Computer
Sciences
Department

Interprocedural Analysis of Concurrent Programs Under
a Context Bound

Akash Lal

Tayssir Touili
Nicholas Kidd
Thomas Reps

Technical Report #1598

July 2007

UNIVERSITY OF

M A DI S O N

Interprocedural Analysis of Concurrent Programs Under a
Context Bound

Akash Lal

University of Wisconsin
akash@cs.wisc.edu

Abstract
Analysis of recursive programs in the presence of concayrand

shared memory is undecidable. A common approach is to remove

the recursive nature of the program while dealing with corency.

A different approach is to bound the number of context sweisch
which has been shown to be very useful for program analysis.
In previous work, Qadeer and Rehof [36] showed that context-
bounded analysis is decidable for recursive programs umfieite-
state abstraction of program data. In this paper, we gerertheir
result to infinite-state abstractions, and also providerasyenbolic
algorithm for the finite case.

1. Introduction

In this paper, we consider analysis of concurrent progrartis w
shared-memory and interleaving semantics. Analysis dfi guo-
grams is generally considered hard because of the large erumb
of interleavings the analysis has to consider. Especialty s the
analysis of recursive programs, because their controt sfpace

is infinite. In fact, the analysis of recursive programs,rewdth

a finite-state abstraction of data (such as in Boolean pnagjyas
undecidable in the presence of concurrency and shared memor

An analysis for recursive programs has to accurately mduagel t
procedure call and return semantics, i.e., it should onhsicter
program executions in which a procedure return is matched wi
the most recent call. Sudnterproceduralanalyses have proven
to be very useful for sequential programs [3, 39-41]. Caeraid
the desirability of interprocedural analysis, its undebitity in the
presence of concurrency is unfortunate. As a consequemdeat
with concurrency soundly, most analyses give up preciselan
of procedures and beconeentext-insensitiveAlternatively, tools
can use inlining to unfold multi-procedure programs intogt-
procedure ones. This approach cannot handle recursivegonsg
and can cause an exponential blowup in the size for nonsmeur
ones.

A different way to sidestep the undecidability issue is toiti
the amount of concurrency by bounding the numbercahtext
switcheswhere a context switch is defined as the transfer of control
from one thread to another. Such an abstraction has provka to
very useful for program analysis because many bugs can Inel fou
in a few context switches [32, 36, 37]. We call an analysis of a
recursive and concurrent program under a context boucmhxt-
bounded analysi€CBA).

CBA does not impose any bound on the execution length be-
tween context switches. Thus, even under a context bouadil-
ysis still has to consider the possibility that the next stvitakes
place in any one of the (possibly infinite) states that mayehehed
after a context switch. Because of this, CBA still conside@ny
concurrent behaviors [32].

Tayssir Touili

LIAFA, CNRS & University of Paris 7
touili@liafa.jussieu.fr

Nicholas Kidd = Thomas Reps

University of Wisconsin
{kidd, reps}@cs.wisc.edu

In previous work, Qadeer and Rehof [36] showed that CBA is
decidable for recursive programs under a finite-state att#n of
program data. In this paper, we generalize their result fiaiia-
state abstractions, and also provide a new symbolic algorfor
the finite case.

Our goal is to be able to take any abstraction used for inter-
procedural analysis of sequential programs and directignekit
to handle context-bounded concurrency. Our main resuivisl
in the spirit ofcoincidence theoremis dataflow analysis (for se-
quential programs) [20, 22, 43]. We give conditions on thetiae-
tions under which CBA can be precisely solved, along withlan a
gorithm. In addition to the usual conditions required foegise
interprocedural analysis, we require the existencetefaor prod-
uct (defined in§6). We show that these conditions are satisfied by a
class of abstractions, thus giving precise algorithms BAQvith
those abstractions. These include finite-state abstre;tsuch as
the ones used for verification of Boolean programs in modetkh
ing [3], as well as infinite-state abstractions, such aseidfetation
analysis (ARA) [29]. Note that without a context bound, @@sg
about concurrent programs under these abstractions icisiadiée
[28, 38].

For a precise CBA, one needs to start off with a precise inter-
procedural analysis\Veighted pushdown syste(@¢PDSs) [25, 40]
are a general model for interprocedural analysis. They ayena
eralization of pushdown systems (PDSs). PDSs can modet-recu
sive programs [42], and WPDSs add a general “black-box” ab-
straction for program data (througleightg to PDSs. WPDSs also
generalize other frameworks for interprocedural analgsish as
the Sharir-Pnueli functional approach [43] and the Repsalitz-
Sagiv summary-based approach [41]. We show that when a WPDS
is used to model each thread of a concurrent program, CBA can
be precisely carried out for the program, provided tensodpcts
exist for the weights.

1.1 Motivation

Context-bounded analysis is not sound because it does pirea
all of the behaviors of a program. However, it has been shawn t
be very useful for program analysis. KISS, a verification tbat
analyzes programs for up to two context switches, was alfied@
number of bugs in drivers [37]. Another study, using explatate
model checking, also confirms that many bugs can be found in a
few context switches [32]. Moreover, it shows state-spaserage
graphs that indicate that many program behaviors are eapiar
the first few context switches, with fewer behaviors beingeatl
with additional context switches. Our goal is to developlgses
that are sound under a context bound.

Previous work has only considered CBA for a restricted set of
abstractions. Having the ability to do CBA with other absti@ns
can be very useful for analyzing concurrent programs. Famgpte,
consider the program snippet in Fig. 1. Here, multiple thseshare

the circular bufferq in a producer énq) consumer deq) fashion.
Using CBA with ARA with modular arithmetic, one can prove
(under a given context bound) thé&id - t1 - cnt) % SIZE =

0 providedSIZE is a prime power [30]. ARA generalizes analyses
like copy-constant propagation, linear-constant propagaand
induction-variable analysis. It can be used to find invagasuch
as the one shown above, to increase the precision of othlysama

Elem q[SIZE]; void enq(Elem e) { Elem deq() {
inthd=cnt=tl=0; while(true) { while(true) {
atomic { atomic {
if(cnt < SIZE) { if(cnt > 0) {
q[tl] = e; Elem e = q[hd];
tl = (tl+1)%SIZE; hd = (hd+1)%SIZE;
cnt ++; cnt--;
break; return e;
} }
i B

Figure 1. A concurrent program that manages a circular queue.

The context bound can be increased iteratively to considee m
effects of concurrency and to analyze more program behavior
This has the added advantage of finding bugs in the fewestxiont
switches needed to trigger them. It is reasonable to conaittelg
that arises only after a greater number of context switchdset
“harder” than a bug that requires fewer context switchesusTh
CBA allows additional concurrency to be considered “on-dedi.

1.2 Challenges and Techniques

Between consecutive context switches, a concurrent progies
like a sequential program because only one thread is executi
However, a recursive thread can reach an infinite numberatést
before the next context switch because it has an unboundet. st
A CBA has to consider the possibility of a context switch acitig

at any one of these states.

The Qadeer-Rehof (QR) algorithm used (unweighted) PDSs
(which can encode recursive programs with a finite data abstr
tion) to encode program threads. An influential result bgB{i9]
showed that the set of reachable states of a PDS can be metgekse
using an automaton. The QR algorithm makes use of this result
get a handle on all reachable states between context switdbe/-
ever, to explore all possible context switches, it crugiadlies on
the finiteness of the data abstraction because it enumenaesil
reachable data states at a context switch.

Our first step is to develop a new algorithm for the case of un-
weighted PDSs. Our motivation is to have an algorithm thatase
likely to generalize to handle other abstractions. The Hgardhm
(§3) represents the effect of executing a thread (a PDS) frgnaan
bitrary state using &nite-state transduceiThe transducer accepts
a pair(c1, c2) if a thread, when started in state, can reach state
c2. Caucal [10] showed that such transducers can be constriacte
PDSs, a result more general than that of Biichi's. Next gthess-
ducers are composed to describe the behavior of the entigegim
with multiple threads. One transducer composition is perém for
each context switch.

We then generalize this algorithm for WPDSS5 @nd$6). The
weights (or the data abstraction) add several complicatidfe de-
fine weighted transducerso capture the reachability relation of

ing thread interleavings redundant, as we shall see |dter)pro-
gram analysis, we only have weaker properties on weightsofie
pose weighted transducers, we require that weight domadvide

a tensor-productoperation §6). Tensor products have been used
previously in program analysis for combining abstracti¢ds3].
However, we use them in a different context and for a comiylete
different purpose. In particular, previous work has useshtHor
combining abstractions that are to be performedotk-step in
contrast, we use them to stitch together the data b&fterea con-
text switch with the data statfter a context switch. This is non-
trivial because the data state is correlated with an (untednpro-
gram stack.

By using WPDSs, not only do we obtain new algorithms for
infinite-state abstractions, but also symbolic algoritHforsfinite-
state abstractions. The latter algorithms avoid the enafioerthat
the QR algorithm performs at a context switch.

The contributions of this paper can be summarized as follows

e We give sufficient conditions under which CBA is decidable,
along with an algorithm. This generalizes previous work on
CBA of PDSs [36]. Our result also proves that CBA can be
decided for affine-relation analysis, i.e., we can preygisied
all affine relationships between program variables thad laol
a particular point in the (concurrent) program. We use WPDSs
as our program model, and the weights encode the program’s
data abstraction. By using WPDSs, we can also answer “stack-
qualified” queries [40], which ask for the set of values thaym
arise at a program point in a given calling context, or in aitag
set of calling contexts.

We show that for WPDSs, the reachability relation can be en-
coded using a weighted transduc&b); generalizing previous
result for PDSs by Caucal [10]. The use of weighted transduce
(instead of Biichi’s result, or its generalization to weaghsys-
tems [40]) appears to be a necessary step for CBA with infinite
state data abstractions.

We give precise algorithms for composing weighted transduc
ers §6), when tensor products exist for the weights. This gen-
eralizes previous work on manipulating weighted automath a
transducers [26, 27]. We also show a class of abstracti@ts th
satisfies this property.

We discuss implementation issues for realizing CBA7nWe
show that for PDSs, CBA is NP-complete. Our algorithm, based
on transducers, does have a large complexity but it is more
amenable to symbolic techniques such as using BDDs (in the
finite-state case) than the QR algorithm.

The rest of the paper is organized as follows§2n we discuss
previous work on CBA under a finite-state data abstractior3|
we present our algorithm based on transducersgdinwe give
background on WPDSs. b, we give an efficient construction for
transducers for WPDSs. 6, we show how weighted transducers
can be composed. 1§7, we discuss implementation issues for
CBA. In §8, we discuss related work.

2. Context Bounded Model Checking

In this section, we consider CBA under a finite-state datérabs

tion, which we call context-bounded model checking or CBMC.

Here, each thread of a concurrent program is modeled usiifsa P
First we defineBoolean programsa popular program abstrac-

WPDSs. We show that a weighted transducer can always be con-tion used in model checking [3]. They serve as a program-timagle

structed for a WPDS (no such result was known previouslyg Th

framework that provides finite data and unbounded contra. W

next step is to compose these transducers. While weighted au show how PDSs can encode them. We then formally define the

tomata and transducers have been considered in the literagu
fore, the weights are assumed to have much stronger prepées-
pecially commutativity, which defeats the purpose of CBAntgk-

CBMC problem, and discuss the QR algorithm.
Notation. A binary relation on a sefS is a subset ofS x
S. If Ry and R, are binary relations ot¥, then their relational

composition(R1; R2) is defined ag(s1, s3) | 3s2 € S, (s1, s2) €
R1,(s2,83) € Ro}. If R is a binary relationR’ is the relational
composition ofR with itself; times, andR® is the identity relation
onS. R* = U2, R! is the reflexive-transitive closure éf.

