second, we find that LogTM-
SE interacts poorly with virtual machine monitors due to a reliance
on physical addresses. We propose an extension to LogTM-SE,
called LogTM-VSE, that addresses these problems and improves
context-switching performance. Third, through application tracing
on real hardware and full system simulation, we show virtualizing
transactions can be necessary for system stability and to support
code that voluntarily context switches. However, we find that abort-
ing a transaction is generally faster than virtualizing it, and hence
preferable in some cases.

1. Introduction
Transactional memory (TM) is emerging as a technique to sim-
plify concurrent programming [10]. Hardware transactional mem-
ory (HTM) depends on processor state to accelerate conflict de-
tection (to support isolation) and version management (to support
aborts and atomicity).

The function of this hardware must be preserved when an OS
takes actions that virtualize system state, such as reclaiming a pro-
cessor or a memory page. Indeed, the recently proposed OpenTM
API for transactional memory requires virtualization [2]. A com-
mon approach is to avoid the problem and abort transactions on
a virtualization event. This mechanism is simple, fast, and effec-
tive in many situations. However, it has three significant drawbacks.
First, the OS must reclaim resources in a bounded time, but several
HTMs execute user-level code during aborts. This code, for restor-
ing data to memory [21] or undoing nested transactions [17, 22],
may block the OS from reclaiming resources and open it to denial-
of-service attacks. Second, composing transactional code with code
that acquires locks or performs blocking systems calls may require
virtualizing transactions if the thread blocks on a lock or in a sys-
tem call. It may not be possible to execute this code if transac-
tions always abort on context switches. Third, aborting transactions
reduces the generality of TM by limiting it to short transactions
that do not exceed hardware or software resource limits. For these
reasons, we investigate mechanisms for virtualizing transactional
memory for those situations where it is necessary to allow transac-

tions to survive context switches and paging.
This paper studies OS and virtual machine monitor (VMM) sup-

port for the Log-based TM—Signature Edition HTM [32]. We se-
lected LogTM-SE as a platform because (1) it gracefully handles
cache evictions in hardware without requiring virtualization, (2) it
stores old versions of memory in a virtual-memory log, which is al-
ready virtualized, (3) it provides a hardware mechanism, summary
signatures, for detecting conflicts with virtualized transactions, and
(4) gives a short sketch of possible OS support for context switches
and paging. This paper actually develops the needed OS support.

Contribution: OS implementation of virtualization. We im-
plemented a kernel module in a commercial OS, OpenSolaris [29],
that virtualizes transactional memory. This module, the Transac-
tion Virtualization Manager (TVM), manages summary signatures
to ensure continued conflict detection after context switches and
page faults. TVM consists of 1120 lines of code that hook the ker-
nel in nine places. We provide details of the algorithms how they
interact with the kernel.

Contribution: Identifying challenges in virtualizing HTMs
within a VMM. Virtual machine monitors also virtualize proces-
sors and memory with context switching and paging. We identify
and fix two issues with virtualizing LogTM-SE in the presence
of VMMs. First, a guest OS may not have access to physical ad-
dresses required for managing summary signatures. Second, when
the VMM takes an action that requires virtualizing a transaction, it
does not have information about what process is running or when a
virtualized transaction completes.

We fix LogTM-SE’s deficiencies with LogTM-Virtual Signa-
ture Edition (LogTM-VSE), which incorporates modest hardware
changes. It adds an additional signature containing virtual ad-
dresses and converts LogTM-SE’s summary signature to virtual ad-
dresses. LogTM-VSE allows the OS to completely manage virtu-
alization most of the time, with the VMM participating only when
needed.

We sketch the design of a software system for virtualizing
LogTM-VSE in both an OS and VMM. The guest OS virtualizes
transactions with TVM under normal conditions and the VMM
virtualize transactions with a separate implementation of TVM
when it reclaims memory or processors.

Contribution: Exploration of virtualization’s utility.
Through tracing of multithreaded applications on real hardware,
we show that virtualizing events, such as context switching and
paging, occur regularly within the critical sections of existing
lock-based programs. We find that aborting is often faster than
virtualization and may suffice for involuntary context switches
(when the kernel preempts a thread). However, it may not be
appropriate in all cases, such as when the cost of aborting is high
or when a transaction voluntarily blocks in the kernel.

We prototype LogTM-VSE and TVM in a full system simulator
based on Simics [15] and Wisconsin GEMS [16]. In simulation, we
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Figure 1. The (a) LogTM-SE and (b) LogTM-VSE (Section 4)
architectures. Transactional memory structures are shaded and the
VSE extensions are darkened.

show that aborting a transaction is generally faster than virtualiza-
tion. However, in some cases aborts may require over a million cy-
cles, and hence virtualization is then required for fast preemption.
When virtualization is used for functionality, such as to support I/O
or blocking on a lock, we show that the overhead is less than 7%
for all our workloads, and more commonly under 3%.

In the next section, we review the LogTM-SE HTM architec-
ture. We delay discussion of TVM until after we discuss the prob-
lems of virtualizing TM in a virtual machine in Section 3 and the
LogTM-VSE extensions that fix these problems in Section 4. We
then present TVM in Section 5 and describe how to extend its op-
eration to a VMM in Section 6. Section 7 presents our empirical
results. Section 8 discusses related work and we then offer con-
cluding remarks.

