

Computer
Sciences
Department

Static Detection of Atomic-Set-Serializability Violations

Nicholas Kidd
Thomas Reps
Julian Dolby
Mandana Vaziri

Technical Report #1623

October 2007

Static Detection of

Atomic-Set-Serializability Violations ?

Nicholas Kidd1, Thomas Reps1,3, Julian Dolby2, and Mandana Vaziri2

1 University of Wisconsin {kidd,reps}@cs.wisc.edu
2 IBM T.J. Watson Research Center {dolby,mvaziri}@us.ibm.com

3 GrammaTech, Inc.; Ithaca, NY; USA.

Abstract. Vaziri et al. [1] propose a data-centric approach to synchro-
nization. The key underlying concept of their work is the atomic set,
which specifies the existence of an invariant that holds on a set of fields
of an object type. In addition, they formalize a set of eleven data-access

scenarios that completely specify the set of non-serializable interleaving
patterns that can lead to an atomic-set serializability violation of the
expressed invariant.

We present an algorithm that uses state-space exploration techniques
to statically detect atomic-set serializability violations. The key idea is
that the data-access scenarios can be used as a property specification
for a software model checker. We tested our technique on programs with
known serialiability violations from the concurrency-testing benchmark
created by Eytani et al. Of the ten programs analyzed, our tool reported
eight atomic-set serializability violations, with seven of them being true
bugs.

1 Introduction

A common convention for writing concurrent software is to make use of multiple
threads of execution that communicate through shared memory. This program-
ming paradigm is present in many popular languages, such as C, C++, Java,
and C#. Multithreaded applications that communicate through shared mem-
ory typically employ locks (or mutexes) to synchronize accesses on the shared
state. Without any synchronization, multithreaded programs are prone to have
data races. In the classic sense, a data race (or race condition) occurs when two
threads of computation may access the same memory location without synchro-
nization, and one of them is a write. There have been many research papers that
address finding this type of data race, including [2–5].

Recently, Artho et al. showed that programs free from the classical kind of
data race can still exhibit anomalous behavior [6]. Because of this, they extended
the notion of data race to cover low-level and high-level data races. A low-level
data race describes the classical notion of a data race (defined above). A high-
level data race occurs when an invariant that exists between two or more fields
of an object is violated.

? Supported by ONR under grant N00014-01-1-0796 and by NSF under grants CCF-
0540955 and CCF-0524051. The views expressed herein are not necessarily those of
the NSF or ONR.

Both low-level and high-level data races can be classified as atomic-set seri-
alizability violations. In [1], Vaziri et al. define the notion of an atomic set. An
atomic set specifies the existence of an invariant that holds on a set of fields
F of an object type T . It is a weak specification of a data-structure invariant
[7]; it declares that the programmer intends that, for each T object, some data-
structure invariant holds on the fields in F , although it does not specify what
that invariant is—only that it exists. Associated with atomic sets are units of
work. A unit of work is a sequence of program statements in which the invariant
expressed by the atomic set is allowed to be temporarily violated. Upon comple-
tion of a unit of work, the invariant is presumed to be reestablished. Vaziri et
al. also define eleven data-access scenarios, which specify interleaved data-access
patterns that can lead to a violation of the invariant associated with an atomic
set. A program execution is not atomic-set serializable if, during the execution
of a unit of work by a thread, it exhibits one of the scenarios.4

We present an algorithm and an implementation, Empire, that performs
static detection of atomic-set serializability violations. Empire is designed to de-
tect violations5 on an object that is allocated at a user-specified program point
(i.e., a static-allocation site). To do so, Empire requires a “property specifica-
tion” from the user. The property specification consists of (i) a collection of field
names F that constitute an atomic set for some class T , (ii) a static-allocation
site, α, and (iii) a scenario that is to be checked.

Our decision to focus on a specific object type T and static-allocation site
α is based on the following: (1) [1] assumes complete control over all of a pro-
gram’s source code. Today’s software-engineering practices advocate reusable
components, which makes this assumption difficult in practice. Thus, we devised
a technique that can perform violation detection, while continuing to allow the
programmer the ability to use existing libraries and frameworks. (2) We desired
a technique that was amenable to the analysis of legacy applications. That is, to
reason about the atomic-set serializability of a legacy application with the tech-
niques from [1], the atomic sets for every class would need to be determined.
However, with our technique, a program analyst is only required to determine
the atomic sets for one class. This allows an analyst to first focus on mission-
critical components before attempting to reason about the classes of lesser im-
portance (e.g., those whose instances are never shared between threads). As a
side benefit, this design enabled us to create a more lightweight tool. By focusing
selectively on one (or a few) shared object(s), Empire is able to abstract away
much of the program when performing violation detection. Our experimental
results show that more than 95% of the program can be abstracted away via our
model-reduction techniques.

The key insight behind our approach is that an atomic-set specification cou-
pled with a scenario can be used as an input specification to a model checker.
Specifically, Empire translates a concurrent Java program into a communicat-
ing pushdown system (CPDS) [8, 9], and translates the atomic-set/scenario pair

4 We will use the term “scenario” to refer to a data-access scenario.
5 We will use the term “violation” to refer to an atomic-set serializability violation.