2.1 Boolean Programs

A Boolean program can be thought of as a C program with only the

Boolean datatype. It does not have any pointers or heapaa#id
storage. A Boolean program consists of a finite set of praeesdit
has a finite set of global variables, and a finite set of loceabes

[Rule

(p,u) = (p,v)
(p;€) = (D, fenterT)

| Control flow modeled |

CFG edge: — v, which is not a call
CFG edge: — r, which calls
proceduref beginning at nodgenter
Return from procedurg at fexi

<p7 fexit> - <p7 E>

Figure 2. The encoding of control flow as PDS rules.

fenter. is a set of rU|e$<gv (Cvl)> — <97 (fenten lo) (7“7l)>, for all

for each procedure. Each variable can only hold a value from a (g,1) € G x Val; andly € Valy.

finite domain. We assume that procedures do not have panamete
(they can be passed through the global variables). Theblasian
scope inside a procedure are the global variables and it$ kel
variables.

A procedure is described by itsontrol-flow graph (CFG),

Under such an encoding of Boolean programs as PDSs, a con-
figuration(p, v1y2 - - - vn) is an element o7 x L that describes the
instantaneous state of a program. The statacodes the values of
global variables:;y; encodes the current program location and the
values of local variables in scope; and the rest of the stackdes

which has a designated entry and a designated exit node.sNode the list of unfinished calls with the values of local variabt the

of the graph are program control locations, and each edga is |
beled with a statement. A statement can be an assignmedingea
from and writing to variables in scope; or an assume statée(fan
conditions); or a procedure call. An example is shown in B{g).

Let G be the set of global states of the program, consisting of
valuations of global variables. Ldt be the set of local states of
the program, consisting of the program counter, a valuatfdocal
variables, and the program stack (consisting of returnesdeis and
a valuation of the local variables for each unfinished call).

2.2 Pushdown Systems

The semantics of a Boolean program can be given nicely insterm
of PDSs.

DEFINITION 1. A pushdown systenis a triple P = (P,T', A),
whereP is a finite set of states or control locatiorisjs a finite set
of stack symbols, and C P x I" x P x I'* is a finite set of rules.
A configuration of P is a pair (p,u) wherep € P andu € T'*.
Aruler € A is written as(p,vy) — (p’,u), wherep,p’ € P,
v € T'andwu € T'". These rules define a transition relaties
on configurations of? as follows: Ifr = (p,v) — (p’,u) then
(p,yu'y = (p',un’) for all ' € T*. The reflexive transitive
closure of= is denoted by=-*. For a set of configuration§’, we
definepre*(C) = {¢' | 3c € C : ¢ =* ¢} and post*(C)
{c | 3c € C : ¢ =* ('}, which are just backward and forward
reachability under the transition relatios>.

Without loss of generality, we restrict the pushdown rules t
have at most two stack symbols on the right-hand side [42].

Encoding Boolean programsThe standard approach for mod-
eling the program control flow with a pushdown system is as fol
lows: P contains a single stat@}, I' corresponds to the program
locations, and\ corresponds to edges of the CFG (see Fig. 2).

time the call was made. The PDS transition relatigx) (which is
essentially a transition relation @k x L, represents the semantics
of the Boolean program.

The problem of interest, for sequential programs, is to fived t
set of all reachable configurations, starting from a givenafe
configurations. This can then be used, for example, for tisser
checking (i.e., determining if a given assertion can eviy éa to
find the set of all data values that may arise at a program point
(for dataflow analysis). Because the number of configuratafra
pushdown system is unbounded, it is useful to use finite aatim
to describe regular sets of configurations.

DEFINITION 2. If P = (P,T’, A) is a pushdown system therPa
automatonis a finite automaton@, ", —, P, F'), whereQ D Pis
afinite set of states;»C Q x I' x Q is the transition relationP is
the set of initial states, anfl' is the set of final states. We say that a
configuration(p, u) is accepted by &-automaton if the automaton
can accept: when it is started in the stage (written asp —-* g,
whereq € F). A set of configurations is calleggular if someP-
automaton accepts it. Without loss of generalftautomata are
restricted to not have any transitions leading to an inis#te.

An important result is that for a regular set of configuragion
C, both post™(C') and pre*(C) (the forward and the backward
reachable sets of configurations, respectively) are alpdaesets
of configurations [5, 9]. The algorithms for computipgst™ and
pre™, calledpoststarandprestar, respectively, take ®-automaton
A as input, and ifC is the set of configurations accepted Hy
they produceP-automatady,s;~ and.A,.+ that accept the sets of
configurationgost™ (C') andpre* (C), respectively [5, 13, 14].

2.3 Concurrent Boolean Programs and CBMC

A concurrent Boolean prograns a set of Boolean programs (one
for each thread) where the global variables are shared batthe

.For encoding Boolean programs with PDSs, the. state alphabetieads. Thus, any of the threads can modify the global biesa
P is expanded to encode the values of global variables, and they;; they have their own copy of the local variables. Syncization

stack alphabet is expanded to encode the values of locablesi
[42]. Let G be the set of valuations of global variables, Ma¢ the

set of valuations of local variables, and be the set of control lo-
cations of the™™ procedure. The effect of executing an assignment
or assume statemesnt, denoted agst], is a binary relation on

is easily implementable using global variables as locksalysis of
such models is undecidable in general [38], i.e., it is natsfide
to verify if a given configuration is reachable or not. Howeve
Qadeer and Rehof have shown that CBMC is decidablenList
the number of threads and let, ¢, - - - , ¢, denote the threads. We

G x Val; that describes how values of variables in scope can change. 4q ot consider dynamic creation of threads in our madel.

We setP to beG, andrI" to be the union ofV; x Val; over all proce-
dures (note that the set of local stafesqualsl™). Rules for the!"
procedure are constructed as follos:a CFG edge: — v with a
statemenst is encoded as a set of rulég, (u,1)) — (¢, (v,1))
such that((g,1), (¢’,1")) € [st]; (it) a procedure return at node
w is a set of rulegg, (u, 1)) — (g,¢) for each(g,!) € G x Val;;
(#7) a call edgec — r that calls procedurg, with entry node

Let G be the set of global states (valuations of global variables)
and L; be the set of local states of (as described before). Then
the state space of the entire program consists of the gloae s

1Dynamic creation up to: threads can be encoded in the model [36].
Moreover, for CBA that considers context switchesp can be bounded
by k because other threads would never get a chance to run.

paired with local states of each of the threads, i.e., thefsstates
isG x L1 x --- x L,. A concurrent program can be represented

by n PDSs, one for each thread, where the PDSs share the same set

of global state<.

Let the transition relation of thread be =,, which is a bi-
nary relation onG x L; as described in the previous section.
If (9,1:) = (9',1), the transition(g,l1,--- ,li, -+ ,ln) =,
(¢',1a--- 1, 1) is a valid transition for the concurrent pro-
gram.

The execution of a concurrent program proceeds in a sequence

of execution context$n an execution context, one thread has con-
trol and it executes a finite number of steps. The execution co
text changes at eontext switcland control is passed to a different
thread. The CBMC problem is to find the set of reachable states
the transition relation of the concurrent program undernbloon
the number of context switches. Formally, lebe the bound on
context switches. Then there drer 1 execution contexts. Let-{

be (Ui (=+,)"), the transition relation that describes the effect of
one execution context. Then we wish to find the reachablesstat
in the transition relation given by=¢)**'. The reachable states
could be used, for example, to find out the data values whés

at noden; and the rest of the threads can be anywhere, or when
is atny andts is at noden, and so on. Note that while a bound is
placed on the number of context switches, no bound is planed o
the length of an individual execution context.

2.4 The Qadeer-Rehof Algorithm for CBMC

The Qadeer-Rehof (QR) algorithm works under the assumgiain
the setG is finite. Under such an abstraction, the only source of
unboundedness is the program stack.

The algorithm proceeds by iteratively increasing the nunolfe
execution contexts. Within one execution context, the allciate
can be considered local to the executing thread becausetie is
only thread that accesses it. At a context switch, the glstzdé is
synchronized with other threads so that they have the saeve vi
of the shared memory. The algorithm nee@so be finite to be
able to explore all possibilities at a context switch. WeyagiVe an
overview of the QR algorithm in terms of explicit state spadés
implementation using PDSs is described in [36].

If S; C L; is a set of local states, then lgt, S1,.S2,- -+, S»)
be the set of state§(g, {1, - ,1n) | li € S;}. We use the symbol

(900 Sor To)
ﬁ R = post,*(doo: So)

(R, To)

—

(911 S1. To) (912, S5 T) (91 S To)

ﬂ ﬂ R’ = post,*(9,,, To) ﬁ
JIN &m_ N

(921, S2: T1) (922 S, T2) (92 S20 T)

Figure 3. The computation of the QR algorithm, for two threads,
shown schematically in the form of a tree. The shaded boxes ar
just temporary placeholders and are not inserted into thélisb
The thick arrows correspond to Stgand other arrows correspond
to Step4. The set of tuples at levélof the tree correspond to all
states reached incontext switches.

t; is picked that gets to execute in that context. Then 8tépds

all states that execution of can produce. For each of the global
statesg,, that can be produced, it is passed to all other threads at
the context switch in steg. The set of tuplesn, i) with ¢ = &
represent the set of all reachable states. The computatiformed

by this algorithm is depicted in Fig. 3 in the form of a tree.

An important aspect of the algorithm is the way it manipudate
set of states. An item on the worklist is of the fog S1, - - - , Sn),
representing a set of states. The global stai kept explicit be-
cause it is required for synchronization across threadscahtext
switch. The local states need not be kept explicit, and theygal-
lected in the setsS;. This is important because the set of local
states can be infinite. The sefsare kept in symbolic form using
automata (Defn. 2). Thpoststaralgorithm works on these repre-
sentations, mapping automata (capturing starting corgtguns) to
automata (capturing reachable configurations).

3. New Algorithm for CBMC Using Transducers

The QR algorithm fails to generalize to infinite-state adstipns
because of its requirement to keep the global state explithe

n as a shorthand for such a set of states. The QR algorithm is aworklist items. After each context switch, the algorithmedoa

worklist-based algorithm. An item on the worklist is a péif, i),
denoting that the set of statesis reachable in up t@ context
switches. Initially, the worklist containgjinit, 0), whereniit is the
starting set of states for the program. Then the algorithpeats
the following steps until the worklist is empty.

1. Select and remove an itefn,) from the worklist. Ifi = &,

then the context bound has been reached, so pick another item

2. Letn = (g,51, -
3 and4.

3. Using a thread-local analysis op, find the set of states that
t; can reach when started from the set of stdigsS;). Let
this set beR;, i.e., (g,5;) =i, R;.In PDS terms,R; =
post™, ((g,S;))- Write R; asUy~, (g, RY). This implies that
threadtj can change the global state frognto g, and itself
reach some local state .

4. For eachy, produced in the above step, the set of stajes=
(gps S1,-++ 3 Sj-1, RE, Sj41,- -+, Sn) are reachable in up to
¢ + 1 context switches. Inse(t),, ¢ + 1) into the worklist.

,S»). For eachy from 1 to n, repeat steps

Steps3 and 4 take a starting set of statesand produce all
states that are reachable in one execution context. Fithread

“fan-out” proportional to the size of the global state spa&g(see
Fig. 3) to pass the global state to all other threads. Thisstaue
for the automaton-based implementation of the QR algoriffine
algorithm presented in this section avoids such a fan-od (il

be extended to infinite-state abstraction§3rand§6).

