Computer Sciences Department

OLAP Over Imprecise Data with Domain Constraints

Doug Burdick
AnHai Doan
Raghu Ramakrishnan
Shivakumar Vaithyanathan
Technical Report \#1595
June 2007

OLAP over Imprecise Data With Domain Constraints

Doug Burdick ${ }^{1}$, AnHai Doan ${ }^{1}$, Raghu Ramakrishnan ${ }^{2}$, Shivakumar Vaithyanathan ${ }^{3}$
${ }^{1}$ University of Wisconsin - Madison, ${ }^{2}$ Yahoo! Research, ${ }^{3}$ IBM Almaden Research Center

Abstract

Several recent works have focused on OLAP over imprecise data, where each fact can be a region, instead of a point, in a multidimensional space. They have provided a multiple-world semantics for such data, and developed efficient solutions to answer OLAP aggregation queries over the imprecise facts. These solutions however assume that the imprecise facts can be interpreted independently of one another, a key assumption that is often violated in practice. Indeed, imprecise facts in real-world applications are often correlated, and such correlations can be captured as domain integrity constraints (e.g., repairs with the same customer names and models took place in the same city, or a text span can refer to a person or a city, but not both).

In this paper we provide a solution to answer OLAP aggregation queries over imprecise data, in the presence of such domain constraints. We first describe a relatively simple yet powerful constraint language, and define what it means to take into account such constraints in query answering. Next, we prove that OLAP queries can be answered efficiently given a database $D *$ of fact marginals. We then exploit the regularities in the constraint space (captured in a constraint hypergraph) and the fact space to efficiently construct D*. Extensive experiments over real-world and synthetic data demonstrate the effectiveness of our approach.

1. INTRODUCTION

OLAP employs a multi-dimensional data model, where each fact can be viewed as a point in the corresponding multi-dimensional space. If we relax the assumption that all facts are points, and allow some facts to be regions in the above space, we must handle the resulting imprecision when answering queries. For example, we can denote that a particular auto repair took place in the state of Wisconsin, without specifying a city. Answering queries over such imprecise information is widely recognized as important and has received increasing attention. In particular, we have recently developed an efficient solution [10, 9], which provides a possibleworld interpretation for imprecise facts, then computes the result of an aggregation query Q to be the expected value of evaluating Q over all possible worlds.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires a fee and/or special permission from the publisher, ACM.
VLDB'07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

FactID	Loc	Auto	Name	Cost
p_{1}	WI	F150	John Smith	100
p_{2}	WI	F150	John Smith	250
p_{3}	Madison	Honda	Dells	130
p_{4}	Dells	Honda	Madison	130

Table 1: A sample automotive repair database.
A key assumption underlying the above solution is that the imprecise facts are independent [10]. This assumption is often violated in practice, as the following example demonstrates:

EXAMPLE 1. Consider the automotive repair database in Table 1, where each tuple describes a repair. Here, both facts p_{1} and p_{2} are imprecise, because they do not specify the particular city in Wisconsin (e.g., Madison or Dells) where the repair took place. Now assume we know that all repairs with the same customer name and the same auto model took place in the same city. Then facts p_{1} and p_{2} are not independent. For instance, if in a particular world the repair of fact p_{1} took place in Madison, then so did the repair of p_{2}.

As another example, suppose the facts of Table 1 are extracted from text documents that describe repairs. In particular, consider the text snippet "Madison, Honda, broken ex. pipe, Dells \& I-90, towed 25 miles, $\$ 130$ ". A reasonable person-name extractor may extract "Madison" and "Dells" as person names, and similarly a reasonable location extractor may extract the same "Madison" and "Dells" as location names. This results in the two facts p_{3} and p_{4} in Table 1, which reflect different interpretations of "Madison" and "Dells". However, we know that each text span can have only one interpretation (e.g., either person name or location, but not both). Consequently, facts p_{3} and p_{4} are not independent. In particular, if we accept p_{3} then we must eliminate p_{4} from the fact database, and vice versa.