2

into a monitor process, which runs concurrently with the CPDS processes that
model the program proper. Once the translation is performed, the generated
CPDS is fed into a CPDS model checker [9]. By performing a translation from a
concurrent Java program into a CPDS, Empire is able to leverage past research
on software model checking, specifically CPDS model checking, for the task of
violation detection.

Our work makes the following contributions:

– We present an algorithm that applies model-checking techniques to the prob-
lem of static violation detection. A benefit of the atomic-set serializability
formalism, which is the most liberal of several related notions of serializ-
ability (see §7), is that it subsumes the notion of data races, both high and
low-level.

– We present a technique that can analyze legacy applications without source-
code modification. Empire only requires the analyst to provide a property
specification, which itself is modularized to only describe a single Java class.

– We present model-reduction techniques, which our experiments show to be
effective. In many cases they reduce the program to be analyzed by over
95%.

– We report on an initial implementation of our techniques. Our experiments
show that it is effective in violation detection.

The rest of this paper is organized as follows: §2 discusses a program that con-
tains a violation. §3 presents the details of atomic sets. §4 presents background
material on CPDSs. §5 present the analysis steps that translate a concurrent
Java program into a CPDS. §6 presents our initial experiments. §7 covers re-
lated work.

2 High-Level Data Race

Before explaining the details of Empire, we begin with a short discussion that
illustrates a high-level data race. In Fig. 1, on line 17, the program assigns to
the shared variable v a new instance of the class java.util.Vector. Next, on
line 18, the program adds an instance of the class java.lang.Integer to v. At
this point, v has one element in it. Finally, the program creates and starts two
threads, t1 at line 20 and t2 at line 26. t1 removes all elements from v via a call
to v.clear() (line 22). t2 creates a copy of v (line 29), ensures that the copy is
not empty (line 30), and then proceeds to print the first object from the copy to
standard output (line 32).

The program in Fig. 1 can encounter the well-known high-level data race
in java.util.Vector, first reported by Wang and Stoller [10]. In this case,
the program can crash by throwing a NullPointerException. The exception is
triggered when the fields of the vector w, created at line 29 by thread t2, become
“out of sync”. The problematic scheduling that provokes the exception is as
follows:

1. Thread t1 runs:
(a) t1 calls the Vector constructor passing v as an argument (line 29). This

sets the Collection c parameter on line 5 to be v.

3

(b) In the Vector constructor, t1 sets this.elementCount (i.e.,
w.elementCount) to be the number of elements in the input Collection
c parameter (i.e., v), which is equal to 1 (line 6).

(c) t1 allocates a new Object array and assigns it to this.elementData

(i.e., w.elementData). All elements of this array are initialized to null

(lines 7-9).

2. Thread t2 runs:

(a) t2 removes all elements from the shared Vector v via the call to
v.clear() (line 22). This sets v.elementCount to 0 and nulls out the
array v.elementData.

3. Thread t1 runs:

(a) t1 now calls c.toArray(elementData) to copy elements from c (i.e.,
v) to this.elementData (i.e., w.elementData) (line 12). However, v’s
elementCount field is 0, so no elements are copied (in particular,
w.elementData[0] remains null).

After the above sequence of operations, t2 terminates and t1 is at line 30,
about to check whether w is empty. The conditional branch at line 30 is a safety
precaution that the programmer inserted because he does not want to raise
an exception. However, because of the high-level data race, w.elementCount
and w.elementData no longer have the intended relationship; in particular,
w.elementCount is equal to 1, while w.elementData is an array of null point-
ers. Thus, the conditional branch succeeds and the program follows the true
path, which subsequently leads to the dereference of a null pointer (line 32)
and a java.lang.NullPointerException is raised.

The underlying problem is that there is an implicit relationship between the
fields elementCount and elementData of class Vector. Specifically, elementCount
is meant to hold the current number of objects in the array elementData. Due
to the high-level data race, this invariant can be broken and the program can
crash. While the program is trivial, it makes clear the difficulty in reasoning
about concurrent programs. In particular, relationships can exist among certain
sets of fields of an object, and these relationships are not stated explicity in the
program’s code. The existence of these relationships, and the lack of a means for
specifying them, led Vaziri et al. to formulate the notion of an atomic set [1].

3 Atomic Sets

Atomic sets indicate that an (unspecified) invariant is intended to hold on a set
of fields of an object. In Fig. 1, we have annotated the fields elementCount and
elementData with the comment /*atomic(vec)*/. This comment illustrates
that the fields belong to the atomic set vec.