The QR algorithm makes several calls to the PDS-based algo-
rithm poststarto compute the forward reachable states in a single
thread. This is crucial to be able to work with infinite setsoifig-
urations. However, the disadvantage is fhagtstarequires a start-
ing set of configurations to find all of the reachable confitares.
Creation of this starting set is what forces the fan-out apen to
alternate with calls tpoststar

A similar problem arises in interprocedural analysis ofussg
tial programs: a procedure can get called from multiple gdamith
multiple different input values. Instead of reanalyzing throce-
dure for each input value, it is analyzed independently ettiling
context to create summary This summary concisely describes the
effect of executing the procedure in any calling contextteirms
of the relation between input to the procedure and its outpint-
ilarly, instead of reanalyzing a thread every time it reesicontrol
after a context switch, we create a summary for it. The difffjcu
is that the “input” here is a starting set of configurationsd ¢he
“output” is the reachable sets of configurations. Both osthsets

can be infinite, and the summary must have some symbolic-repre show below—allows it to be extended to infinite-state datdral-

sentation. We construct the summary using a finite-statediucer
(an automaton with input and output tapes).

DEFINITION 3. A finite-state transducer = is a tuple
(Q,%:, %0, A\, I, F), whereQ is afinite set of stated;; and>, are
input and output alphabets, C Q x (3;U{e}) x (X, U{e}) x Q
is the transition relation,/ C (@ is the set of initial states, and
F C () is the set of final states. (ij1,a,b,q2) € A, written as
a1 —£ g2, we say that the transducer can go from stateto
g2 on inputa, and outputs the symbél Given a state; € I, we
say that the transducer can accept a string € X with output
o, € X, if there is a path from state to a final state that takes
input o; and outputso,. The language of the transducerC(r)
is defined as the following subsetBf x %} : {(0i,0,) | the
transducer can output string, when the input is; }.

Given a PDSP, one can construct a transdueer whose lan-
guage equalss-*, the transitive closure dP’s transition relation.
This result was first given by Caucal [10], but it was not acpam
nied with a complexity result, except that it was polynontiaie.
Our construction of transducers for WPDSs (strictly moreegel
than Caucal’s result) makes use of recent advancements amti-
ysis of (W)PDSs [5, 13, 40, 42] for an efficient constructiBmce
such transducers are of general importance, we give a caityple
result. The following theorem is derived from Thm. 2 givertth

THEOREM1. Given a PDSP = (P,T', A), a transducerrp can
be constructed such that it accepts infgt u1) and outputs
(p2 u2) if and only if (p1, u1) = (p2,u2). Moreover, this trans-
ducer can be constructed in tind& | P||A|(| P||T| +|A])) and has
at most| P|?|T'| + | P||A| states.

The advantage of using transducers is that they are closkt un
relational composition.

LEMMA 1. Given transducers; and 72 with input and output
alphabetX, one can construct a transducer; 72) such that
L(11;12) = L(11); L(12). Similarly, if A is an automaton with
alphabetX:, one can construct an automaten(.4) such that its
language is the image @(.A) underL(r1), i.e., the se{u € X" |
' € L(A), (v, u) € L(T1)}.

Both of these constructions are carried out in a manneraitail
automaton intﬁ)rsection [18]. For compos;}r)g transducerseéch

transitionp — 4q in 71 and transitiony’ —— ¢’ in 72, add the

transition(p, p') —— (q,q') to theircom(P/(l))sition. For transducer-
automaton application, each transitipn—— ¢ in 71 is matck}?ed
with transitionp’ —*+ ¢’ in A to produce transitior{p, p’) —

(q,q') in 71 (A). One can also take the union of transducers (union value too,i.e.,ifo = [r1,...,

of their languages) in a manner similar to union of automata.

tions. To make this extension, we represent (recursivejrprs
with infinite-state abstractions using WPDSd)(Extending our
algorithm to WPDSs presents two challenges: one is the manst
tion of a weighted transducer for a WPDS, and the other is thei
composition. These issues are address&® snds6, respectively.

4. Weighted Pushdown Systems

A weighted pushdown system is obtained by augmenting a PDS
with a weight domain that is Bounded idempotent semiriri@,

40]. Such semirings are powerful enough to encode finitie-s@ta
abstractions, such as the one required for bitvector datafialy-

sis, Boolean program verification, or the IFDS framework epB-
Horwitz-Sagiv [39], as well as infinite-state data absimd, such

as linear-constant propagation and affine-relation ais]29]. We
recall some of this here, but details on using WPDSs for fmter
cedural analysis can be found in [40].

Weights encode the effect that each statement (or PDS rule)
has on the data state of the program. They can be thought of as
abstract transformers, that specify how the abstract steages
when a statement is executed. WPDSs compute over thesetsieigh
Computing over transformers, instead of the underlyingrabs
states, is customary for interprocedural analysis [1232Pwhere
procedure summaries need to be calculated as transformaiio
abstract states.

DEeFINITION 4. A bounded idempotent semiring is a tuple
(D,®,®,0,1), where D is a set whose elements are called
weights 0,1 € D, and @ (the combine operation) ang (the
extend operation) are binary operators édhsuch that

1. (D, ®) is a commutative monoid withas its neutral element,
and where is idempotent(D, ®) is a monoid with the neutral
elementl.

2. ® distributes overp, i.e., for alla, b, c € D we have
a®(bdc) = (a®b)®(a®c) and(adb)®@c = (a®c) B (b®c) .

3.0 is an annihilator with respect tw, i.e., for alla € D,
a®0=0=0®a.

4. Inthe partial order_ defined bya,b € D, a C biff adb = a,
there are no infinite descending chains.

DEFINITION 5. A weighted pushdown systenis a triple W
(P,S,f) whereP = (P,T,A) is a pushdown systen§
(D,®,®,0,1) is a bounded idempotent semiring afid A — D
is a map that assigns a weight to each rulerof

Leto € A* be a sequence of rules. Usiiigwe can associate a
def

ri], then we define(c) = f(r1)®
...® f (7). Moreover, for any two configurationsandc’ of P, we

Coming back to CBMC, each thread is represented using a PDS.usepath(c, ¢') to denote the set of all rule sequences that transform

Thus, we can construct a transdueer for the transition relation
=1,. By extendingr;, to perform the identity transformation on
stack symbols of threads other thiarfusing transitions of the form
p ~15 ¢), we obtain a transducef; for (=;,)". Next, a union of
these transducers giveg, which represents>{. Performing the
composition ofr{ k times with itself gives us a transducerthat
represent$=-$)*T!. If an automatonA captures the set of starting
states of the concurrent program(.A) gives a single automaton
for the set of all reachable states in the program (underdheext
bound).

Roadmap for the Remainder of the Paper

We believe that the above algorithm provides a better basisrf-
plementing a tool for CBMC than the QR algorithm. In particu-
lar, the new algorithm avoids the fan-out problem, which—wes

cinto d. If ¢ € path(c,c’), then we say =7 ¢’. Reachability
problems on PDSs are generalized to WPDSs as follows:

DEFINITION 6. LetW = (P, S, f) be a weighted pushdown sys-
tem, whereP = (P,T', A), and letS,T" C P x I'* be regular sets
of configurations. Then theeet-over-all-pathvalue MOR S, T')

is defined agb{v(o) | s =7 t,s € S,t € T'}.

We call bounded idempotent semiringsight domains

A PDS is simply a WPDS with thé&oolean weight domain
({0,1}, ®, ®,0,1) and weight assignment(r) = 1 for all rules
r € A. In this case, MOPS, T') = 1 iff there is a path from a
configuration inS to a configuration iri", i.e., post™(S) N T and
S N pre*(T) are non-empty sets.

One way of modeling programs as WPDSs is as follows: the
PDS models the control flow of the program, as in Fig. 2. The

weight domain models abstract transformers for an abgiraof
the program’s data. The next two sections describe two data a
stractions that can be encoded using weight domains. Felisim
ity, we only show the treatment for global variables, and db n
consider local variables. Local variables (under an irdistiate ab-
straction) pose an extra complication for WPDSs [25], areirth
treatment can be found in App. B. Finite-state abstractidoaal
variables can always be encoded in the stack alphabet, RBOBs.

4.1 Finite-State Abstractions

An important weight domain for WPDSs is the set of all binary
relations on a finite set.

DEFINITION 7. If GG is a finite set, then theelational weight do-
main on G is defined ag2*%, U, ;,0,id): weights are binary
relations onG, combine is union, extend is relational composition,
0 is the empty relation, andl is the identity relation ort.

InstantiatingG to be the set of global states of a Boolean
program, we obtain a weight domain for Boolean programs. The
weight associated with a rule is its effect on the globakstahich,
as described earlier, is a binary relation @n (Methods for han-
dling local variables can be found in [25, 42].) An example is
shown in Fig. 4b). The Boolean program has two variables rang-
ing over the sel/, soG = V x V, with the first component be-
ing the value ofk. Weights are shown using a shorthand notation,
e.g., ((v1,v2), (v1,v1)) represents the sdt((vi,v2), (v1,v1)) |
vi,v2 € V]

The set of all data values that reach a nedean be calculated
as follows: letS be the singleton configuration consisting of the
program start node an@ be the sef{(p,nu) | © € I'"}. Let
w = MOP(S,T). If w = 0, then the node cannot be reached.
Otherwise,w captures the net transformation on the global state
from when the program started. The rangewofi.e., the sefg €
G| 3¢ € G:(¢,9) € w}), is the set of valuations that reach
noden. For example, in Fig. 4, the MOP weight to nodg is the
weightwes shown in the figure. Its range shows that y = 3 or
x=y="T.

Becaus€el' can be any regular set, one can also make stack-
qualified queries [40]. For example, the set of values thaeaat
noden when its procedure is called from call-site can be found
by settingl’ = {{p,n mu) | u € T*}

A WPDS with a weight domain that has a finite set of weights,

such as the one described above, can be encoded as a PDS. How?

ever, it is often useful to use weights because they can be sym
bolically encoded. Tools such asdweDp, BEBOP, and BLAST use
BDDs to encode sets of data values, allowing them to scale to a
large number of variables. Using PDSs for Boolean prograrm ve
fication, without any symbolic encoding, would not be febesib

4.2

An infinite-state abstraction is one in which the number aftetrt
states (or weights) is infinite. We begin with some simplegpias
of infinite-weight domains, and then discuss the one usealfioe-
relation analysis.

Infinite-State Abstractions

DEFINITION 8. Theminpath semiringis the weight domaio\t =
(N U {oo}, min, +, 00, 0): weights are non-negative integers in-
cluding “infinity”, combine is minimum, and extend is additi

If all rules of a WPDS are given the weighfrom this semiring
(different from the semiring weight, which is the integei0),
then the MOP weight between two configurations is the len§ith o
the shortest path (shortest rule sequence) between theathén
infinite-weight domain, based on the minpath semiring, veigiin
[24] and was shown to be useful for debugging programs.

proc foo

proc bar

ny

X, =0
n;

X, =1
N3

ibar()
n45

Figure 5. An affine program that starts execution at nagdeThere
are two global variables; andx..

The minpath semiring can be combined with a relational weigh
domain, for example, to find the shortest (valid) path in alBao
program (for finding the shortest trace exhibiting some prty).

DEFINITION 9. A weighted relationon a setS, weighted with
semiring (D, ®,®,0,1), is a function from(S x S) to D. The
composition of two weighted relation®; and R» is defined
as (Rl;Rz)(Sl,Sg) @{wl ® wa | dso € S : wi
Ri(s1, s2), w2 = Ra(s2,s3)}. The union of the two weighted re-
lations is defined a(sR1 URQ)(Sl, 82) =R (817 :_E»’Q)EBRQ(Sl7 82).
The identity relation is the function that maps each fairs) to T
and others td. The reflexive-transitive closure is defined in terms
of these operations, as before. 4+ is a weighted relation and
(s1,82,w) €—, then we writes; — sa.

DEFINITION 10. If S is a weight domain with set of weighf3
andG is afinite set, then the relational weight domain(@#, S) is
defined ag2%*%~P U, ; 0,id): weights are weighted relations
on GG and the operations are the corresponding ones for weighted
relations.