2. LogTM-SE Hardware Review
We selected LogTM-SE [32] as a target platform because it pro-
vides the basic hardware required for virtualization. Figure 1(a)
shows an example of the LogTM-SE architecture. LogTM-SE
stores old values in a per-thread log in virtual memory. As a trans-
action executes, the processor logs the virtual address and old value
of every memory block written. New values go directly to memory.
On commit, LogTM-SE resets the log pointer. On abort, a software
handler walks the log and copies old values back to their original
memory locations.

LogTM-SE performs conflict detection with signatures, similar
to Bloom filters [4], as transactions execute. On every load (store)
instruction in a transaction, the processor hashes the physical ad-
dress of the referenced cache block and adds the hash into a read
(write) signature. Together, the read and write signatures form the
signature of a transaction. When a processor misses in its cache and
sends a coherence request for data, the receiving processors check
their signature for conflicts. To prevent false conflicts between dif-
ferent address spaces (processes), the coherence request includes
an address space identifier. If a potential signature conflict exists
then the receiving processor checks the remote identifier against its
local one and signals a conflict only if the address space identifiers
match. To allow transactions to exceed the cache size, LogTM-SE
requires that the coherence protocol forward memory requests for
evicted blocks to processors that last accessed the block.

LogTM-SE resolves conflicts by stalling and aborting transac-
tions. It initially stalls a transaction, waiting for the other to com-
plete. If stalling does not resolve the conflict, it detects a dead-
lock. LogTM-SE relies on per-transaction timestamps, taken when

the transaction began, to abort the younger transaction and let the
older make progress. The timestamp is a loosely synchronized per-
processor cycle counter.

The LogTM-SE hardware supports paging and context switch-
ing with a summary signature in each processor. As with regular
signatures, summary signatures contain separate read and write
fields computed from physical addresses. A LogTM-SE proces-
sor checks its own summary signature for conflicts on every load
and store instruction and traps to software on a conflict. This sig-
nature is under software control, which uses it to summarize the
conflict detection state of all virtualized transactions in a process.
LogTM-SE supports interrupts without virtualization by escaping
from the current transaction when entering the kernel and resuming
the transaction on exit [22]. The LogTM-SE paper sketches require-
ments for OS support needed to virtualize LogTM-SE, but does not
provide a complete design or implementation.

3. Challenges in Virtualizing TM in a Virtual
Machine

Virtual machines are rapidly becoming ubiquitous and perform the
same actions (context switching and paging) as an OS to virtualize
the processor. In the presence of hardware transactional memory,
the VMM must support virtualizing transactions to provide these
services.

While investigating the use of a VMM with LogTM-SE, we
identified several shortcomings of its design. Two problems arise
when virtualizing transactions on LogTM-SE within a virtual ma-
chine: lack of physical addresses in the OS and lack of knowledge
of threads in the VMM. These problems may arise in other virtual
HTM systems where the OS must manipulate physical addresses or
suspended threads.

Physical Addresses. A guest OS in a virtual machine cannot
correctly virtualize transactions because it lacks access to physical
addresses. In a virtual machine environment, the VMM presents
real addresses to the guest operating system and internally maps
them onto physical addresses [30]. However, signatures operate
on physical addresses. As a result, the guest OS cannot compute
summary signatures after the VMM remaps a page because it
knows only real addresses and not the new physical addresses of
pages.

Threads. A related problem arises when the VMM tries to
virtualize transactions. Summary signatures are computed from the
signatures of all suspended threads in a process. However, threads
are a software construct not visible at an architectural level. As
a result, a VMM may be unaware of threads or thread context
switching. For example, the VMM does not know when the OS
migrates a thread between processors and hence cannot update
summary signatures appropriately.

4. LogTM-VSE Hardware Extensions
We address the shortcomings of LogTM-SE in a virtual machine
environment with LogTM-Virtual Signature Edition (LogTM-VSE).
This design maintains the physical signature from LogTM-SE
for conflict detection on coherence requests. However, it extends
LogTM-SE with three features to address the problems raised pre-
viously: virtual signatures, virtual summary signatures, and virtu-
alization traps. LogTM-VSE also extends LogTM-SE with several
performance enhancements. Figure 1(b) shows LogTM-VSE’s ad-
ditional processor state.

4.1 Virtual Machine Extensions
LogTM-VSE adds a virtual signature to export virtual addresses to
software. On every load and store in a transaction, the processor



adds the virtual address into the virtual signature. Unlike the phys-
ical signature, it is not checked on coherence requests. However, it
may be saved and restored by the OS. LogTM-VSE also changes
the existing summary signature to a virtual summary signature on
virtual addresses. Similar to LogTM-SE, LogTM-VSE checks the
virtual summary signature for conflicts on every load and store in-
struction. Switching the summary signature to virtual addresses al-
lows the OS to ensure that conflicts are detected correctly when
pages are remapped without knowing the new physical address of
the page (Section 5.2). LogTM-VSE cannot currently handle syn-
onyms (different virtual addresses that point to the same physical
address) because of its use of virtual addresses in signatures. In
addition, LogTM-VSE does not support shared memory between
processes. These restrictions are common to many TM systems that
address virtualization.

LogTM-VSE provides virtualization traps that notify the VMM
when it and the OS simultaneously virtualize transactions. The
traps are enabled by the TxVmmVirt flag, When set, this flag causes
the summary signature and physical signature to be treated as
hyper-privileged registers that trap into the VMM when written.
These traps notify the VMM when an OS action, such as thread
suspension or migration, affects its virtualization of transactions.
As we describe in the Section 6, virtualization traps provide the
VMM with enough information about threads for it to virtualize
transactions.