The above examples show that in OLAP over imprecise data, we often have extra information about which combinations of completions of facts are possible. This extra information either reflects the application logics (e.g., repairs with the same customer names and models took place in the same city), or the logics of the factderivation process (e.g., if facts are extracted from text then a text span encodes only a single interpretation). A natural way to interpret this information is as constraints over the set of possible worlds. Then, given a set of such constraints, our problem is to answer OLAP queries over only the subset of the worlds that satisfy the constraints.

This paper proposes an efficient solution to the above problem. In what follows, we will first describe our prior framework on OLAP over imprecise data [10, 9], then the challenges of pushing constraints into this framework, and our solutions.

Figure 1: (a) Querying imprecise data in prior work, (b)-(c) exploiting domain constraints for querying imprecise data in this work.

Figure 1. a illustrates our prior framework. Let D be a database of imprecise facts. A popular semantics [25,20] interprets D as a set of possible worlds, such as $w_{1}-w_{5}$ as shown in the figure, where each world is created by selecting a possible completion for each fact. Now consider an aggregation query Q over D. The answer to Q, denoted as $Q(D)$, is taken to be the expected answer of Q over all possible worlds ($w_{1}-w_{5}$ in this case).

Computing $Q(D)$ by evaluating Q over all possible worlds is practically infeasible. Hence, the work [10] proposes an efficient solution to this problem. First, it shows how the set of possible worlds can be compactly encoded using an extended database ($E D B$ for short) D^{\prime}, and how to create D^{\prime} from D using an allocation policy (see Figure 1.a). Next, it shows that query Q can be evaluated quickly in a single scan over D^{\prime}, and the answer, denoted $Q\left(D^{\prime}\right)$, is the same as $Q(D)$. This work is followed up in [9] by developing efficient allocation algorithms to compute D^{\prime} from D.

In this paper, we significantly extend the above framework (see Figures $1 . b-c$). We begin by defining a language to represent domain constraints. Next, we modify the query-answering semantics to exploit such constraints. Consider again the five worlds $w_{1}-w_{5}$ that result from the database D of imprecise facts. Given a set of constraints C, we retain only the valid worlds, i.e., those that satisfy C (which are w_{1}, w_{3}, w_{4} in this case, see Figure 1.b). Then we define the answer of Q over the imprecise database D and the set of constraints C, denoted $Q(D, C)$, to be the expected answer of Q over the valid worlds (Figure 1.b).

We then develop an efficient way to compute $Q(D, C)$, without enumerating all valid worlds. This is the central technical challenge we address in this paper. Clearly, we cannot answer Q over EDB D^{\prime}, as in prior work, because that would violate our semantics of considering only valid worlds. Instead, we prove that if we can construct a marginal database (or MDB for short) $D *$, which assigns to each fact completion its marginal probability in the valid worlds, then we can answer $Q(D, C)$ efficiently in a single scan over MDB $D *$ (Figure 1.b, the lower half). This result is surprising, because in many problem settings with domain constraints [20], even the existence of a MDB $D *$ does not help compute exact query answers (and often approximate solutions are proposed instead [20]). We show that for the algebraic aggregation operators [17] commonly used in OLAP queries (e.g., Sum, Count, approximate Average), it is possible to compute an exact answer using the MDB.

We then turn our attention to the problem of efficiently constructing MDB $D *$, given an EDB D^{\prime} and a set of constraints C. To solve this problem, first we create a hypergraph G that captures the regularities in the constraint space (see Figure 1.c). Next, we exploit these regularities, and use G to decompose D^{\prime} into independent connected components (e.g., $C C_{1}-C C_{3}$, as shown in Figure 1.c). To ensure efficient decomposition, we store both the EDB D^{\prime} and the constraint hypergraph G in a RDBMS and execute the decomposition using SQL queries. We next process each component in
isolation to generate a portion of the MDB database $D *$, then combine these portions to obtain the final $D *$.

Processing each component itself is a difficult challenge. Even though each component $C C_{i}$ tends to be far smaller than the original EDB D^{\prime}, it is still often large enough to make exhaustive processing impractical. To address this problem, we exploit regularities in both the constraints and fact space, to fully complete certain imprecise facts, which are "bottleneck" variables in the component. This breaks the component into smaller independent "chunks" that now can be easily processed in isolation.