If G is the set of global states of a Boolean program, then the
relational weight domain oG, M) can be used for finding the
shortest trace: for each rule,§ C G x G is the effect of execut-
ing the rule on the global state of the Boolean program, tlssn-a
ciate the following weight with the rule{\(g1, g2).if (g1, g2) €
R) thenl elsecc). Then, ifw = MOP(C1, C?), the length of the
hortest path that starts with global statffom a configuration in
C, and ends at global stagé in a configuration irCs, isw(g, g')
(which would bexo if no path exists). Such a weight domain is a
small extension over the pure relational domain for a Baolaa-
gram. However, the QR algorithm cannot handle this abstract
whereas the algorithm we gave §8 can be generalized to handle
it (as shown irg5 andg6).

4.2.1 Affine-Relation Analysis

An affine relation is a linear equality constraint betweetedger-
valued variables. Affine-relation analysis (ARA) tries tadiall
affine relationships that hold in the program. An examplém

in Fig. 5. For this program, ARA would, for example, infer tha
X2 = x1 + 1 at program node..

ARA for single-procedure programs was first given by Karr
[21]. It took almost30 years to develop an analysis for multi-
procedure programs [29]. Using the results of this papercare
extend ARA to deal with (context-bounded) concurrency. ate
vantage of our framework is that we get a CBA automaticaliyrfr
an interprocedural analysis.

ARA generalizes other analyses, including copy-constespp
agation, linear-constant propagation [41], and inductianable
analysis [21]. We have used ARA (for sequential programs) on

n,l n,w,
Ny, W, n,,w
proc foo proc bar (p, n1> — <p7 n2> w1 22 4
3
: I oo o)
x=3 x=7 . (p,n2) — (p,n7mna) 1 n, 1 2 1, V2), (7, V2
y: ws | ((v1,v2), (v1,v1))
oy P n {p,na) = (p,n7 n5) l Mo Ws wa | ((v1,v2),(3,3))
s O % | (png) o (png) T £Ws ws [(or, 02, (7.7)
M Ns (p,ns) — (p,ne) 1 n, 1 we | ((v1,v2), (3,3)) U
(p;n7) — (p,ns) w3 n.w ((v1,v2),(7,7))
8''3 1,02),)
e (p,ns) = (p,e) 1 ' NWe NyWs
H 3o e
ng,1
(a) (b) (c) (d)
Figure 4. (a) A Boolean program with two procedures and two global vagaklandy over a finite domair” = {0,1,---,7}. (b) A

WPDS that models the Boolean prograf@) The result ofpoststaf (p, n1)) andprestar(p, n¢)). The final state in each of the automata is
acc (d) An index of the weights used in this figure. The unbound véesi are universally quantified ovér.

machine code to find induction-variable relationships leetavma-
chine registers [2]. These help in increasing the precisiban
abstract-interpretation based pointer analysis for nmecbode.

The Analysis

Interprocedural ARA can be performed precisely on affine- pro
grams, and has been the focus of several papers [16, 21, R9, 30
Affine programs are similar to Boolean programs, but witlegetr-
valued variables. Again, we restrict our attention to glolsi-
ables, and defer treatment of local variables to App. B. Adinch
conditions in affine programs are non-deterministic (ARArat
interpret conditions). I{x1,x2,- - ,x,} IS the set of global vari-
ables of the program, then all assignments have the form=

ao + >, aix;, whereao, - - - , a, are integer constants. An as-
signment can also be non-deterministic, denoteg;by= 7, which
may assign any integer to;. (This is typically used for abstract-
ing assignments that cannot be modeled as a linear functithe o
variables.)

ARA Weight Domain

We briefly describe the weight domain based on the matrix-
formulation of ARA from [29]. An affine relationo+> ;| aix; =

0 is represented using column vector of size+ 1 asd =
(ao,a1,--- ,an)". A valuation of program variables is a map
from the set of global variables to the integers. The valueg;of
under this valuation is written &).

A valuationx satisfies an affine relatiafi = (ao, a1, - -, an)"
if ag + 3 1, a;%(¢) = 0. An affine relatiorz represents the set of
all valuations that satisfy it, written astB(@). An affine relationi
holds at a program node if the set of valuations reachingrtbaée
(in the collecting semantics) is a subset afsFw).

An important observation about affine programs is that ihaeffi
relationsa; and @; hold at a program node, then so does any
of their linear combinations. For example, one can verifgtth
PTs(@1+d2) 2 PTs(d1)NPTS(dz), i.e., the affine relation; +a»
(componentwise addition) holds at a program node if kgtland
a» hold at that node. Therefore, the set of affine relationshbbt
at a program node form a vector space. This implies that aitplgs
infinite) set of affine relations can be represented by itedity
independent basis (which is always a finite set).

For reasoning about affine programs, each statement is ab-
stracted by a set of matrices of size+ 1) x (n+ 1) (this abstrac-
tion turns out to be precise, i.e., it is able to find all affie&tion-
ships in the affine program). This set is the weakest-prdtond
transformer on affine relations for that statement: if aestent is
abstracted as the sgtn1, mo, - - - ,m.}, then the affine relatiod

holds after the execution of the statement if and only if tfime
relations(mi@), (m2a), - - - , (m-@) held before the execution of
the statement.

Under such an abstraction of program statements, one can de-
fine the extend operation, which is transformer compositierel-
ementwise matrix multiplication, and the combine operatis set
union. This is correct semantically, but it does not give fhective
algorithm because the matrix sets can grow unboundedlyeMery
the observation that affine relations form a vector spaagesasver
to a set of matrices as well. One can show that the transformer
{m1, ma,--- ,m,} is semantically equivalent to the transformer
{m1,m2,--- ,my,m}, wherem is any linear combination of the
m; matrices. Thus, a set of matrices can be abstracted as fhe (in
nite) set of matrices spanned by them. Once we have a vectoe sp
we can represent it using its basis to get a finite and a boureged
resentation: a vector space oyer+ 1) x (n + 1) sized matrices
cannot have more théb + 1) number of matrices in its basis.

If M is a set of matrices, letN(M) be the vector space
spanned by them. Let be the basis operation that takes a set of
matrices and returns a basis of their span. We can now defne th
weight domain. A weightv is a vector space of matrices, which can
be represented using its basis. Extend of vector spacesdw-
is the vector spacé(mims) | m; € w;}. Combine ofw; andw,
is the vector spac§(mi +mz) | m; € wi}, which is the smallest
vector space containing botty andws. 0 is the empty set, antlis
the span of the singleton set consisting of the identity ixafihe
extend and combine operations, as defined above are operatio
on infinite sets. They can be implemented by the correspgndin
operations on the basis of the weights. The following proger
show that it is semantically correct to operate on the elésnign
the basis instead of all the elements in the vector spacensgdary
them:

B(wr & w2) B(B(w1) & B(w2))
Bwr & wa) B(B(w1) ® B(w2))

These properties are satisfied because of the linearitytehdx
(matrix multiplication distributes over addition) and cbime oper-
ations.

Under such a weight domain, MQP, T') is a weight that is the
net weakest-precondition transformer betweéeandT'. Suppose
this weight has basiém., - - - , m.}. The affine relation represent-
ing that any variable valuation might hold s 0 = (0,0,---,0).
Thus,0 holds ats, and the affine relatiod holds atT" iff mi1d =
med = --- = m,a@ = 0. The set of all affine relations that hold
atT can be found as the intersection of null spaces of the matrice
mi, M2, , M.

Extensions to ARA

ARA can also be performed for modular arithmetic to pregisel
model machine arithmetic (which is moduibto the power of
the word size) [30]. Our result for CBA holds for both integer
arithmetic and modular arithmetic, but we only focus on threfer
in this paper.

ARA in the presence of branch conditions is undecidable in
general. However, there are approximation techniques j@iich
we can make use of by giving up the distributivity propertplace
of monotonicity (se€4.3). The approximation techniques are safe
for interprocedural analysis, and also for CBA, as carrigidusing
the algorithms from this paper.

4.3 Solving for the MOP Value

There are two algorithms for solving for MOP values, called
prestar and poststar(by analogy with the algorithms for PDSs).
They take as input an automaton that accepts the set ofl icitia
figurations. As output, they producengighted automaton

DEFINITION 11. Given a weighted pushdown systewi
(P,S, f), aW-automatonA is a P-automaton, where each tran-
sition in the automaton is labeled with a weight. The weidgha o
path in the automaton is obtained by taking an extend of ttighte
on the transitions in the path in either a forward or backwalid
rection. The automaton is said to accept a configuratica (p, u)
with weightw = A(¢) if w is the combine of weights of all accept-
ing paths foru starting from state in .A. We call the automaton a
backward)V-automatonif the weight of a path is read backwards,
and aforward W-automatonotherwise.

Let A be an unweighted automaton afid.A) be the set of
configurations accepted by it. Theprestar.A) produces a for-
ward weighted automatad,,.. as output, such thatl,,.- (c) =
MOP({c}, L(.A)), whereaspoststaf.A) produces a backward
weighted automatond,..;» as output, such that,,s:«(c)
MOP(L(A), {c}) [40]. An example is shown in Fig.(4). One
thing to note here is how thgoststarautomaton works. The pro-
cedurebar is analyzed independently of its calling context (not
knowing the exact value aof), resulting in transitions betwean
andg. Its calling context, having the input values, is represdnis-
ing the transitions coming out of stajeThis is how, for instance,
the automaton can tell that = y = 3 at nodeng whenbar is
called from the(ns, n4) edge.

Using standard automata-theoretic techniques, one can als
compute 4,,(C) for (forward or backward) weighted automa-
ton A,, and a regular set of configuratiod$, where A, (C) =
@D{Aw(c) | ¢ € C}. This allows one to solve for the meet-
over-all-paths value MO, T') for configuration set$ andT’, as
poststafS)(T") = prestar(T")(S).

We now provide some intuition into why one needs both for-
wards and backwards automata. Consider the automata i4(Ejg.
For thepoststarautomaton, when one follows a path that accepts
the configurationp, ngn4), the transition(p, ns, ¢) comes before
(¢, 4, acg. However, the former transition describes the transfor-
mation insidebar, which happensafter the transformation per-
formed in reaching the call site at; (stored on(q, n4, acc)). Be-
cause the transformation for the calling context happer®ea
the program, but its transitions appear later in the automahe
weights are read backwards. For ffrestarautomaton, the weight
on (p, n4, acg is the transformation for going from to ne (since
it is a backward analysis), which occurs after the transéiom
insidebar. Thus, it is a forwards automaton.

The following lemma states the complexity for solvipgststar
by the algorithm of Reps et al. [40]. We use the notatiay{.) to
denote the time bound in terms of semiring operations.

LEMMA 2. [40] Given a WPDS with PDSP (P,T,A), if
A=(Q,T,—, P, F)isaP-automaton that accepts an input set of
configurations, poststar produces a backward weightedraaton
with at most Q| + |A| states in timeD; (| P||A[(|Qo| + |A])H +
|P||Xo|H), whereQo = Q\ P, Ao C— is the set of all transitions
leading from states i), and H is the height of the weight domain.

Theheightof a weight domain is defined to be the length of the
longest descending chain in the domain. In this paper, wenass
the height to be bounded for ease of discussing complexsylte
but WPDSs, and the algorithms in this paper, can also be wused i
certain cases when the height is unbounded (as long as tieene a
infinite descending chains, as is the casef6iin Defn. 8).

Approximate analysis

Among the properties imposed by a weight domain, one impor-
tant property is distributivity (Defn. 4, item 2). This is ammmon
requirement for a precise analysis, also considered iowato-
incidence theoremfor dataflow analysis [20, 22, 43]. Sometimes
this requirement is too strict and may be relaxed to monoityni
i.e., foralla,b,c € D,a® (b®dc) C (a®b) ®(a®c)and
(adb)®@cC (a®c) P (b® c). Insuch cases, the MOP computa-
tion may not be precise, but it will keafeunder the partial order.
The same applies for the results in this paper. When disivibu
holds, our CBA is precise, otherwise, if only monotonicitlds, it
will be a safe approximation.