4.2 Performance Extensions
LogTM-VSE includes three extensions that decrease the cost of
virtualizing transactions. First, LogTM-VSE removes the need for
synchronous communication with other processors when managing
summary signatures with lazy summary update. In LogTM-SE,
summary signatures of all running threads in a process must be
updated synchronously during a context switch, by interrupting
all other processors in the system. With lazy summary update, a
thread defers updating its summary until it requests data from the
cache of the processor that ran the virtualized transaction. To detect
this, each processor has a TxForceUpdate register containing a
bit map of the processors in the system. On a context switch,
system software sets all bits in this register before allowing a new
thread to run. We rely on the invariant that the directory coherence
protocol forwards memory requests to processors that last accessed
the block. When a coherence request subsequently arrives from a
processor with its bit set, the receiving processor clears the bit for
the requesting processor and responds with a NACK message. The
NACK indicates that the receiving processor’s physical signature
does not protect all the blocks in its cache. This response causes
the requester to trap so it can reload its summary signature before
reissuing the request.

A single bit map register per processor cannot provide perfor-
mance isolation between processes because a process may receive
a NACK reload message due to virtualization of a transaction in
another process. This could be addressed with additional bit maps,
tagged by address space, or by disabling lazy summary update.

Second, LogTM-VSE replaces double bit-select as a hash func-
tion with H3 for both physical and virtual signatures, which has
fewer false positives [27]. This is particularly important for vir-
tualized transactions, whose long duration raises the potential for
conflicts.

Third, LogTM-VSE provides a hardware flag to indicate that
the current transaction has been virtualized. The TxVirtualized
flag, set by software, causes a trap when the running transaction
completes. In response, system software can cleanup state related to
the transaction, such as summary signatures. In contrast, LogTM-
SE has no mechanism for detecting when a virtualized transaction
completes.
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Figure 2. Thread state machine for virtualizing transactions within
an OS. Arcs are labeled with events that cause a state transition.
Both aborts and commits complete a transaction, and a suspended
transaction must resume before it can abort. Virtualized states are
shaded. The subroutines shown along the bottom may be entered
from any of the states above and return back to that state.

5. Virtualizing Transactions
In this section we discuss the operations of the Transaction Virtual-
ization Manager (TVM), a new kernel module that implements the
software support for virtualizing transactional memory. It ensures
that transactional semantics are enforced by the hardware when the
OS reclaims a processor or memory page from a process. However,
it does not currently address I/O in transactions, which require addi-
tional changes to the OS. We implement TVM in OpenSolaris [29].
Hooks in the kernel invoke TVM when virtualization events (e.g.,
context switches) occur that force a transaction to virtualize or af-
fect a previously virtualized transaction.

A thread may be in one of four transactional states:

• N: The thread is non-transactional.
• H: The thread is executing a hardware transaction that has not

been virtualized.
• S: The thread has been suspended while executing a transaction.
• V: The thread is executing a transaction that has been virtual-

ized.

The transitions between these states are shown in Figure 2. We in-
clude suspended non-transactional threads in this N state, as they
are treated identically by TVM. There are two non-virtualized
states, N and H. In the common case where transactions are not
virtualized, threads move between the N and H state without OS
involvement. When the OS causes a thread to virtualize, indicated
by the Remap and Suspend events, threads move into one of the two
virtualized states, S and V. We term threads in these states virtual-
ized threads. In the S state, isolation for the thread is completely
provided by summary signatures. In the V state, isolation is main-
tained by a combination of physical and summary signatures. A
transaction stays in the S and V states until it completes, by com-
mitting or aborting.

In addition to the events that transition a thread between transac-
tion states, TVM executes in response to other OS events and traps.
Along the bottom of Figure 2 are shown five events that invoke
TVM but leave the thread in the same state. These events are opti-
mizations that reduce the virtualization overhead and we describe
them later.

We now discuss in detail how TVM virtualizes transactions in
response to context switching and paging.

5.1 Context Switching Transactional Threads
Thread and process context switching present two related chal-
lenges. First, conflict detection must continue while a transaction is



tvm_context_switch_out(Thread T) {
  merge_sig(T->save_sig,get_sig());
  T->process->last_virt_time = current_time;
  set_TxForceUpdate();
}

tvm_complete_virt_tx(Thread T) {
  clear_sig(T->save_sig);
  T->process->last_virt_time = current_time;
}

tvm_reload_summary(Thread T) {
  if (T->summary_time < 
      T->process->last_virt_time) {
    foreach (Thread U in T->process,U != T)
      merge_sig(T->summary,U->save_sig)
    T->summary_time = 
      T->process->last_virt_time;
  }
  reload_summary(T->summary);
}

Figure 3. Pseudocode for salient functions that calculate summary
signatures on thread context switches.

suspended to ensure that other threads cannot read addresses writ-
ten or write addresses accessed by a suspended transaction. Thus,
saving and restoring signatures on a context switch is not sufficient
to ensure isolation. Second, if the kernel migrates a thread between
processors, a directory coherence protocol will not direct requests
to the new processor; they will go to the old processor where the
data is in the cache. As a result, we cannot rely on all coherence
protocols to ensure that conflicts are checked with a migrated trans-
action.