During the execution of a method of class Vector, the two fields may be-
come inconsistent due to the granularity of individual program statements.
For example, in the Vector constructor shown on lines 5–13 in Fig. 1, the
field elementCount is first initialized to the size of the input parameter. Next,
elementData is assigned a newly allocated array, which is then filled with the
contents of the input parameter. During the execution of these statements,

4

1 public class Vector {
2 /∗atomic (vec)∗/Object [] elementData ;
3 /∗atomic (vec)∗/ int elementCount ;
4

5 public Vector (/∗ uni t fo r ∗/ Co l l e c t i o n c) {
6 elementCount = c . s i z e () ;
7 elementData = new Object [
8 (int)Math . min ((elementCount∗110L)
9 /100 , In t e ge r .MAX VALUE)] ;

10 // Potent ia l high−l e v e l data race when
11 // c i s changed by v . c l ear () (l i n e 22)
12 c . toArray (elementData) ;
13 }
14 }
15 public class C {
16 void main (S t r i ng [] args) {
17 f ina l Vector v = new Vector () ;
18 v . add (new In t e ge r (1)) ;
19

20 new Thread (new Runnable () {
21 public void run () {
22 v . c l e a r () ; // v . elementCount = 0
23 }
24 }) . s t a r t () ;
25

26 new Thread (new Runnable () {
27 public void run () {
28 // a l l o c a t i on s i t e α

29 Vector w = new Vector (v) ;
30 i f (!w. isEmpty ())
31 // NullPointerException po s s i b l e here
32 pr in t (((In t e ge r)w. ge t (0)) . in tValue ()) ;
33 }
34 }) . s t a r t () ;
35 }

Fig. 1. A high-level
data race in the
java.util.Vector

constructor from Java
SDK 1.5.

elementCount and elementData become inconsistent. Vaziri et al. refer to such
statements as a unit of work [1]. In Fig. 1, the entire constructor method is a
unit of work for the atomic set vec. In [1], the default policy is that each method
of a class is a unit of work for the atomic sets of that class.

Vaziri et al. also defined a way to dynamically extend the members of an
atomic set through a new language construct: unitfor. In essence, when a particu-
lar parameter p of method T.m(. . .,p,. . .) is labeled with unitfor, it asserts that
the value of p will contribute to whatever actions T.m performs to reestablish the
(unspecified) data-structure invariant on the fields in the atomic set. Therefore,
T.m needs to see a consistent value for p. For example, in Fig. 1, we have anno-
tated the input parameter Collection c on line 5 with /*unitfor*/. Because c
is used by the constructor to establish the invariant on fields elementCount and
elementData, the constructor needs to see a consistent view for c. Therefore, it
is necessary to include the fields of Collection c in the atomic set vec during
the execution of the constructor.

Atomic sets have the nice property that violations involving members of an
atomic set are characterized by eleven forbidden scenarios.6 Moreover, each sce-
nario can be specified by a regular language. The program in Fig. 1 violates
Scenario 9. In particular, it is possible for the following sequence of operations
to occur: Rt1(v.elementCount), Wt2(v.elementCount), Wt2(v.elementData),
Rt1(v.elementData), where Rtn(f) (Wtn(f)) denotes a read (write) by thread

6 See [1] for a complete listing of all eleven scenarios.

5

Rule Control flow modeled

〈p, n1〉
a

↪−→〈p, n2〉 Intraprocedural edge n1 → n2

〈p, c〉
a

↪−→〈p, ef r〉 Call to f from c that returns to r

〈p, xf 〉
a

↪−→〈p, ε〉 Return from f at exit node xf

Fig. 2. The encoding of a call graph’s and CFG’s edges as PDS rules. The action a

denotes the abstract behavior of executing that edge.

tn to field f . This sequence of operations is an atomic-set serializability viola-
tion (violation), and results in the program crash described in §2. Our work is
based on the observation that the eleven forbidden scenarios can be checked by
reachability analysis on a communicating pushdown system.

4 Communicating Pushdown Systems

This section presents background definitions for both pushdown systems and
communicating pushdown systems.

Definition 1. A pushdown system (PDS) is a four-tuple P = (Q,Act, Γ, ∆),
where Q is a finite set of states, Act is a finite set of actions, Γ is a finite

stack alphabet, and ∆ is a finite set of rules of the form 〈q, γ〉
a

↪−→〈q′, u〉, where
q, q′ ∈ Q, a ∈ Act, γ ∈ Γ , and u ∈ Γ ∗. A configuration of P is a pair c = 〈q, u〉,
where q ∈ P and u ∈ Γ ∗ is the stack contents. A set of configurations C is regular
if for each q ∈ Q the language {u ∈ Γ ∗ | 〈q, u〉 ∈ C} is regular. The PDS rules
∆ define a (potentially infinite) transition system on the configuration space of
P.

Without loss of generality, we restrict the right-hand-side of all PDS rules to
contain at most 2 stack symbols [11].

For all u ∈ Γ ∗, a configuration c = 〈q, γu〉 can make a transition to a configu-

ration c′ = 〈q′, u′ u〉 if there exists a rule r ∈ ∆ of the form 〈q, γ〉
a

↪−→〈q′, u′〉. We
denote this transition by

a−→ and extend it to
a1···an−−−−−→ in the obvious manner.

For a set of configurations C, we define post∗(C) = {c′ | ∃c ∈ C, a1 · · · an ∈
Act∗, c

a1···an−−−−−→ c′}.
Because PDSs maintain a stack, they naturally model the interprocedural

control flow of a thread of execution. The translation from a call graph and set
of control-flow graphs (CFGs) into a PDS is shown in Fig. 2.