4.4 CBA Problem Definition

The transition relation of a WPDS is a weighted relation (D&
over the set of PDS configurations. For configuratiensand
c2, if r1,--- 7y are all the rules such that =" ¢, then
(c1,c2,®:f(r;)) is in the weighted relation of the WPDS. In a
slight abuse of notation, we will use- and its variants for the
weighted transition relation of a WPDS. Note that the wesdhte-
lation=-" maps the configuration p&i¢:, c2) to MOP({c1 }, {c2}).

The CBA problem is defined as §2.3, except that all relations
are weighted. This means that each thread is modeled as a WPDS
The threads share PDS states of the WPDSs, as well as thetsveigh
(the former can be eliminated, because PDS states can bedoush
inside the weights).

This problem definition allows one to precisely model concur
rent Boolean programs (with variations such as finding tloetebkt
trace), as well as concurrent affine programs, where botliere
fined as having multiple threads and shared global variables

Given the weighted relatiog=-$)"** as R, the set of initial
configurationsS and a set of final configuratioris, we want to
be able to solve folR(S,T) = @®{R(s,t) | s € S,t € T}.
This captures the net transformation on the data state bat@e
andT' it is the combine over the values of all paths involving at
most k& context switches that go from a configuration §nto a
configuration inT'. Our results from§5 and§6 allow us to solve
for this value whert andT are regular sets.

For example, consider two copies of the program in Fig.)4
running in parallel. Let the control locations of the secamgpy
bel” = {n1,---,ng}, to distinguish them from those of the first
copy. Withk = 2, S = {(p,n1,n})} (the starting configuration
of the program)T’ = {{p,nes,u’) | v’ € (I')*} (threadl is at
ne and thread can have any stack), arfdl as above, the weight
R(S,T) would imply that the valuations$3, 3), (3, 7), (7, 3), and
(7,7) are possible.

5. Weighted Transducers

In this section, we show how to construct a weighted transdioe
the weighted relatior>* of a WPDS. We defer the definition of a
weighted transducer to a little later in this section (D&fR).

Pyiy2ys-am) =T (PLY2 Y Ve Verz o)
= (P2,73 "+ Vo1 Vht2 ** Vn)
=" (Prs Vi1 Yotz -+ Vn)
=" (Prg1,UL U2 - Uj Yeg2Yn)

Figure 6. A path in the PDS'’s transition relation; € T',j > 1.

Our solution is based on the following observation abouthat
in a PDS's transition relation. Suppose tHatyiy2 - -y») is a
configuration of a PD$. Then any path in the transition relation
=" described byP, starting from this configuration, can be written
as shown in Fig. 6. The figure shows that the path startsligitg
popping offsome stack symbolg:(symbols in the figurek < n)
in possibly multiple steps, after which it does not touch tbst
of the stack {x1 - - -), except for the top symbohf.41). Itis
also possible for the path to pop off all stack symbdis=£ n)
and stop because no PDS rule can fire on an empty stack. To mak
this observation more formal, we decompose a path into grese
follows:

1. Pop-phase.The path pops off the top stack symbol without
looking at the rest of the stack, i.e., it follows a sequente o
rules that takegp, yu) to (p’, u), for anyu € I'*.

2. Growth-phase.The path only looks at the top of the stack, and
possibly rewrites it, but does not pop it off, i.e., it folleva
sequence of rules (possibly empty) that takes a configuratio
(p,yu) to (p’,w'u) withw’ € T't, for anyu € T*.

Each path in the PDS's transition relation has zero or mope po
phases followed by a single (optional) growth-phase. Westrant
the transducer for a WPDS by essentighhg-computingeach of
these phases. First, we define two procedures:

1. pop: P xT' x P — D is defined as follows:

pop(p, v,p") = B{v(o) | (p,7) =7 (¥, €)}
2.grow: P x T — ((P x I'") — D) is defined as follows:
grow(p,) (¢, u) = D{v(o) | {p,7) =7 (', u)}

Note thatgrow(p,~y) = post™({p,~)). The following Lem-
mas give efficient algorithms for computing the above pracesl
Proofs are given in App. A.

LEMMA 3. LetA = (P, T, 0, P, P) be aP-automaton that repre-
sents the set of configuratiods = {(p,e) | p € P}. Let Apop be
the forward weighted-automaton obtained by running presta
A. Then pofp, v, p’) is the weight on the transitiofp, v, p’) in
Apop- We can generatelpop in time O, (|P|?|A|H), and it has at
most| P| states.

LEMMA 4. Let Ar = (Q,T, —, P, F) be aP-automaton, where
Q =PU{g | p € Py €T}andp - g for each
p € P~yel. ThenA{q .} represents the configuratiofp,).

LetA be this automaton where we leave the set of final states un-
defined. Letdgow be the backward weighted-automaton obtained
from running poststar ond (it does not need to know the final
states). If we restrict the final states iyow to be justg, , (and
remove all states that do not have an accepting path to the fi-
nal state), we obtain a backward weighted-automatép., =
poststaf (p,v)) = grow(p,v). We can computedgow in time
Os(|P||A|(|P||IT|+]|Al)H), and it has at mogtP||T'|+|A| states.

The advantage of the construction presented in Lemma 4tis tha
it just requires a singlpoststarquery to compute all of thet,, -,

instead of one query for eagh € P andy € I'. Because the
standardooststaralgorithm builds an automaton that is larger than
the input automaton (Lemma 2)gow has many fewer states than
those in all theA,, , put together.

Fig. 7(b) and(c) show theAgow and.Apop automata for a simple
WPDS constructed over the minpath semiring (Defn. 8).

The idea behind our approach is to udgop to simulate the
first phase where the PDS pops off stack symbols. With referen
to Fig. 6, the transducer consumes- - - v; from the input tape.
When the transducer (non-deterministically) decides ticcévover
to the growth phase, and is in staig in Apop With v;4+1 being
the next symbol in the input, it passes control4g, -, ., to start
generating the output; - - - u;. Then it moves into an accept phase
where it copies the untouched part of the input stagk ¢ - - - v»)
to the output.

This can be optimized by avoiding a separate copylpf, for
eachry. Let A, be the same adyrow, but with final states restricted
to {g¢r,, | 7 € T'}, and unreachable states appropriately pruned
e(see Fig. 7d) and (e)). The transducer we construct will non-
deterministically guess the stack symbalrom which the growth
phase starts, pass control A, and then verify that the guess was
correct when it reaches the final staje, in A,. As a result, we
just need P| copies 0fAgrow.

Note thatAyop is a forward-weighted automaton, whereégow
is a backward-weighted automaton. Therefore, when we neimth
together to build a transducer, we must allow it to switclections
for computing the weight of a path. This seems necessargusec
going back to Fig. 6, a PDS rule sequence consumes the input
configuration from left to right (in the pop phase), but proesithe
output stack configuration from right to left (as it pushes symbols
on the stack). Because we need the transducer to output u;
from left to right, we need to switch directions for compugtithe
weight of a path. For this, we defipartitionedtransducers.

DEFINITION 12. A partitioned weighted finite-state transducer
is a tuple(Q, {Qi}i_1,S, i, Zo, A\, I, F) whereQ is a finite set
of states,{Q1,Q-} is a partition of @, S = (D,®,®,0,1) is
a bounded idempotent semiring,; and X, are input and output
alphabetsA C @QxDx (X;U{e})x(2,U{e}) xQ is the transition
relation, I C @ is the set of initial states, anf C Q- is the set
of final states. We impose a restriction on the transitioressing
the state partition: if(¢, w, a,b,q') € Aandq € Q;,¢' € Qx and
I # k, thenl = 1,k = 2 andw = 1. Given a state; € I, we
say that the transducer can accept a strimg € 37 with output
o, € X, if there is a path from state to a final state that takes
inputo; and outputss,.

Computing the weight of a path requires more care. For a path
7 that goes through statesg, - - - , gm, such that the weight of the
i*" transition isw;, and all statesy; are in Q; for somey, then
the weight of this patl(n) iswi1 @ we ® - - @ wp, if 7 = 1 and
Wm QWm—1®---Quw if 7 = 2, i.e., the state partition determines
the direction in which we perform extend. For a patthat crosses
partitions, i.e.;n = n1n2 such that eachy; is a path entirely inside
Qj, thenv(n) = v(m) ® v(n2).

In this paper, we refer to partitioned weighted transduesrs
weighted transducers, or simply transducers when there 8-
sibility of confusion. Note that when the extend operatocam-
mutative, as in the case of the Boolean semiring used fordimgo
PDSs as WPDSs, the partitioning is unnecessary.

Let St(.A) denote the set of states of an automatbrBecause
each of Apop and.A, have P as a subset of their set of states, we
distinguish them by referring to a stagec St(Apop) by gpop @and
q € St(Ap) by gp.

Given a WPDSW, we construct the desired weighted trans-
ducerny using the steps given below, has stateqq;, ¢r} U

‘ P, /e,

Figure 7. Weighted transducer constructig:) A simple WPDS with

the minpath semiringh) The Agow automaton. Edges are labeled

with their stack symbol and weightc) The Apop automaton(d) The A,, automaton obtained frotdgwow. (¢) The A,, automaton obtained

from Agow. The unnamed state {i2) and(d) is an extra state added by

theststaralgorithm used in Lemma 4) The weighted transducer.

The boxes represent “copies” @fyop, Ap, and.A,, as required by stegsand3 of the construction. The transducer paths that accept input
(p1 a) and output(ps b™), for n > 2, with weightn are highlighted in bold.

St(Apop) U (U, p St(Ap)), input alphabet” U T', output alpha-
bet P U T, weight domain the same &%, initial stateg;, and
final stateqy. Its state partition 91 = {¢;} U St(Apop) and
Q2 = {gr} U (U,ep St(Ap)). The part of the transducer con-
tained inQ: simulates the pop phase, and the part containéghin
simulates the growth phase, including the part where theushied
part of the stack is copied to the output tape. Transitions\t@re
added as follows (an example is given in Fig. 7):

1. For each statp € P, add the transitior{g;, p/e, Ppop) With

weightT to 7yy.

. For each transitio(‘péop, ~, pgop) with weightw in Apop add the
transition(péop, (v/e), pﬁop) with the same weight tayy, i.e.,
copy overApgp.

. For each transitiofig,, 7', ¢,) in each automatom,, add the
transition (gp, (¢/7'), ¢p) with the same weight tay, i.e.,
copy over each of thel,,.

. For eachy, ¢’ € P, add the transitior{gpop, (¢/¢), g,) With
weightT to 7. This transition permits a switch from the pop
phase to the growth phase. At this point, we just know that the
growth phase begins in stageand ends in state’. This step
guesses the stack symbol from which the growth phase starts.
The next step verifies that our guess was correct.

. For each final state,, € St(Ap), add the transition
(gp,~, (v/€), q5) with weightT to Ty . This transition verifies
thaty was on the input tape, and we just completed the growth
phase starting from.

. For eachp,q € P, add the transition(gy, (¢/¢), qr) with
weight 1 to ny. This transition allows us to skip the growth
phase by going directly to the final state.

. For eachy € T', add the transitiofgy, (v/7), ¢5) with weight
1 to . This part of the transducer copies over the untouched
part of the input tape to the output tape.

THEOREMZ2. When the transduceryy, as constructed above, is
given input(p u), p € P,u € T'*, then the combine over the
values of all paths inny that output the string(p’ u’) is pre-
cisely MOR{(p,u)},{(p’,u’)}). Moreover, this transducer can
be constructed in timé&,(|P||A|(|P||T'| + |A|)H), has at most
|P|?|T'| + | P||A| states and at mo$P|?|A|? transitions.

Usually the WPDSs used for modeling programs hia®e= 1
and|I'| < |A]. In that case, constructing a transducer has similar
complexity and size as running a singleststarquery. A proof of
Thm. 2 is given in App. A.