Our approach to this problem is to ensure that when memory
cannot be isolated by a physical signature on a specific processor, it
is isolated by summary signatures on other processors. A LogTM-
VSE processor checks its own summary signature for conflicts on
every memory instruction, which relieves the coherence protocol of
directing the request to the correct signature. The goal of TVM is
to ensure that data referenced by a transaction is isolated by sum-
mary signatures at other processors before TVM allows a physical
signature to be reused by a different thread.

5.1.1 Context Switching Algorithms
TVM manages summary signatures to ensure continued isolation
after the OS suspends a transaction. It saves the transaction state
and updates other thread’s summary signatures. When the transac-
tion completes (commits or aborts), it updates summary signatures
to drop the virtualized transaction’s contribution.

We added code to the OpenSolaris kernel in five places to no-
tify TVM of events related to context switching: thread suspen-
sion, thread resumption, virtual transaction completion (commit or
abort), summary signature conflict, and a lazy NACK. Next, we de-
scribe the specific actions taken by TVM when these events occur.

Suspend Thread. When the kernel suspends a transactional
thread, TVM adds the thread to its list of virtualized threads. TVM
saves the thread’s transactional state and merges its signature with
a previously saved signature, if it exists. TVM also updates a
per-process timestamp, last virt time, that records the time of
the latest virtualization event. In LogTM-SE, the OS had to syn-
chronously notify other processors to reload their summary signa-
tures. With lazy summary update, though, TVM relaxes the goal of
protecting data either with a physical or a summary signature. In-
stead the TxForceUpdate register provides isolation. TVM loads

the TxForceUpdate register before reusing the physical signature.
This forces other processors to reload their summary signatures be-
fore accessing any data that was isolated by the in the processor’s
physical signature.

Figure 3 shows pseudocode for the tvm context switch out
function that TVM executes when context switching a thread. It
simply saves its virtual signature and updates a process-wide vari-
able to the current time. Later, when other threads learn they need
to update their summary signatures (described below), they execute
tvm reload summary.

We use OpenSolaris’ existing installctx method to receive
callbacks when the kernel calls the savectx and restorectx con-
text switch routines. TVM augments the kernel’s thread data struc-
ture with fields to store transaction state, shown in Figure 1(a),
which includes a register checkpoint, log pointer, handler ad-
dresses, flags, and the signature. TVM also maintain a list of the
virtualized threads in a process.

Resume Thread. Our hooks invoke TVM when the kernel ex-
ecutes restorectx to reschedule a thread. For all threads, TVM
calls tvm reload summary to calculate and load a new summary
signature if necessary. For transactional threads, TVM reloads the
saved transaction state except for the physical signature; summary
signatures at other threads subsume the signature’s function. TVM
also sets the TxVirtualized flag to cause a trap when the virtual-
ized transaction completes.

Complete Virtual Transaction. When a virtualized transac-
tion completes (commits or aborts), TVM must calculate new sum-
maries without the completed transaction. The previously described
TxVirtualized flag causes the processor to a trap when a trans-
action in the V state completes. We install a handler for this trap
that notifies TVM to invoke the tvm complete virt tx routine
in Figure 3, which clears the thread’s saved signature and updates
the timestamp of the last virtualization event. To avoid synchronous
communication, other threads defer reloading their summary signa-
tures until they conflict with it.

Summary Signature Conflict. When a thread conflicts with
its summary signature, LogTM-VSE traps to a handler in TVM
to resolve the conflict. TVM detects whether the thread’s summary
is out of date, reloads the summary if necessary, and restarts the
thread. The tvm reload summary function detects whether a new
summary is needed and if so, calculates one. For simplicity, we
leave out optimizations, such as reducing the number of computa-
tions by treating all non-transactional threads identically.

If the thread’s summary is already up to date, then the trap is
passed to a user-mode contention manager to resolve the conflict.
The contention manager may abort the current transaction, signal
another transaction to abort, or queue the current transaction behind
another [33].

Lazy NACK. When a processor first requests data from an-
other processor that recently virtualized a transaction, it will receive
a NACK due to lazy summary update. This NACK, which indi-
cates that it must reload its summary signature before proceeding,
causes a trap. TVM executes tvm reload summary and restarts
the thread, allowing the memory request to proceed.

5.1.2 Context Switching Example
Figure 4 illustrates how LogTM-VSE supports context switching.
In the initial state on the left, all three processors are executing
transactions in process P1. When the kernel preempts the thread on
CPU 0 and schedules a thread in process P2, the system virtualizes
transaction T1 by adding its signature to the summary signature on
CPU 1 and 2. As a result, these processors continue to correctly
detect conflicts with T1.



P1P1

Operating
System

T1 T2

P1

T3

P1P2

Operating
System

T1

T2

P1

T3

P2 P1

T1

CPU 0 CPU 1 CPU 2 CPU 0 CPU 1 CPU 2

T1

Figure 4. Context switching on LogTM-VSE with TVM.

5.2 Paging Transactional Data
Three challenges arise when the kernel removes a page from mem-
ory and reloads it at a different physical address. First, LogTM-
VSE’s physical signatures cannot detect conflicts at the new phys-
ical address. Coherence protocols send only physical addresses,
and sending virtual addresses as well would add 100% overhead
to some coherence messages. Second, directory coherence proto-
cols send messages only to the processors with the block in their
cache. The new physical page, having just been transferred from
disk, will be in main memory and not in any cache. Hence, the co-
herence protocol may not direct requests for the new page to the
appropriate processor. Third, LogTM-VSE does not mark which
pages were accessed transactionally, so the system must use other
mechanisms to identify whether a page contains transactional data.