Definition 2. A communicating pushdown system (CPDS) is a tuple CP =
(P1, . . . ,Pn) of PDSs. The action set of CP is equal to the union of the action
sets of the Pi, along with the special action τ : τ has the property that for all
a ∈

⋃n

1 Acti, τa = aτ = a. A global configuration of a CPDS CP is a tuple
g = (c1, . . . , cn) of configurations of P1, . . . ,Pn.

For CPDSs, the reachability relation
a−→ is extended to global configurations

as follows:

– (c1, . . . , cn)
τ−→(c′1, . . . , c

′
n) if there exists an index 1 ≤ i ≤ n such that

ci
τ−→ c′i and, for every j 6= i, cj = c′j .

6

– (c1, . . . , cn) a−→(c′1, . . . , c
′
n) if for 1 ≤ i ≤ n, ci

a−→ c′i.

For a set of global configurations G, we define post∗(G) = {g′ | ∃g ∈ G, a1 . . . an ∈
Act∗, g

a1...an−−−−−→ g′}.
A CPDS models a multi-process message-passing system. The reachability

relation captures a rendezvous-style means of synchronization. At first glance,
global rendezvous might seem like a weakness of the CPDS system; however,
pairwise synchronization (i.e., lock-based synchronization) is easily modeled in
the CPDS. To do this, each PDS Pi is augmented to allow for any action not
in Acti to occur at any time. This can be achieved by augmenting Pi with rules
that non-deterministically “fire” actions not used by Pi for any configuration.

Specifically, a rule of the form 〈q, γ〉
a

↪−→〈q, γ〉 is generated for each state q ∈ Q,
stack symbol γ ∈ Γ , and action a not in Aisct.

The goal is to determine if there exists a common string of actions in the
language of each process of the CPDS, where a process consists of a PDS P , along
with its initial and final sets of configurations. This problem can be reduced to
a reachability query in a CPDS: the model-checking algorithm for answering the
reachability problem takes as input a set of PDSs, a set of initial configurations G,
and a set of final configurations G′, and checks whether G′∩post∗(G) = ∅ holds.
Because the action languages can, in general, be context-free languages and the
problem of checking their intersection for emptiness is known to be undecidable,
the CPDS reachability algorithm is only a semi-decision procedure. The semi-
decision procedure may not terminate, but is guaranteed to terminate if there
exists a finite-length sequence of actions, a1 . . . an, such that the following holds:
g ∈ G, g′ ∈ G′, g′ ∈ post∗(G), and g

a1...an−−−−−→ g′ [8]. Additionally, in some cases,
the semi-decision procedure can determine that there does not exist any common
sequence of actions, and thus that G′ is not reachable from G.

5 Violation Detection

Violation detection is performed in two phases. First, a concurrent Java program
is abstracted into a program in Empire’s lower-level modeling language (ESL)
via Empire’s front-end j2esl. Second, Empire’s back-end, esl2cpds, translates
the ESL program into a CPDS, which is then fed to the CPDS model checker.

5.1 Model Reduction

The j2esl front-end uses the WALA program-analysis infrastructure from IBM
[12]. Specifically, j2esl makes use of several components of WALA’s interme-
diate representation of Java programs, including the call graph, the procedure
control-flow graphs (CFGs) associated with call-graph nodes, a Java class hier-
archy, and a database of pointer-analysis results.

Because Empire performs violation detection on one static-allocation site at
a time (α), it is necessary to disambiguate method invocations whose receiver
instance may be the object allocated at α. To do this, j2esl uses a points-to
analysis based on Milanova et al.’s object-sensitive points-to analysis [13] during
call-graph construction. We found during our experiments that building a fully
object-sensitive call graph did not scale. Instead, j2esl only specializes the call
graph for allocation sites whose object types are either of class T or the type

7

of one of the fields in F (recall that T and F are provided by the user via the
property specification). We have found that selective object sensitivity provides
enough precision to track reads and writes to α while retaining scalability.

J2esl first performs a series of model-reduction steps before generating an
ESL program. Namely, it takes advantage of the fact that violation detection is
performed one allocation site at a time. This allows j2esl to prune away much of
the original program when generating an ESL program. For example, analyzing a
simple “hello world” program in WALA loads 15,437 Java classes. Many of these
classes come from the large java.io library. For both efficiency and debugging
purposes, it is beneficial to prune out code irrelevant to violation detection.
An additional benefit of pruning is that many of the locks are eliminated. The
pruning approach used is to selectively grow the set of call-graph nodes that are
necessary to accurately model the program. We do this in three steps.

Step 1 J2esl determines the set of call-graph nodes, Nα, whose CFGs include
program statements that may read or write to a field f ∈ F . To do this, j2esl
traverses the CFG of each call-graph node, checking to see if any statement
may (transitively) read or write to a field f ∈ F of α. During this process, an
instruction that acquires or releases the mutex associated with α is considered to
be a write. We define Rα to be the set of call-graph nodes backwards reachable
from any node n ∈ Nα. Rα represents the minimal set of methods that must be
modeled accurately by Empire.