6. Composing Weighted Transducers

Composition of unweighted transducers is straightforwhud this
is not the case with weighted transducers. The requiremer h
is to take two weighted transducers and create another onsewh
(weighted) language is a relational composition of the ¢lvisd)
language of the two transducers (see Lemma 1 and Defn. 9). In
particular, the composition is to be performed by exteriihich
is the requirement that presents difficulties.

We begin with a slightly simpler problem on weighted au-
tomata. The machinery that we develop for this problem well b
used for composing weighted transducers.

6.1 The Sequential Product of Two Weighted Automata

Given forward-weighted automatd; and.A., we wish to con-
struct another weighted automataha such that for any configura-
tionc, Az(c) = Ai(c)®.Az2(c). Assume that configurations consist
of just the stack (anfP| = 1, which fixes the starting states of the
automata). This is a special case of transducer compasitiben
a transducer only has transitions of the form+), it is essentially
an automaton, and composition of such transducers redadhs t
above problem. For the Boolean weight domain, this reducast
weighted automaton intersection (with words accepted wélght
0 being considered as words not accepted by the automaton).
Because the extend operation intuitively corresponds te co
catenation of paths, a first attempt at solving this probketo con-

A A A,

a, (Wy,w,)
(p.p)

b, (wp,ws)
(91,02)

1 2
a,w, b,w, a,w, b, wg
d, wy d, wg

Figure 8. Forward-weighted automata. Their final states@re
and(q1, g2), respectively.

d, (w3,wg)

catenate the two automata by connecting the final state§ db
the initial state of4- via an epsilon transition with weight How-
ever, this concatenated structure is not satisfactorytérpreted
as an automaton: reading off the desired weight for conftgmra
c requires quantification over all paths that accept the woeg.
For a (regular) set of configuratiod$ one would need quantifica-
tion over the languagé(cc) | ¢ € C}. This language is not even
context-free. We overcome this by transferring some of thra-c
plexity into the weights, and retaining the regular stroetaf the
automaton.

To take the sequential product of weighted automata, we star
with the algorithm for intersecting unweighted automate@3).
This is done by matching corresponding transitions in the aw-
tomata to produce a transition in the new automaton. We widdd
to do the same with weighted transitions. For this, giverghs of
the matching transitions, we want to compute a weight to pahe
transition in the new automaton. Consider the automata shiow
Fig. 8. Intersectingd; and.4; without weights producesls (ig-
nore the weights for now). The weight with which we waty to
accept(a b)isAi(a b) ® Az(a b) = w1 @ w2 @ ws @ ws.

One way of achieving this is to pair the weights while inter-
secting (as shown fads in Fig. 8). Matching the transitions with
weightsw; and w4 produces a transition with weighfw:, wa).
For reading off weights, we need to define operations on gaire
weights. Define extend on pairg§) to be componentwise extend
(®). ThenAs(a b) = (w1, ws) Qp (w2, ws) = (w1 ® w2, ws ®

ws). Then by taking an extend of the two components, we get the

desired answer. Essentially, the paired weights keep tatke
weight from the first automaton in the first component, and the
weight from the second automaton in the second componeki. Ta
ing extend of the components in the paired weight of a pat, pr
duces the desired result for the (ordinary) weight of théapat

Whenn = 2, we write the tensor operator as an infix operator.
Note that because of the first condition in the above defimitio
T, = o(,---,1) and0; = &(0,---,0). Intuitively, one may
think of the tensor product of weights as a kind of generalized
i-tuple of those weights. The first condition above implieatth
extend of weight-tuples must be carried out componentviise.
DeTensoroperation is the “read-out” operation that puts together
the weight-tuple by taking their extend. The third conditis
the key. It distinguishes the tensor product from a simpj#irig
operation. It enforces that tHeeTensoroperation distribute over
the combine of the tensored domain. A componentwise combine
on tuples does not satisfy this condition.

If a 2-STP exists for a weight domain, then we can take the
product of weighted automata for that domain;4f and.4, are
the two input automata, then for each transitipn, -, g1) with
weight w1 in Ay, and transition(pz, v, g2) with weight w., add
the transition((p1, p2),~, (g1, ¢2)) with weight (w1 ® w2). Then
the value of4s3(c) for a configuratiorr, or the valueds(C) for a
set of configurations can be computed as before, but theswfed
by theDeTensoroperation.

The proof follows from the definitions. LeiccPatt{A;, o, w)
be a predicate that denotes that is a path inA; from its initial
state to a final state that accepts the wordndw is the weight of
the path (computed by performing extends of weights on iians
in the path, in order). The way the automata-intersectigorichm
is carried out, we know that paths that accept a woidl .45 are in
one-to-one correspondence with paths that accépid; and paths
that accept: in As. If o, is an accepting path farin A; (i = 1, 2),
then we can uniquely determine an accepting fath o2) for u
in Az, and vice versa. These properties can be used to prove that
if accPati{As, (o5, 02),w) holds, themw = w; ® ws such that
accPatt{A;, o, w;) hold fori = 1, 2. This gives us:

DeTensofAs3(C))
= DeTensof®:{w | accPati{ A3, 0., w),c € C})
= @{DeTensofw) | accPati{.As, o, w),c € C'}
= @{DeTensofw: © w2) | accPatA;, o, w;), c € C,
7: = 172706 = <0270—3>}
= ®{w1 ® wa | accPati{A;, ol, w;),c € C,i = 1,2}
= ®{Ai(c) ® A2(c) | c € C}
With the application of thdDeTensoroperation at the end4s

Because the number of accepting paths in an automaton maybehaves like the desired automaton for the product pind As.

be infinite, one also needs a combine,j on paired weights.
Defining it componentwise is not precise. For example(if=

{c1, c2} is a set that contains two configurations, then we want the
value of A3(C) to be(Ai(c1) ® Az2(c1)) @ (Ai(c2) @ Aa(ca)).
However, using componentwise combine, we would.4etC) =

As (Cl)@pAg(Cz) = (.A1 (01)@./41 (02)7 Ao (Cl)@.Az (02)) and the
extend of the components gives four ter(oéi (c1) ® Az(c1)) B
(Ai(c2) ® Az(c2)) © (Ar(c1) @ Az(c2)) © (Ar(c2) ® Az(c1)),
which includes cross terms liké; (c1)®.Az2(c2). (Componentwise
combine does give a safe approximation.)

We now show that, under certain circumstances, it is passibl
use a different weight domain instead of weight-pairs, ecgely
compute the desired value for the sequential product of ket
automata. The following defines the required weight domain.

DEFINITION 13. Ther'" sequentializable tensor produ¢t-STP)
of a weight domainS = (D,®,®,0,1) is defined as another
weight domainS,; = (D, ®¢, ®¢, 0, 1;) With operations® :
D™ — D, (called the tensor operation) and DeTensab; — D

such that for alkw;, w}; € D andt1,t2 € Dy,

1 G(wly w2, - - 7wn)®t®(w£7 wé7 e
Wy, W @ W)

2. DeTensof® (w1, w2, - ,wy)) = (w1 @ w2 ® - - - @ wy) and

3. DeTensaft: @®: t2) = DeTensoft1) @ DeTensofts).

W) = O(w1 W, w2 ®

A similar construction and proof hold for taking the prodottn
automata at the same time, whenaS TP exists.

Before generalizing to composition of transducers, we sthatv
n-STP exists, for all, for the weight domains presented in this
paper §4.1 and§4.2).

6.2 Sequentializable Tensor Product

LetS = (D,®,®,0,1) whose STP we wish to construct. The
first thing to note is that if the extend operation is commiugat
(in this case, we say is commutative),S is its own STP for
all n. The tensor operation can be defined as the extend of all
its arguments, an®eTensoroperation as identity. This result is
somewhat expected: the difficulty in taking the sequentiatipct

of weighted automatal; and.A; is that while the input word (or
configuration) is read synchronously by them, their weidlatge to
be read off in sequence (first: (c), then Az (c))). When extend is
commutative, the weights can be read off synchronously dks we
In this case, when weighted transitions are matched dukieg t
intersection operation, the weight on the new transitian lwa the
extend of the weights on the matching transitions.

Recall that PDSs are the special case of WPDSs with the
Boolean weight domain. The above result shows that our algo-
rithm for WPDSs, when dealing with the Boolean weight domain
reduces exactly to the one we gave for PD§.(

For commutative domains, it is easy to construct their STP, weights in then™ STP from a weight in thén — 1)** STP and the

but they are not very useful for encoding abstractions foACB
Under a commutative extend, interference from other trgezah
have no effect on the execution of a thread. This is unredédena
to assume for models of programs (i.e., for CBA). Howevechsu
domains still play an important role in constructing STPs. 8Now
that STPs can be constructed foatrix domainsbuilt on top of a
commutative domain.

DEFINITION 14. LetS,; = (D., D¢, ®¢, 0¢, 1) be a commutative
weight domain. Then matrix weight domainon S, of ordern is
a weight domainS = (D, @, ®,0, 1) such thatD is the set of all
matrices of sizex x n with elements fronD.; & on matrices is
element-wised.; ® of matrices is matrix multiplication is the
matrix in which all elements ar@.; T is the identity matrix{. on
the primary diagonal an@. everywhere else).

The reader can verify thaf, as defined above, is indeed a
bounded idempotent semiring (eversif is not commutative). Let
B be the Boolean weight domain with elemehgsand0s. The re-
lational weight domain (Defn. 7) on a s6t= {g1, 92, - ,g/¢| }
is a matrix weight domain o8 of order|G|: a binary relation orz
can be represented as a matrix such thatihg entry of the matrix
isTg ifand only if (g, g;) is in the relation. Relational composition
then corresponds to matrix multiplication. Similarly, tregational
weight domain o{G, S.) (Defn. 10) is a matrix weight domain on
S. of order|G|, providedS. is commutative.

The advantage of looking at weights as matrices is that @égiv
us essential structure to manipulate for constructing the. SvVe
need the following operation on matrices: tkenecker product
[44] of two matricesA and B, of sizesni x ne andns x na, respec-
tively, is a matrixC of size(n1 n3) x (n2 n4) such thaC(i, j) =
A(idivns,jdivng) ® B(i mod n3,j mod na), where matrix
indices start from zero. It is much easier to understanddéfimi-
tion pictorially (writing A(¢, j) asai;):
an B G1n, B
C— .

anllB a7L17L2B

The Kronecker product is an associative operation, and alsow;)” and it is its self inverse(w])” =

written as the tensor produgt. Moreover, it is well known that
for matricesA, B, C, D with elements that have commutative mul-
tiplication,(A® B)® (CO D) =(A® C)® (B® D).

Note that the Kronecker product has all pairwise producedesf
ments from the original matrices. One can come up witjection
matricesp; (with justT and0 entries) such that; ® m ® p; selects
the (4, j) entry of m (zeros out other entries). Using these matri-
ces in conjunction witpermutationmatrices, one can compute the
product of two matrices from their Kronecker product: thare
fixed matrices:;, e; and an expressioft, = P, ;(e: ® m ® ¢;),
such thatd,,,, om, = m1 ® ma. This can be generalized to mul-
tiple matrices to get an expressifp, of the same form as above,
such thab,, o...om,, = m1 ®---®m,. The advantage of having
an expression of this form is thé,, gm, = 0m, ® Om, (because
matrix multiplication distributes over their addition, combine).

THEOREM3. A n-STP exists on matrix domains for all If S is

a matrix domain of order, then itsn-STP is a matrix domain
of order ™ with the following operations: the tensor product of
weights is defined as their Kronecker product, and the Delrens
operation is defined a&m.0,,.

The necessary properties for the tensor operation follomfr
those for Kronecker product (this is where we need comnmutati
ity of the underlying semiring) and the expressidn. This also
implies that the tensor operation is associative and onebuda

original matrix weight domain by taking the Kronecker protu
This, in turn, implies that the sequential productcdiutomata can
be built from that of the firs(n — 1) automata and the last automa-
ton. The same holds for composimngtransducers. Therefore, the
context-bound can be increased incrementally, and thedtener
constructed fof=-)* can be used to construct one fes$)***.