Remapping of transactional pages should be a rare event. Only
when the OS unmaps a page and remaps it, both while the same
transaction is running without virtualizing, is action required. The
average time to service a page fault on our Sparc T1000 system
(see Section 7) is 4.6 ms as measured by lmbench [19]. This is
much longer than most transactions, and hence transactions will
rarely experience both the unmap and remap of a page. Our design
therefore strives to have low overhead for detecting transactional
paging events and is less concerned with the cost of handling them
once detected.

Our approach to paging transaction data is to virtualize all trans-
actions that may have accessed a remapped page, so that virtual ad-
dresses in summary signatures isolate the page’s data. TVM con-
servatively detects whether pages contain transactional data based
on timestamps: a page may contain transactional data if a transac-
tion that began before the page was removed is still active when the
page is brought back in.

5.2.1 Paging Algorithms
TVM provides two functions for handling page remapping. First,
it continuously tracks page and transaction timestamps to identify
which transactions may have accessed the page before it was un-
mapped. Second, in response to a page remap event, TVM virtual-
izes the transactions that may have accessed the page before it was
remapped. These signatures contain the virtual addresses of previ-
ously referenced blocks.

TVM’s code for handling paging executes in response to six
events: a page out, a page remap, a soft page fault, a timer inter-
rupt, a virtualized transaction completion, and summary signature
conflict. TVM’s actions for the last two events are identical to its ac-
tions for these events following a context switch. We first describe
TVM’s actions to identify which transactions may have accessed a
page, and then describe how it isolates data on the page.

Page out. TVM tracks page timestamps by hooking kernel code
that invalidates or unmaps a page from a process. We added code to
the hat pageunload routine in OpenSolaris to notify TVM when
the kernel unmaps a page. TVM records the current time (also
used by LogTM-VSE for conflict resolution) in the kernel’s address

tvm_page_remap(Page P) {
  if ((P->phys == P->old_phys) ||
      (P->inval_time < tvm_oldest_tx_time))
    return;
  foreach (Thread T in Process) {
    if (T.timestamp > P->inval_time) 
      continue;
    if (T->running) 
       cross_call(T,tvm_force_virtualize);
  }
  foreach (Thread T in Process) {
    tvm_recalc_summary(T);
  }
}

Figure 5. Pseudocode for salient functions to update summary
signatures when the kernel remaps a page.

space structure.
Timer Interrupt. TVM records thread timestamps on every

timer interrupt. To resolve conflicts, LogTM-VSE records a times-
tamp when transactions begin. We hook the timer interrupt routine
to call into TVM, which records the transaction timestamp of the
currently executing thread. If the thread is not in a transaction, we
record a timestamp of infinity, indicating that it is “after” all other
events.

Page Remap. TVM must isolate data on a remapped page be-
fore a thread accesses it. Only active transactions must be con-
sidered, as suspended transactions already protect data with vir-
tual addresses. If TVM detects that a running thread may have ac-
cessed a page, it issues a cross call to the thread’s processor. In
this case, TVM virtualizes (or re-virtualizes) the transaction with
the tvm force virtualize function (not shown), which saves
the transaction’s signature and setting the TxVirtualized flag to
force a trap when the transaction completes. We add code to the
hard page fault path of the anon getpage routine to notify TVM
when the kernel maps a page into a process.

Figure 5 shows pseudocode for the tvm page remap routine
that handles a page remap event. For simplicity, the code does
not reflect optimizations, such as walking the list of threads in
timestamp order to avoid touching threads that could not have
accessed the page. Not shown is code for managing timestamp
skew between processors, which considers timestamps to overlap
if they are within the maximum skew.

Soft Page Fault. TVM does not update summary signatures
synchronously for all threads; virtual memory hardware protects
the data on the page until the page mapping is entered in a pro-
cessor’s TLB. TVM therefore delays updating the summary sig-
nature on threads other than the one accessing the remapped
page until they access the page. We add code to the soft page
path of anon getpage, which occurs when a processor faults
on page that is already in memory. In response, TVM invokes
tvm reload summary.

5.2.2 Paging Example
Figure 6 shows how TVM can detect whether a page may have
transactional data from thread and page timestamps. When the ker-
nel remaps page 1 at T=15, TVM finds that the thread timestamps
(8,6,7) are newer than page 1’s invalidation timestamp (5). Hence,
they could not possible have accessed the page. When the kernel
remaps page 2 at T=20, TVM detects that thread 3’s transaction
began at time 10, while page 2 was invalided at time 12. Hence,
page 2 may still have transactional data from thread 3, which must
be virtualized.
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5.3 Summary
In summary, the Transaction Virtualization Manager virtualizes
transactions by isolating data with summary signatures when the
processor cannot isolate it with physical signatures.

TVM maintains an invariant on what must be in a summary. The
summary signature for a running thread T in process P contains the
union of:

1. The read and write sets of all other virtualized threads from P
at the time at their last suspension.

2. For all pages R remapped by the OS, for all other threads U
from P in transactions that began before R was unmapped, U’s
read and write sets at any time after R was unmapped.

This is relaxed with lazy summary update, when invariant 1 is only
enforced after attempting to access data previously accessed by
a virtualized thread. TVM may also leave more addresses in the
summary signature to avoid the cost of reloading it.

6. Virtualizing TM in a Virtual Machine
LogTM-VSE supports virtualizing transactions both within an OS
and within a VMM. This support is necessary to allow a VMM to
context switch processors and swap memory without either con-
tacting the OS to provide virtualization, or accessing internal OS
data structures. While it may be possible to force transactions to
abort instead, doing so makes VMM virtualization activities visi-
ble to the OS.