Step 2 J2esl next determines the set of allocation sites that, during program
execution, might be dynamically included in the atomic set. Remember that an
atomic set can be dynamically extended because of the unitfor annotations. The
user has the ability to manually specify which object parameters to a method
of class T are unitfor parameters, or j2esl can be instructed to assume that
any object parameter to a method invoked on α is annotated with unitfor. To
determine the unitfor objects, j2esl visits each call-graph node r ∈ Rα. If the
receiver of r may be α, then for each object parameter that is designated with
unitfor for the method, the points-to database is queried to determine the static-
allocation sites that might be dynamically included in the unit of work for α. We
define this set as Uα. Finally, similar to Step 1 above, each CFG of the program’s
call graph is traversed to locate the set of call-graph nodes, Nunitfor, for methods
that may read or write to the fields of the objects in Uα. Let Runitfor be the set
of call-graph nodes backwards reachable from Nunitfor and let S = Rα ∪Runitfor.

Step 3 Once S has been identified, j2esl traverses the CFG for each node n ∈ S
to determine the set of locks that may be acquired in n. This set of locks consists
of the static-allocation sites that can be the receiver for an invocation of a Java
synchronized method, or that can be used as the mutex for guarding a Java
synchronized block. In each case, the static-allocation sites are determined by
querying the points-to database. Let this set of locks be L.

Theorem 1. The Java program that is the result of j2esl’s model-reduction
steps is a sound approximation of the original Java program with respect to

8

violation detection on the object of type T , allocated at static-allocation site α,
and for the atomic set consisting of the fields in F .

Proof (sketch): Our sketch relies on the soundness of of the call graph, CFGs,
and the points-to database generated by the WALA analysis infrastructure. The
CFG node for any Java statement that potentially reads or writes to the atomic
set denoted by F for the object allocated at α will be in S. Thus, we only need
to reason that the program statements of a CFG node n′ /∈ S cannot cause a
violation. First, the method represented by n′ (and those transitively reachable
from n′ in the call graph) might acquire and release a lock. However, because of
the model-reduction steps just described, we know that n′ and its successors in
the call graph have no effect on α, the fields f ∈ F , or the objects in Uα. Ad-
ditionally, because of the syntactic nature of Java synchronized methods and
blocks, any lock acquired must be released upon return from n′ to n. Therefore,
it is safe to ignore the synchronization that might have resulted from invoking
n′ because the overall status of the locks that are held remains unchanged upon
return from n′. Second, the invocation of n′ might cause exceptional control flow
paths to be exercised due to an exception being triggered within n′ (or methods
transitively called from n′). The ESL program accurately models these paths be-
cause WALA safely models (i.e., overapproximates) the interprocedural control
flow of the Java program being analyzed, including control flow for exceptions.

5.2 ESL Generation

After completing the model-reduction steps, j2esl generates an ESL program.
An ESL program consists of a finite number of abstract memory locations, locks,
and processes. The abstract memory locations model the fields F of the atomic
set for static allocation site α. Only reads and writes are allowed to be performed
on the abstract memory locations.

A Java thread is modeled by an ESL process, which consists of a set of (po-
tentially recursive) functions, where one of the functions is designated as the
process’s entry point. J2esl finds all static threads in the program by checking
each instruction in each CFG to see if it invokes the method Thread.start().
The points-to database is then queried to determine the static-allocation sites
that are potential receivers of this method invocation. We denote this set of ob-
jects as E because they represent the entry points for the threads. Additionally,
E includes a “fake” object that represents the initial thread created when the
Java program begins execution in the main method. For each entry point e ∈ E,
j2esl walks the call graph in a depth-first manner, translating the CFG for each
reachable node n in the call graph into an ESL function. For each instruction
in n, j2esl emits an appropriate ESL statement (see Tab. 1). If a Java instruc-
tion invokes a method whose call-graph node n′ /∈ S, the method invocation is
ignored and the emitted ESL statement is a skip statement.

An ESL process’s functions are abstractions of the methods that a Java
thread might invoke. The ESL statements that make up a function model the
(intraprocedural) control flow of a Java method. Each statement is either a goto,
choice, skip, call, return, read x, write x, lock l, unlock l, unit-begin,
unit-end, or start p. Tab. 1 presents some example Java instructions and

9

their corresponding ESL statements. The ESL statement start p starts the
ESL process denoted by p. This is used to model the fact that when a Java
program begins, only one thread is executing the main method. Child threads
must be started by an already running thread. An ESL process that models a
child thread cannot begin its (abstract) execution until it is started by an already
running process.

x = o.f read f α ∈ Pts(o)

o.f = x write f α ∈ Pts(o)

synchronized(o){. . . } lock o;. . . ;unlock o

o.start() start o Thread.start() is invoked

o.u() unit-begin;call u; unit-end α ∈ Pts(o), u() is a unit of work

o.m() call m

Table 1. Example Java instructions, their corresponding ESL statements, and the
condition necessary to generate the ESL statement.