The weight domain for ARA §4.2.1) is not quite a matrix
weight domain, but it is similar. The weights are matricegrov
integers, which have a commutative multiplication. Exténele-
mentwise matrix multiplication and combine is elementwigsrix
addition. Therefore, defining the tensor addTensoroperations
as for matrix domains (but elementwise), we obtain most ef th
desired properties. However, just as for interprocedu@A/one
needed to prove two properties to show that combine and éxten
can be carried out on the basis instead of the whole vectaespa
one needs to prove the same for tensor Bedensor for weights
w1, W2,

Bwr © w2)
B(DeTensofw1))

B(B(w1) © B(wz))
B(DeTensof3(w1)))

These properties follow quite trivially from the linearitf
Kronecker product and tHeeTensowoperator (both distribute over
addition).

6.3 Composing Transducers

If our weighted transducers were unidirectional (comefer-
wards or completely backwards) then composing them would be
the same as taking the product of weighted automata: thehteeig
on matching transitions would get tensored together. Hewewur
transducers are partitioned, and have both a forwards coempo
and a backwards component. To handle the partitioning, ved ne
two more operations on weights.

DEFINITION 15. Let S = (D, ®,®,0,1) be a weight domain.
Then atransposeoperation on this domain is defined 437 :
D — D such that for allwy,ws € D, w{ ® wi = (ws ®

T wi. A n transpos-
able STP(TSTP) onS is defined as am-STP along with an-
other de-tensor operation: TDeTensor D™ — D such that
TDeTensof® (w1, wa, - - ,wy)) = w1 QWi @ws@wi ®- - - wh,
wherew!, = w, if n is odd andw? if n is even.

TSTPs always exist for matrix domains: the transpose oparat
is just the matrix-transpose operation, andTB®Tensopperation
can be defined using an expression similar to thabfFensorWe
can use TSTPs to remove the partitioning. kdbe a partitioned
weighted transducer af, for which a transpose exists, as well as
a 2-TSTP. The partitioning on the states ofaturally defines a
partitioning on its transitions as well (a transition isdsa belong
to the partition of its source state). Replace weightsn the first
(forwards) partition with(w: ® T), and weightsws in the second
(backwards) partition withT ® w3). This gives a completely
forwards transducer’ (without any partitioning). The invariant
is that for any sets of configuratiorfs andT’, 7(S,T), which is
the combine over all weights with which the transducer atscep
(s,t),s € S,t € T, equalsTDeTensofr' (S, T)).

This can be extended to compose partitioned weighted trans-
ducers. Composing transducers requires2u-TSTP. First, each
transducer is converted to a non-partitioned one oveRiM&TP
domain. Then input/output labels are matched just as for un-
weighted transducers, and the weights are tensored toggetsteas
for the sequential product of automata.

THEOREMA4. Given n weighted transducers,---,7, on a
weight domain with2n-TSTP, the above construction produces
a weighted transducer such that for any sets of configuratiofs
andT', TDeTensofr (S,T)) = R(S,T), whereR is the weighted
composition ofZ(71), - -+ , L(Tn).

7. Implementability of CBA

This paper develops novel machinery that shows how predige C
can be carried out for various abstractions, including itéistate
abstractions. Our algorithms may have practical value, &k Whe
QR algorithm requires an explicit fan-out proportional|e| for
each context switch, which can be very large. To some extieist,
huge complexity is unavoidable, as shown by the followingute
(a proof is in App. A).

THEOREMS. The language{(M, 0% ci,c2) | M is a set of
PDSs with shared state; and ¢ are configurations of\/, and
c1(=$) e} is NP-complete.

However, the analysis of sequential Boolean programs @ als
NP-complete (in the size of the Boolean program; the above re
sult is in terms of the size of the PDS) but tools [4, 17, 42] are
able to handle them efficiently, essentially, by using BDDgn-
code weights (or binary relations). The fan-out operatittihe QR
algorithm requires explicit enumeration of global statesich de-
stroys sharing inside BDDs. Our algorithm, based on traresd
requires no fan-out, and BDD-encoded valuations never tekd
enumerated.

We used matrix domains only to prove the existence of STPs.

Weights need not be represented using matrices. If binéatiors
are represented using BDDs, then taking their tensor ptagc

the fact that the language of the transducer is a union o&thé&ons
(pre*({p, 7)), post™({p,y))) for all p € P andy € T, with an
identity relation appended onto them to accept the untaliplaet

of the stack. This is similar to our decomposition of PDS path
(see Fig. 6). Construction of a transducer for WPDSs hasemt b
considered before. This was crucial for developing an élyorfor

a general CBA.

The pop-function used ing5 represents summary information
about paths, and is similar to the use of composed transforme
functions from [12], summary functions from [43], summadges
from [39], and summary micro-functions from [41]. In all dfese
cases, information is tabulated that summarizes the nettedff
following all possible paths from certain kinds of sourcesértain
kinds of targets. The path information is pre-computed atdked
to a structure that is used for answering queries.

One difference between our work and the afore mentioned work
is that in all of the latter the paths summarized are sama-ialid
paths (paths in which pushes and pops match as in a language of
balanced parentheses), whereagity@function summarizes paths
that result in the net loss of a stack symbol. In this resgkepop-
function is more like the “unbalanced-by-1" summarizatiofor-
mation used in the simulation technique for testing mentbprs
of a string in the language accepted by a 2NDPDA (2-way non-
deterministic PDA) [1]. Note that the “unbalanced-by-1'tur@ of
thepop-function is what makes it useful in an automaton construc-
tion (i.e., the popped symbol corresponds to a letter corsiuiny
the automaton).

Composing transducers. There is a large body of work
on weighted automata and weighted transducers in the speech
recognition community [26, 27]. However, the weights inithe
applications usually satisfy many more properties thasahaf a

duces to concatenating them (and doubling the number of BDD semiring, including the existence of an inverse and comtivitia

variables), which is a linear-time operation. Composingrans-
ducers would produce BDDs with times the variables (a linear
increase). The disadvantage of our algorithm is that thesthacers
we create havfl’| number of states (wheieis the set of program
control locations) and, consequently, the final transdotay have
|T'|* number of states. However, considering the fact that sglvin
CBA just requires one query on this large transducer, we san u
techniques such as building it lazily [26] or exploiting thegm-
metric structure of compositions (the same transducermyposed
each time). We plan to explore these issues in future workeMo
over, different abstractions can be used for increasingéeision

of CBA.

8. Related Work

Some of the related work has already been coveréd and$2. In
this section we discuss some of the more technically related.

A CBA of bounded-heap-manipulating Boolean programs is
given in [7]. It encodes such Boolean programs using PDS$, an
then uses the QR algorithm. Reachability analysis of caeotr
recursive programs has also been considered in [6, 11, Béker
works tackle the problem by computing overapproximaticithe
execution paths of the program, whereas here we compute-unde
approximations (bounded context) of the reachable corstinrrs.
Analysis under restricted communication policies (in casi to
shared memory) has also been considered [8, 19].

Constructing transducers.As mentioned in the introduction, a
transducer construction for solving reachability in PD$sgiven
earlier by Caucal [10]. However, the construction was gif@n
prefix-rewriting systems in general and is not accompanig@ b
complexity result, except for the fact that it runs in polymal
time. Our construction for PDSs, obtained as a special cadeo
construction given ifg5, is quite efficient. The technique, however,
seems to be related. Caucal constructed the transduceplojtiag

of extend. We refrain from making such assumptions.

The sequential product of weighted automata on semirings wa
also considered in [23]. However, it was presented for tlezish
case of taking one product of a forwards automaton with a-back
wards one. It cannot take the product of three or more autmat
The techniques in this paper are for taking the product anybau
of times (provided STPs exist).

References

[1] A. Aho, J. Hopcroft, and J. Uliman. Time and tape comptexi
of pushdown automaton languag&sformation and Contral
13(3):186-206, 1968.

[2] G. Balakrishnan and T. Reps. Analyzing memory accesses i
Xx86 executables. 1€C, 2004.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Au
tomatic predicate abstraction of C programsPlDI, 2001.

[4] T. Ball and S. Rajamani. Bebop: A symbolic model checker
for boolean programs. I8PIN 2000.

[5] A. Bouajjani, J. Esparza, and O. Maler. Reachabilitylgsia
of pushdown automata: Application to model checking.
CONCUR 1997.

[6] A. Bouajjani, J. Esparza, and T. Touili. A generic apio#o
the static analysis of concurrent programs with procedures
POPL, 2003.

[7] A. Bouajjani, S. Fratani, and S. Qadeer. Context-bodnde
analysis of multithreaded programs with dynamic linked
structures. IrCAV, 2007.

[8] A. Bouajjani, M. Miller-Olm, and T. Touili. Regular sym
bolic analysis of dynamic networks of pushdown systems. In
CONCUR 2005.

In

[9] J. R. Biichi. Finite Automata, their Algebras and Grammars
Springer-Verlag, 1988. D. Siefkes (ed.).

[10] D. Caucal. On the regular structure of prefix rewritifidreor.
Comput. Scj.106(1):61-86, 1992.

[11] S. Chaki, E. M. Clarke, N. Kidd, T. W. Reps, and T. Touili.
Verifying concurrent message-passing C programs withrrecu
sive calls. INTACAS 2006.

[12] P. Cousot and R. Cousot. Static determination of dysami
properties of recursive procedures.Hormal Descriptions of
Programming Conceptd.978.

[13] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Ef
ficient algorithms for model checking pushdown systems. In
CAV, 2000.

[14] A. Finkel, B. Willems, and P. Wolper. A direct symbolic
approach to model checking pushdown systeragectronic
Notes in Theoretical Computer Scien8e1997.

[15] M. R. Garey and D. S. Johnso@omputers and Intractability:

A Guide to the Theory of NP-Completene¥é¢ H. Freeman,
1979.

[16] S. Gulwaniand G. C. Necula. Precise interproceduralyeiis
using random interpretation. POPL, 2005.

[17] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
abstraction. IiPOPL, 2002.

[18] J. Hopcroft and J. Ulimanintroduction to Automata Theory,
Languages, and ComputatioAddison-Wesley, 1979.

[19] V. Kahlon and A. Gupta. On the analysis of interacting
pushdown systems. RROPL, 2007.

[20] J. Kam and J. Ullman. Monotone data flow analysis frame-
works. Acta Inf, 7(3):305-318, 1977.

[21] M. Karr. Affine relationships among variables of a praxgr.
Acta Inf, 6:133-151, 1976.

[22] J. Knoop and B. Steffen.
theorem. INCC, 1992.

[23] A. Lal, N. Kidd, T. Reps, and T. Touili. Abstract errorgyec-
tion. In SAS 2007.

[24] A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path optization
in programs and its application to debugging EEBOPR 2006.

[25] A. Lal, T. Reps, and G. Balakrishnan.
pushdown systems. IBAV, 2005.

[26] M. Mohri, F. Pereira, and M. Riley. Weighted automataext
and speech processing. BCAI 1996.

[27] M. Mohri, F. Pereira, and M. Riley. The design principlef
a weighted finite-state transducer library. TI€S 2000.

[28] M. Muller-Olm and H. Seidl. On optimal slicing of patel
programs. IrSTOC 2001.

[29] M. Miiller-Olm and H. Seidl. Precise interprocedurabdysis
through linear algebra. IROPL, 2004.

[30] M. Muller-Olm and H. Seidl. Analysis of modular arithatic.
In ESOR 2005.

[31] M. Muller-Olm and H. Seidl. A generic framework for gt
procedural analysis of numerical properties SIS 2005.