We designed a software architecture for simultaneous virtual-
ization by both the VMM and a guest OS based on two principles:

1. The VMM should only be involved when it causes a transaction
to virtualize.

2. The interface and interactions between the OS and VMM
should be minimal.

These principles recognize the goal of keeping VMMs small and
simple and let the OS handle the majority of virtualization events.

We duplicate TVM in both the OS and the VMM. TVMOS

(TVM in the OS kernel) manages virtualization of threads due to
OS events, and may execute either on bare hardware or in a virtual
machine. TVMV MM manages virtualization of virtual processors
due to VMM events and steps aside when the OS re-virtualizes
the same transaction. Both versions of TVM compute separate
summary signatures to virtualize transactions, which are merged
together by TVMV MM .

The operations of TVM are straightforward when one of the OS
or the VMM virtualizes a transaction. When both do so, TVMV MM

must coordinate its actions with TVMOS . We next consider the
four cases of virtualization: (1) in the OS, (2) in the VMM, (3) in
the VMM and then the OS, and (4) in the OS and then the VMM.
While both paging and context switching cause virtualization, we
describe TVM’s actions in terms of just context switching.

Virtualization by the OS only. Within the kernel, TVMOS

executes as in Section 5.
Virtualization by the VMM only. Within the VMM,

TVMV MM virtualizes transactions in response to virtualization
events from the VMM, such as when it reallocates a physical pro-
cessor or memory pages between virtual machines. It uses the same
algorithms described in the previous section, but with virtual pro-
cessors instead of threads.

TVMV MM must know which processors are in the same pro-
cess so it can update summary signatures. We borrow mecha-
nisms from Antfarm [11] to detect when process switches occur
through changes to the previously described address space identi-
fier (ASID).

Virtualization by the VMM then OS. This may occur when
the VMM resumes a virtual processor running a thread that the OS
then context switches. After TVMV MM virtualizes a transaction it
sets the TxVmmVirt flag on every processor in the process. This
flag causes two additional events to trap into the VMM: clearing
a physical signature and updating a summary signature. When
TVMOS writes to a summary signature, LogTM-VSE traps so that
TVMV MM can merge the new OS summary with its summary and
load their union. TVMV MM forwards TxVirtualized traps to
TVMOS after clearing its own state.

Physical signatures are cleared when a transaction commits or
when the OS virtualizes a transaction; at this point, the OS is
virtualizing the transaction so TVMV MM need not.

Virtualization by the OS then VMM. This may occur when
the VMM preempts a virtual processor after the OS resumes a
thread in a transaction on that processor. TVMV MM must only
virtualize the state of the thread since it was last scheduled (i.e.,
provide isolation for data accessed since the thread was resumed),
as the OS virtualizes its prior state. Thus, TVMV MM merges the
thread’s current virtual signature into the summary signatures of
other processors in the process and sets the TxVmmVirt flag. Again,
TVMV MM stops virtualizing when the transaction completes or is
virtualized by the TVMOS again.

Summary. This architecture allows the VMM to stay unin-
volved in the common case, when it is not reclaiming hardware
resources, and to virtualize transactions without OS involvement
when necessary.

7. Evaluation
We measure two aspects of our system:

1. Utility: When is virtualization likely to be helpful, and how
often?

2. Cost: What is the performance cost of virtualizing transactions,
and why? This is the cost of the OS actions to manage summary
signatures.

Our evaluation focuses on the importance and overhead of virtu-
alization and hence does not evaluate possible performance gains
from TM.

The few programs currently written to use transactions are ap-
plications developed for systems that do not support virtualization
or micro-benchmarks that are unlikely to need virtualization. We
therefore measure a variety of lock-based multithreaded programs
assuming that every lock is converted to a transaction.



Application Context Switches Page Fault
Name Workload Threads Voluntary Involuntary Delay µs Rate Locked Rate

BIND 9.0 DNSPerf/Update 35 1,494 26 48,000 0 0
AOLserver ApacheBench 14 0.1 2 113,000 0 0
Apache 2.0 SpecWeb99 66 555 0.5 - 0.5 0
Firefox Browsing 5 12 1.5 - 0.23 0.007
OpenOffice Writer Editing 5 0.1 2.0 - 0.25 0.13

Table 1. This table lists application names, workload, and workload characteristics. Rates are per second. We present the average of three
runs.

7.1 Measurement Platforms
We use multithreaded chip multiprocessor to measure the behavior
of multithreaded applications and a simulator to measure the cost of
virtualizing transactions. These two platforms allow us to measure
long-term application behavior as well as fine-grained virtualiza-
tion events.
Niagara. We record the frequency of virtualization events on Sun
T1000 (Niagara) hardware. The T1000 system has a 1 GHz, 8-
core, 32-thread T1 processor and 16 GB of RAM. To increase the
frequency of paging, we restrict applications to 256 MB of memory.
We rely on DTrace [18] to detect context switches, page faults, and
system calls while a thread holds a mutex lock. Our assumption
that all mutex locks could be converted to transactions is optimistic
for LogTM-VSE because critical sections that contain I/O system
calls cannot be converted to transactions automatically.
GEMS. Our Wisconsin GEMS-based simulator [16] models a 32-
processor Sparc chip-multiprocessor with a single-issue in-order
pipeline and memory latencies similar to the Sun T1 (Niagara)
processor [12]. We assume a 1GHz clock rate. While the LogTM-
SE paper evaluated 512-byte signatures [32], we evaluate 2,048-
byte signatures that may be necessary to avoid false conflicts on
long transactions.
Workloads. We selected two classes of multithreaded applications:
server and desktop. The server applications consist of the BIND
9.0 DNS name resolver, the AOLserver 4.5.0 web server, and the
Apache 2.0 web server. For client applications, we selected Firefox
2.0 and OpenOffice Writer 2.3.0.