ESL locks model the Java mutexes used for synchronization. They are reen-
trant locks because Java mutexes are reentrant. An ESL program is restricted
to a finite number of locks. To meet the finiteness requirement, j2esl creates an
ESL lock for each static-allocation site that is in L. Thm. 1 ensures that if the
original program can have a violation, then the reduced program is also vulner-
able to the same violation. However, the translation from the reduced program
to ESL is unsound when one ESL lock models many concrete Java mutexes.
In such a situation, a state change of an ESL lock is, in effect, performing a
strong update of many concrete Java objects simultaneously. This can cause the
ESL program to underapproximate the Java program’s actual set of behaviors.
However, our experiments show that Empire is an effective violation detector.

5.3 CPDS Generation

Empire’s back-end, esl2cpds, translates the generated ESL program into a
CPDS. This consists of translating the ESL program into a message-passing sys-
tem, where each message conveys the setting or querying of some global property
of the CPDS. In terms of violation detection, the global state that must be kept
track of includes: (i) the status of every shared lock, (ii) whether an ESL process
is in a unit of work, (iii) all reads and writes to members of the atomic set,
and (iv) the monitor process that models the scenario. We next describe how
esl2cpds generates PDSs to model each of these components.

Lock process Empire tracks the state of each shared lock by creating a separate
lock process. The PDS that models a mutex m changes its state from open to
locked and vice versa when it receives a lock and unlock message from another
ESL process. The PDS for m uses the stack to maintain a count of the number
of times the lock is acquired by an ESL process, as well as the name of the
locking process. This is necessary because a Java thread can acquire a lock that
it currently holds multiple times (and must subsequently release that lock an
equal number of times). The following PDS rules define a template that can be

10

instantiated with the name of an ESL process:

〈q, open〉
lockp

↪−−−−−→ 〈q, lockp open〉 〈q, lockp〉
lockp

↪−−−−−→ 〈q, lockp lockp〉
〈q, lockp〉

unlockp

↪−−−−−→ 〈q, ε〉

The PDS for m instantiates the above template with the name of each ESL pro-
cess p, thus defining its transition system. In the rules, lockp (unlockp) represents
an attempt by process p to lock (unlock) mutex m.

Unit-of-work process As described in §3, violations occur when a Java thread
is executing a unit of work. Thus, it is necessary to know if the ESL process that
models a Java thread is executing within a unit of work. To track whether an
ESL process is executing within a unit of work, esl2cpds creates a unit process
for each ESL process. Like a lock process, the unit process uses the stack to
model the status of the ESL process to which it corresponds. That is, it changes
its state when it receives a message indicating that a unit of work begins or ends.
The following PDS rules define the unit-of-work transition system for an ESL
process p:

〈q, out〉
p.beg

↪−−−−→ 〈q, p.beg not〉 〈q, p.beg〉
p.is

↪−−−−−→ 〈q, p.beg〉
〈q, p.beg〉

p.beg
↪−−−−−→ 〈q, p.beg p.beg〉 〈q, not〉

p.not
↪−−−−→ 〈q, not〉

〈q, p.beg〉
p.end

↪−−−−−→ 〈q, ε〉

Notice that the rule 〈q, p.beg〉
p.is

↪−−−−−→ 〈q, p.beg〉, along with the one labeled with
p.not, enables other processes to query whether a particular ESL process is
currently executing in a unit of work.

ESL processes Each Java thread is modeled by an ESL process. The thread’s
control flow is modeled by a PDS, which is created following the construction
outlined in §4. Additionally, the reads and writes to members of F and Uα

are tracked by labeling the PDS rules with an action that describes the ESL
statement for which the PDS rule models. For example, in Fig. 1, the field
elementCount is written to on line 6. This is modeled in the PDS for the Java
thread created on line 26 by the following rule: 〈q, n6〉

p2.write(eD)
↪−−−−−−−→ 〈q, n7〉 (where

eD stands for elementData). This rule models the fact that ESL process p2 is
writing to the elementData field of an object allocated at allocation site α (line
29).

Monitor process The monitor process models a particular scenario as defined
in [1]. Because each scenario is a regular language, it is easily modeled by a PDS
that does not contain push or pop rules (i.e., as a finite-state machine (FSM)).
We illustrate this by showing the translation from Scenario 9 for the program
in Fig. 1. Recall that the sequence of reads and writes that lead to a violation
of Scenario 9 for the program is: Rt1(v.elementCount), Wt2(v.elementCount),
Wt2(v.elementData), Rt1(v.elementData). Empire translates this sequence of
read and write actions into the FSM shown in Fig. 3.

For this particular program, there are only 3 threads. In the FSM, eC stands
for the field v.elementCount and eD for the field v.elementData of the Vector

11

class shown in Fig. 1. The label Rp1(eC) represents the CPDS action correspond-
ing to a read of the field elementCount by ESL process p1 which models the Java
thread t1. The labels Wp2(eC), Wp2(eD), and Rp1(eD) are defined similarly. (For
clarity, the diagram omits the actions associated with the ESL process for the
main thread because they have no effect in this particular violation.) Because
units of work can be nested, each time process p1 ends a unit of work, the mon-
itor process must determine if p1 is still executing within a unit of work. This is
achieved via the transitions labeled p1.end to the query states Q1−4. Once the
monitor has reached a query state, it checks with the unit-of-work PDS to see if
p1 is still executing within a unit of work. This is done through the actions p1.is
and p1.not. If there exists a sequence of actions that drives the FSM to the final
state (E), then Empire has found a (potential) violation of Scenario 9.