Lazy

The interprocedural coincaen

Extended weighted

[32] M. Musuvathi and S. Qadeer. lIterative context boundig
systematic testing of multithreaded programsPLDI, 2007.

[33] F. Nielson, H. R. Nielson, and C. HankinPrinciples of
Program Analysis Springer-Verlag, 1999.

[34] G. Patin, M. Sighireanu, and T. Touili. Spade: Verifioat
of multithreaded dynamic and recursive programs.ChV,
2007.

[35] E. Post. A variant of a recursively unsolvable probleBul-
letin of the American Mathematical Socigb2, 1946.

[36] S. Qadeer and J. Rehof. Context-bounded model chedfing
concurrent software. ITACAS 2005.

[37] S. Qadeer and D. Wu. KISS: Keep it simple and sequential.
In PLDI, 2004.

[38] G. Ramalingam. Context-sensitive synchronizatiensitive
analysis is undecidable. TROPLAS 2000.

[39] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocabu
dataflow analysis via graph reachability. ROPL, 1995.

[40] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted
pushdown systems and their application to interprocedural
dataflow analysis. I5CPR, volume 58, 2005.

[41] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocabu
dataflow analysis with applications to constant propagatio
TCS 167, 1996.

[42] S. SchwoonModel-Checking Pushdown SysteiiakD thesis,
Technical Univ. of Munich, Munich, Germany, July 2002.

[43] M. Sharir and A. Pnueli. Two approaches to interprocatu
data flow analysis. IfProgram Flow Analysis: Theory and
Applications Prentice-Hall, Englewood Cliffs, NJ, 1981.

[44] Wikipedia. Kronecker product.http://en.wikipedia.
org/wiki/Kronecker_product.

A. Proofs

Lemma 3A formal proof for this lemma would follow from a char-
acterization of the rule sequences that each automatositicem
represents, based on thbstract grammarformulation of prestar
[40]. We give a slightly informal, but intuitive, proof heré/e use
the fact that the saturation-based implementatiopreétaris cor-
rect [40].

The lemma rungrestaron the empty automaton (which rep-
resents the configuration s€t = {(p,e) | p € P}). Letg be a
stack symbol not iT", and Ag be an automaton with two states
{p,q}, ¢ ¢ P and a single transitio(p, 3, q). Let ¢ be the final
state of this automaton. Becayse? T, runningprestaron Ag will
return the same automaton as the one returned by rumméesgar
on the empty automaton, except for the extra transifiens, q)
(because no rule can matd). Ag represents the configuration
set{(p, 3)}, and therefore A’ ((p', 3)) = pop(p', 7, p) accord-
ing to the definition ofpop. However, A% ((p’, v 3)) is exactly the
weight on the transitiofip’, v, p) because the only path iA}, that
acceptg~y) starting in state’ is the one that follows transitions
(p',~,p) and(p, B, q). The results follows by repeating the argu-
ment for allp € P.

Lemma 4The proof is similar to the one given for Lemma 3. Let
B ¢ T be a new stack symbol. Let;” be the automatomt with

an extra state;; and an extra transitiog,,, 3, q¢). Let ¢ be
the final state of this automato.w.g’7 represents the configuration
set{(p,7 B)}. The automaton returned Ipoststaf.A%") would
then represent the configuration gedw(p,) with 8 appended at
the end of the stack. The proof follows from the fact that ingn
poststaron Ag” is the same as running it oA (for all p and~)
with the exception of the extrd-transition.

B.1 Boolean Programs

P,mva - vn) =" (P1,72 Ym) wy . .
=* (p2, 73 Yn) wo Sequential analysis
:>: T For encoding Boolean programs with local variables, asswiitie-
=, (Pr> Vo1 -+ -) Wk out loss of generality, that each procedure has the sameeaturhb
=" (Ph1, WYk2 7 Yn) Wkl local variables. LeG be the set of valuations of the global variables

and L be the set of valuations of local variables. Weights, abstra

Figure 9. A path in the PDS’s transition relation with correspond- ing program statements, are now binary relationssoix L. The

ing weights of each step. weight domain is a relational weight domain on the@ek L but
with an extramergefunction defined on weights. Because different
weights can talk about local variables from different prhaes,
one cannot take relational composition of weights fromedéht

Theorem 2The proof is based on the observation made in Fig. 6. procedures. Thenergefunction is used to change the scope of a

Suppose we have a path in the PDS transition relation from weight. It existentially quantifies out the current tramgfation on

(p,v1v2 -+ - Yn) 10 (Pr+1,uykt2 - - - 7n) that can be broken down local variables and replaces it with an identity relatioorrally, it

as shown in Fig. 9. can be defined as follows:

Then in the transducer, we can take the path starting
at ¢; that first takes the transition(q;, (p/€),ppop) (Step

1 of the construction) and moves into stae of Apop. mergew) = {(g1,11,92,11) | (91,11, 92, 12) € w}

Then it successively takes the transitior{gi, (12/¢),p2), Once the summary of a procedure is calculated as a weight
(P2, (v3/€),p3), -+, (Pr—1, (W/€), pr) (Step 2), all the time involving local variables of the procedure, theergefunction is
staying insideApop. If the weight of thei™ such transition is applied to it, and the resuiterggw) is passed to the callers of that
w', thenw'® C w; (wherea T biff a & b = a). This fol- procedure. This makes sure that local variables of one gdroee

lows from Lemma 3. Next, the transducer can take transition do not interfere with those of another procedure. The ptyper
(pk, (€/Pr+1), pr+1) (Step4) and move intoA,,. Then it can required ofmergeis that it should distribute over combine, i.e.,

take a path that outputs and move into state,, -, ,. There is mergéw, @ w2) = mergéw;) G mergdw:). More details can be
one such path becausé,, can accept: starting in statep1 found in [25].
(representing the configuratiofpx+1,u)) when the final state is For encoding Boolean programs with other abstractions) asc

o1, es1 (LEMMa 4). Moreover, the combine of weights of all such finding the shortest trace, one can use the relational welighain
paths in the transducer iS w4 1. After this, the transducer can on (G x L,S), whereS is a weight domain such as the minpath
take transition(gp,,. , ..., (Y+1/€), qr) (Stepb) and copy the semiring (transparent to the presence or absence of logables).
stack(yx+2 - - - v) ON to the output tape in the final state (Step Themergefunction on weights from this domain can be defined as
7). The path we just described took indgty:v2 - - - v) and out- follows:

put (pr+1 uvk+2 - - - Yn) as required, and the combine of weights

of all such paths isC the weight of the path shown in Fig. 9 mergéw) = X(g1,11,g2,12). if (I1 # l2) thenOs

(w1 ® w2 ® - - @ we41). Note that there is a corresponding path else@®,_; wgi,l1,g2,1)
in the transducer (that uses transitions inserted in Gteghen the tek

path shown in Fig. 9 has no growth phase. Context-Bounded Analysis

To argue the other direction, the reasoning is similar. A pat
the transducer must start in stagig then move inta4pep, then into
A, (for somep € P) and then move to staig. Keeping track of
the input and output required for this path, we can build tHeD/8
path as in Fig. 9. Using Lemmas 3 and 4, the weight of such a path
in the transducer would bh& the combine of weights of all paths
between the configurations in the PDS’s transition relation

For CBA, the two main steps are transducer construction laeid t
composition. The transducer construction does not changept
for the fact that theprestar query (Lemma 3) and thpoststar
query (Lemma 4) are carried out using the algorithms fronj.[25
Transducer composition requires more care.

First, reconsider the composition algorithm fr@g®. To com-
pose transducers andrs, one carries out the following: the tran-
sition (g1, 1 /72, g2) with weightw, in 71 is matched with transi-
tion (g1, v2/73, q2) With weightws in 7> to produce the transition
((q1,91),71 /73, (g2, ¢2)) With weightw: © w2. The tensor oper-
ation on binary relations on a sétresults in a binary relation on
the setG x G as follows:

Theorem 5[SKETCH] The proof follows from two earlier pieces of
work. Ramalingam [38] showed that reachability in multietaded
programs with synchronization primitives is undecidabjediv-

ing a reduction from the Post’s correspondence problem JPCP
[35]. We also know that bounded-PCP is NP-complete [15, Prob
lem SR11]. It is easy to see that shared memory with a bounded
number of context switches can simulate a similar numbeywf s w1 @ w2 = {((91,93),(92,94)) | (91,92) € w1, (9g3,94) € w2}
chronization steps. Thus, Ramalingam’s reduction can bd ts

give a reduction from bounded-PCP to CBMC If the values of local variables were encoded in the stack-sym

bols (as for PDSs), then the matching of the stack symbadh
the two transitions essentially matches the local-vagiabluation
from 7, with that fromr, and quantifies it out. does not appear

B. Local Variables on the transition produced for the composed transducer).

Local variables pose a complication for WPDSs. An extensibon When local variables are encoded in the weights, the tensor
WPDSs to handle abstractions with local variables (for satjal operation is changed as follows:

programs) is given in [25]. We will only summarize the es&dnt

details of that paper here. Also, because it is hard to ctexiae wi © wy =

abstractions with local variables using matrix domains, oméy {((g1,11,93,14), (g2, 11,94, 10)) | (91,11, 92, 12) € w,

focus on CBA of Boolean programs (with variations such adffigd (93,13, ga, la) € wa,

the shortest trace) and affine programs. lo = I3}

The third conditionl, = I3 performs matching on the local
variables, which are then quantified out, and replaced with a
identity transformation on the local variables. This canseen
as extending thenergefunction on simple weights to ones in the
tensored domain.

For the relational weight domain ofG x L, S), the tensor
operation is as follows:

w1 ©w2 = A(g1,11,93,13), (92,12, g4, 1))
if (I1 # 1l 0rls # ls) thenOs
else @lEL(wl(gh 117927 l) Os w2(937 lag47 l4))

B.2 Affine Programs

Context-bounded analysis of affine programs with localalzds
follows much on the same line as for Boolean programs. Thegldet
for sequential analysis of such programs can be found in [29]

Sequential Analysis

If an affine program hasa global variables and no local variables,
then the matrices have sige+1) x (n+1) (as explained i§4.2.1).
Assume, without loss of generality, that each procedurd hasl
variables. Then the matrices have sfret- 1+ 1) X (n+1+1).In
such a case, a matrix can be divided into four quadrants,aesh
below, along with their sizes.

| I
n+1)x(n+1) | (n+1)x1
11 WY
Ix(n+1) Ix1

A matrix encodes a transformation on variables, i.e., a nmp o
variable valuations. For example, the matrixfer:= x>+ 1 would
encode the map that takes the valuatiobefore the execution of
the statement and maps it¥@; — %(2) + 1]. The four quadrants
of a matrix describe four pieces of this transformation: finst
quadrant encodes the contribution of old values of globahistes
to new values of global variables; the second quadrant escod
the contribution of old globals to new locals; the third guad
encodes the contribution of old locals to new globals; aedahrth
guadrant encodes the contribution of old locals to new kcal

Themergefunction should quantify out the local variable map,
and replace it with an identity map. For the quantificatibe, first,
second, and third quadrants are zeroed out, and the idemdiyis
installed by changing the fourth quadrant to the identityriralf
M is a set of matriceanergd M) is defined as the application of
the following operation on all matrices af [29]:

mi1 | mae mi 0
m3 | Ma 0 glixi

Hereg is the topmost-leftmost elementof; . It is used to make
the above operation linear (which, in turn, makesrgedistribute
over combine of sets of matrices). The matfix; is the identity
matrix of sizel x I.

Context-Bounded Analysis

As for Boolean programs, thmergefunction is incorporated into
the tensor operation:

mi | M2 ® ms | me | | miOms | maOmy
m3 | my mr | ms 0 9195152 2

Hereg; is the topmost-leftmost element of matrix. The main
idea is thatn. andmy get stitched together, which corresponds to
putting together the values of local variables before aedrswitch
to the values after the thread gets control back.