7.2 Utility: Opportunities for Virtualization
We measure the frequency of paging and context switching with
locks held to determine whether virtualizing transactions is neces-
sary. We run the applications listed in Table 1 on the Sun T1000
platform and measure the frequency of critical sections that would
be impacted by an OS virtualization event.

Columns 4-6 in Table 1 show the frequency of voluntary con-
text switches, involuntary context switches, and how far into critical
sections, in µs, context switches occur (labeled delay). Voluntary
context switches occur when the thread relinquishes the processor
voluntarily through an explicit yield or blocking system calls. In-
voluntary context switches occur when the the scheduler preempts
a thread.

These measurements have two implications. First, voluntary
context switches caused by the transaction are common in these
programs. BIND yields the processor within a critical section 1,494
times per second. Aborting transactions with voluntary context
switches may prevent these programs from running correctly. We
further analyzed BIND and AOLserver to determine which system
calls caused these context switches. These calls break down into
three categories: communication (recvmsg and doorfs), file I/O
(read and write) and locking (lwp park and yield).

While our system does not currently support communication
or I/O in transactions, recent work points towards possible solu-
tions [3] that require virtualization support. Calls to lwp park and

yield occur when blocking on a lock, which could occur when
transactions interact with legacy code that still uses locks. This
again requires virtualization support to avoid busy waiting [31, 33].

Second, involuntary context switches may be efficiently handled
by aborting the running transaction. The time to abort in LogTM-
VSE is proportional the length of the transaction but generally
much faster. Involuntary context switches occur, on average, 77 µs
into critical sections in BIND and 113 µs into critical sections in
AOLserver, so virtualization will improve performance only if it
takes substantially less time.

Despite reducing memory to 256 MB, paging is infrequent for
these workloads and only occurred a few times with locks held.
Thus, it may not be important to handle paging quickly, as long as
detecting when paging impacts transactions is efficient. TVM’s use
of timestamps fits this criteria.

These results demonstrate that (1) programs often perform
blocking actions in critical sections and virtualization may be
required to convert these critical sections to transactions with
LogTM-VSE and (2) virtualizing must be fast to perform better
than aborting for involuntary context switches.

7.3 Utility: Necessity of Virtualizing
In LogTM-VSE, it is possible for abort to take an arbitrarily long
time. The old contents of memory overwritten by the transaction
are stored in a log that must be restored in software on abort.
The time to perform an abort is determined by the length of the
log and the time taken to restore old values. For long-running
transactions, aborting may take much longer than virtualizing. To
demonstrate this, we wrote the TLB-stress program that accesses
blocks on 2048 different pages. Our simulated hardware has a 512
entry TLB. When we force the transaction to abort just before
completing, abort processing takes over 1 ms (1,000,000 cycles).
This is due to TLB misses encountered while restoring data to
memory. While this is a contrived example, a system that aborts
running transactions before yielding the processor to a higher-
priority process could suffer reduced responsiveness without the
ability to virtualize transactions.

7.4 Cost: Microbenchmarks
We measure the cost of virtualizing transactions with micro-
benchmarks that exercise the virtualization code. We measure re-
sults on GEMS with and without lazy summary update.

The CS-stress micro-benchmark measures context-switch
processing time. It spawns 64 threads, 32 of which execute transac-
tions that call sched yield to force context switches. We measure
the number of context switches and the time spent in TVM process-
ing those switches.

The PR-stress micro-benchmark measures the page remap
time. The program allocates a global array of pages that 31 threads
access in transactions while one thread forces pages out with the
memcntl system call. The transactional threads fault when a page
they access has been swapped out. We measure the number of page
faults and the time spent in TVM processing page remapping.



Program Threads µs Latency µs Overhead
CS-stress/Lazy 1 / 25 9.7 / 12 151 / 269
CS-stress/Eager 1 / 19 379 / 651 642 / 4,480
PR-stress 1 / 28 1,850 / 5,240 3,900 / 13,363

Table 2. Micro-benchmark results showing overhead and latency
of virtualization with and without and lazy summary update.

The average number of virtualized threads in these tests is
artificially high; half or more are virtualized at any given time. In
our application workloads, on average only one thread holds any
lock at a time. We therefore run the same tests with only a single
thread executing transactions to measure this scenario.

Table 2 shows, for both microbenchmarks, the average number
of virtualized threads, the average latency to handle a virtualization
event, and the average total time (overhead) consumed across all
threads for a virtualization event. For context switch, latency rep-
resents the time to deschedule a transaction. Overhead includes the
time to deschedule a transaction and the time taken by all other
threads to process the cross-call and reload their summary signa-
ture. For paging, latency represents the time to process a hard fault
that results on a transactional page remapping. Overhead includes
the time to remap the page and the time taken by all other threads to
process their subsequent soft page faults and reload their summary
signature. We show the context switching results both with lazy
summary update (CS-stress/Lazy) and without (CS-stress/Eager).
Without lazy update, the thread that is context switching computes
new summary signatures for all other threads. It notifies the other
threads to reload their summaries with an inter-processor interrupt.
For each test, we show the single virtualized thread case and the
many thread case, where TVM virtualizes many transactions simul-
taneously.