I

A

Q1

B

Q2

C

Q3

D

Q4

E

p1.beg

Rp1(eC) Wp2(eC) Wp2(eD) Rp1(eD)

p1.end
p1.is

p1.not

p1.end p1.is

p1.not

p1.end p1.is

p1.not

p1.end p1.is

p1.not

Σ∗ − Rp1(eC) Σ∗ − Wp2(eC) Σ∗ − Wp2(eD) Σ∗ − Rp1(eD)

Σ∗ − p1.beg

Fig. 3. The FSM that monitors for Scenario 9 [1]. If the CPDS can generate actions
that drive the FSM to the accepting state E, then there exists a concurrent execution
of the ESL program that violates scenario 9.

6 Experiments

We tested Empire on the programs from the concurrency-testing benchmark cre-
ated by Eytani et al. [14, 15]. The benchmark suite consists of a set of programs
developed by students in an undergraduate software testing class. The student’s
were instructed to write a concurrent Java program that exhibited a bug. We
applied Empire to the programs whose bug was listed as “non-atomic”. All ex-
periments were performed on an Intel(R) Pentium(R) 4 CPU 3.06GHz with 4GB
of memory running the Centos operating system with Linux kernel 2.6.9-42. The
results are reported in Tab. 2.

Empire reported a counterexample for all but two of the benchmarks tested.
In all cases, the counterexample reported was a violation of Scenarios 1, 2, or 4,
with most of them being Scenario 1. Most of the time, this was due to a missing
synchronized statement. As explained in [15], this is typical of the programming
errors made by novice programmers.

Qadeer and Wu noticed that many concurrency bugs arise with few inter-
leavings [16] (i.e., they are “shallow” bugs). This is reflected in our results, where
the counterexample lengths are typically small.

12

Program CG Total S S Java Time Scn CE Bug
Nodes Insts. Nodes Insts. Thr. (sec) # Len.

SoftwareVerificationHW 2692 29328 8 173 3 447.9 2 10 F

Test 1017 15747 18 668 3 684.3 1 15 T

BuggedProgram 1012 15206 12 134 3 21.6 2 7 T

bufwriter 1338 19556 11 231 4 OOM - - -

BuggyProgram 1148 17221 8 286 3 37.5 4 9 T

Account 976 14739 7 125 3 30.1 1 8 T

IBM Airlines 1107 16702 6 144 3 22.0 1 6 T

BugTester 1221 18333 20 346 3 20.1 1 6 T

ProducerConsumer 1168 17389 10 471 3 56.3 1 9 T

shop 987 14887 11 249 3 OOM - - -

Table 2. Results of running Empire on the known buggy scenarios in the concurrency
testing benchmark. Column CG Nodes reports the total number of call-graph nodes.
Column Total Insts. reports the total number of instructions in the program. Col-
umn S Nodes reports the number of call-graph nodes after model reduction. Column
S Insts. reports the total number of instructions in the reduced model. Column Java
Thr. reports the number of Java threads being modeled. Column Time reports the
total analysis time (OOM means that the analyzer exahusted memory). Column Scn
reports the scenario number for which a counterexample was found. Column CE Len.
reports the number of actions in the counterexample. Column Bug reports whether
the counterexample was a true bug. “T” signifies that we have verified that the coun-
terexample found was a true violation. “F” signifies that the counterexample was a
false positive.

The counterexample returned for the program “SoftwareVerificationHW” is
a false positive. This is because we use a sound, but imprecise, modeling of the
Java method Thread.join().

In two of the benchmarks, “bufwriter” and “shop”, the CPDS model checker
ran out of memory before terminating. In particular, this occurred when the
CPDS model checker was intersecting the regular languages that approximate
the languages of the PDSs. At present, it is unclear what aspect of these programs
lead to this behavior. The two programs are not any larger, in terms of call-graph
nodes, than the others. We are currently investigating the nature of the generated
regular languages that lead to memory being exhausted.

Tab. 2 shows how Empire behaves when one has perfect insight into what
query to issue. To test how Empire behaves when the user has less-than-perfect
insight into the program’s behavior, we ran Empire on Account for all ESL-
process/atomic-set-field combinations for Scenario 1 (with a given allocation
site and atomic set). Note that Empire is intended to be used to test user-
generated hypotheses about possible atomic-set/scenario combinations, so this
represents a more realistic usage scenario—i.e., where some amount of insight
has been supplied by the user. This involved running reachability queries for
12 CPDSs, which ran in times ranging from 19.7 seconds to 37.2 seconds (with
one outlier of 1310.8 seconds); the total time required was 1628 seconds (317.8
seconds without the outlier). Note that each such query is entirely independent

13

from every other query, so they could have been run in parallel on a distributed-
computing resource, such as a cluster or a Condor pool.

There are two points to be learned from our experiments. First, they vali-
date the approach we have chosen in the design of Empire. By building a tool
that focuses on one static-allocation site at a time, Empire is capable of find-
ing violations in most of the programs analyzed. Second, the experiments show
the importance of using model-reduction techniques. In all of the benchmark
programs, the size listed in column “S Insts.” is less than 5% of the number of
instructions in the original program. Because of the state-space explosion prob-
lem, model reduction is an important technique when working with software
model checkers.

7 Related Work

Several categories of related work can be distinguished: detection of low-level
data races, high-level data races, conflict-serializability violations, and atomicity
violations. Due to space constraints, we only discuss related work on high-level
data-race detection and conflict-serializability.

High-level data-race detection In [6], Artho et al. first coined the term high-
level data race. They formalized the notion of view consistency, where a view
expresses what fields are guarded by a lock. Our work is based on atomic-set se-
rializability; see the following discussion that compares atomic-set serializability
with view serializability.

Naik and Aiken [17] recently proposed a static analysis for detecting data
races based on conditional must-not aliasing. The basic idea is to demonstrate
the absence of data races by showing that whenever two locks are different, their
guarded locations must be different. Empire does not require this condition to
hold.

Vaziri et al. [1] proposed a data-centric approach to synchronization. They
present an algorithm that automatically infers where to place synchronization
when given a program annotated with atomic sets and units of work. Our work
is based on their notions, but focuses on checking the properties of programs
that already contain occurrences of synchronization primitives.

Conflict Serializability Wang and Stoller [18] present two Commit-Node Al-
gorithms for checking two variants of serializability, view serializability and con-
flict serializability. In their terminology, two traces are conflict-equivalent iff (i)
they contain the same events, and (ii) for each pair of conflicting events, the
two events appear in the same order. Two traces are view-equivalent iff (i) they
contain the same events, (ii) each read event has the same write-predecessor in
both traces, and (iii) each variable has the same trace-final write event in both
traces. A trace is serial if the events of each transaction form a contiguous sub-
sequence of the trace, where transaction boundaries are determined by method
boundaries, lock acquisition/release, start/join operations of threads, and a few
other constructs. A trace is conflict-serializable if it is conflict-equivalent to a
serial trace, and a trace is view-serializable if it is view-equivalent to a serial

14

trace. A set of transactions is view-atomic (conflict-atomic) if every trace of it
is view-serializable (conflict-serializable).

Our work is based on atomic-set serializability, which is a more liberal cri-
terion than conflict serializability. Atomic-set serializability is also more liberal
than view serializability, except that with view serializability two writes by pro-
cess p1 interleaved with a write by process p2 is considered serializable.

Xu et al. [19] present SVD, a dynamic detector of serializability violations.
Their work does not require user annotation of atomic regions (called Compu-
tation Units or CUs) because it dynamically approximates CUs using a region
hypothesis. They use dynamic replay and post-mortem analysis to determine if
there was a violation. Our work differs in two respects: first, our analysis is a
static analysis; second, by allowing the user to specify what object to check, we
provide a lightweight approach to checking for atomic-set-serializability viola-
tions.

References

1. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data
in an object-oriented language. In: POPL. (2006)

2. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A
dynamic data race detector for multithreaded programs. TCS 15(4) (1997)

3. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and
deadlocks. In: SOSP. (2003)

4. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Context-sensitive correlation
analysis for race detection. In: PLDI. (2006)

5. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: PLDI.
(2006)

6. Artho, C., Havelund, K., Biere, A.: High-level data races. In: Proc. ND-
DL/VVEIS’03. (2003)

7. Hoare, C.: Proof of correctness of data representations. Acta Informatica 1 (1972)
8. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of

concurrent programs with procedures. In: POPL. (2003)
9. Chaki, S., Clarke, E.M., Kidd, N., Reps, T.W., Touili, T.: Verifying concurrent

message-passing C programs with recursive calls. In: TACAS. (2006)
10. Wang, L., Stoller, S.D.: Runtime analysis for atomicity for multi-threaded pro-

grams. Technical Report DAR-04-14, State University of New York at Stony Brook
(2005)

11. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TUM (2002)
12. : T. J. Watson Libraries for Analysis (WALA)

http://wala.sourceforge.net/wiki/index.php.
13. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for

points-to analysis for Java. ACM Trans. Softw. Eng. Methodol. 14(1) (2005)
14. Eytani, Y., Ur, S.: Compiling a benchmark of documented multi-threaded bugs.

IPDPS 17 (2004) 266a
15. Eytani, Y., Havelund, K., Stoller, S.D., Ur, S.: Towards a framework and a bench-

mark for testing tools for multi-threaded programs. Concurrency and Computa-
tion: Practice and Experience 19(3) (2007)

16. Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI. (2004)
17. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:

POPL. (2007)

15

18. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors
in concurrent programs. In: PPoPP. (2006)

19. Xu, M., Bod́ık, R., Hill, M.D.: A serializability violation detector for shared-
memory server programs. In: PLDI. (2005)

16