The latency results demonstrate the benefit of lazy summary
update. Without this optimization, context switching a transaction
can take up to 651 µs, where as with it, only 12 µs are needed. In
addition, lazy summary update reduces the total overhead because
some summary calculations are not needed.

The overhead results demonstrate that a large portion of TVM’s
time is spent manipulating signatures. This is visible from the dif-
ference between the one and many thread case. Computing sum-
mary signatures scales quadratically with the number of virtualized
threads, as each thread’s summary is comprised of the signatures of
all other threads.

These results indicate that the overhead of a context switch or
page remap is non-trivial and likely greater than the time to abort
a transaction. However, there are many opportunities, both in hard-
ware and software, to further optimize this system. These include
better algorithms for manipulating summary signature structures,
block instructions that load more than 64 bits at a time, and ad-
ditional hardware support. In many cases, though, abort may be a
better option if possible, as context switches occur on average 77-
100 µs into the transaction, much less than the total overhead of
virtualizing.

7.5 Cost: Overhead of Virtualization
From the data in Table 1 and the measurements in Table 2, we can
estimate the performance cost of virtualizing transactions for our
workloads. The cost is the product of the frequency of voluntary
context switches and the time to perform a context switch. From
our measurements, we estimate that the overhead of virtualizing
transactions for BIND, the program with the most frequent context
switches, is between 2% and 7% with lazy summary update, de-
pending on the number of threads virtualized at once. For Apache,
it is between 0.25% and 1%, and for the other programs it is even
smaller. We also calculated that the overhead of 10 page faults per

second requiring virtualization (a small subset of all page faults)
is between 1% and 2.5%, depending on the number of threads vir-
tualized. These results demonstrate that, because of low frequency
of virtualization events, the total cost to virtualize transactions with
LogTM-VSE and TVM is low. Furthermore, our study of applica-
tion behavior indicated that blocking within a transaction is com-
mon and therefore useful to programmers.

8. Related Work
There have been several approaches proposed to virtualize transac-
tional memory. We differ from other systems in our single execu-
tion mode, graceful support for cache victimization, implementa-
tion in an OS, and support for VMMs.

Several systems execute transactions in two modes; one for
small, unvirtualized transactions and another for virtualized trans-
actions. Blundell et al. present a simple mechanism for virtualizing
transactions, but it supports only a single virtualized transaction at
a time and requires extra tags in memory that the OS that must save
and restore when paging [5]. Hybrid systems accelerate short trans-
actions with hardware and fall back on pure software when neces-
sary, for example on a virtualization event [8, 9, 13, 14, 26, 28].
While this speeds small transactions, it extends the execution time
of long transactions by executing them with software support. In
contrast, virtualized transactions on LogTM-VSE execute at the
same speed as non-virtualized transactions.

Many other hardware transactional memory systems that sup-
port virtualization require software action when the processor
evicts transactional data from the cache [1, 7, 8, 23]. Evictions can
occur either when the cache is full, or even when a single set, often
only 4 blocks, is full. This makes virtualization far more frequent.
In addition, executing code in response to a cache eviction is diffi-
cult, because the handler code must avoid further evictions. In con-
trast, LogTM-VSE only virtualizes on context switches and page
remappings, which are far less frequent, and the software runs with
no restraints on cache access.

Other TM systems advocate signatures for virtualization, but do
not provide an OS (or VMM) implementation. Similar to LogTM-
SE, the SigTM hybrid relies on a physical summary signature for
virtualization [20]. Bulk proposed using signatures for TM con-
flict detection and provided extra signatures at a processor to track
suspended threads [6]. It checks signatures in memory when these
are exhausted. This system depends on a broadcast protocol and
does not yet address paging. In contrast, LogTM-VSE summary
signatures are always available, allow use of non-broadcast co-
herence protocols, and can be updated in software when the OS
remaps a page. LogTM-VSE’s summary signature owes an intellec-
tual heritage to VTM’s transaction filter (XF) [23]—as both over-
approximate virtualized read- and write-sets—but summary signa-
tures are never modified by hardware or micro-code. None of these
previous systems address VMM issues.

Other systems explore the interaction of transactional mem-
ory and the OS. MetaTM supports transaction use within a kernel
and provides a mechanism for interrupt handlers to use transac-
tions [24, 25]. This complements our work on virtualizing user-
mode transaction. Zilles explores coupling OS and transaction
scheduling in the context of VTM [33], which could be adapted
for resolving conflicts with summary signatures in LogTM-VSE.

9. Conclusion
Hardware transactional memory promises to simplify multi-
threaded programming, which will be necessary to take advantage
of future processors. To provide this benefit, though, it must sup-
port virtualizing transactions when the OS virtualizes the hardware.
The contributions of this paper are three-fold. First, we identify
shortcomings of LogTM-VSE in the presence of virtual machines.



Second, we describe an implementation of the Transaction Virtu-
alization Manager (TVM), a software architecture for virtualizing
TM on within OpenSolaris. Third, we evaluate multithreaded appli-
cations and demonstrate that virtualization is useful for interacting
with locked-based code and for blocking system calls. We show
with a combination of application profiles and simulator measure-
ments that LogTM-VSE and TVM incur little overhead to virtual-
ize transactions.
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