To summarize, this paper makes the following contributions:

- We describe a simple yet powerful language to model domain constraints, then define the semantics of query answering in OLAP over imprecise data in the presence of such constraints.
- In the above setting, we prove that a database of fact marginals can be used to answer OLAP aggregation queries efficiently.
- We develop an algorithm to decompose an imprecise database into independent components, exploiting regularities in the constraint space, as well as relational technologies.
- We develop an algorithm that can process each components efficiently, by exploiting regularities in both the constraints and the fact space. Taken together, our algorithms enable us to quickly compute the database of fact marginals.
- We present extensive experiments that demonstrate that our algorithms scale up to large data sets and constraints of increasing complexity.
The rest of the paper is as follows. Section 2 discusses related work. Section 3 provides background and introduces our notation. Sections 4-6 describe our solution. Section 7 presents experimental results, and Section 8 concludes.

2. RELATED WORK

This is the first work we are aware of that addresses the issues of performing OLAP aggregation over imprecise and uncertain data with constraints. There are vast bodies of work addressing separately issues for OLAP aggregation, querying imprecise data, and answering queries with constraints which we will not attempt to summarize here.

Overviews of several different topics in OLAP aggregation can be found in [11, 28]. Although constraints have been considered in the OLAP setting, these constraints either addressed data modeling [22,21,27] or were constraints over query results over precise data [29]. The work on constraints in OLAP has not considered imprecise data. Although there has been much work addressing uncertain and imprecise data $[23,31,34,33,6,4,18,13,30]$, this work has not addressed answering OLAP aggregation queries over such data. The very recent work by [4] presents an approach for efficiently representing and querying arbitrary sets of possible worlds; however, they do not consider aggregation queries.

Figure 2: A multi-dimensional view of the facts in D (Table 2).

FactID	Loc	Auto	Cost
p_{1}	Madison	F150	100
p_{2}	Madison	S10	150
p_{3}	Dells	F150	100
p_{4}	WI	F150	175
p_{5}	WI	F150	50
p_{6}	Madison	Truck	100

Table 2: A sample fact table D.
[10] was the first work we are aware of to address semantic issues specific to OLAP aggregation queries over imprecise and uncertain data, namely maintaining consistency between sets of related queries (e.g, roll-up and drill-down). The related work sections in $[10,9]$ provides further details how that work (and this current work as well) is distinct from prior related work involving aggregation queries over imprecise data. However, neither [10, 9] nor any of the related work described in these consider OLAP aggregation over imprecise data in the presence of constraints.

While there has been considerable work on querying inconsistent databases [$5,3,12,4,7,8,1,16,26$], there has been relatively little work addressing aggregation queries over such data. We make two significant contributions relative to existing work. First, the constraint language we consider is significantly more general than ones considered in most prior work. Typically, these prior works only address constraints in the form of functional dependencies. A notable exception is [16], which considers a language including aggregate constraints which does not address imprecise data. Second, we consider OLAP aggregation queries, while prior work in [5, 26] only addresses scalar aggregation queries and do not address the additional consistency requirements present in the OLAP setting [10].

3. PRELIMINARIES

We now review the framework in [10] for OLAP over imprecise and uncertain data. Later we significantly extend this framework to handle domain integrity constraints.

Data Representation: Standard OLAP considers two types of attributes: dimensions (e.g., location) and measures (e.g., cost). In prior work [10] we have extended this model to support imprecision in dimension values. Specifically, each dimension in standard OLAP takes value from a base domain B (e.g., location takes value from $B=\{$ Madison, Dells $\}$). In the extended model, each dimension takes value from an hierarchical domain H over B.

Definition 1 (Hierarchical domains). A hierarchical domain H over base domain B is a power set of B such that (a) $\emptyset \notin H$, (b) H contains every singleton set (i.e., corresponds to some element of B), and (c) the values of H either subsumes one another or are disjoint, i.e., $\forall h_{1}, h_{2} \in H, h_{1} \supseteq h_{2}$ or $h_{1} \cap h_{2}=\emptyset$. Non-singleton elements of H are called imprecise values.

We then define a fact table schema to be of the form

FactID	Loc	Auto	Cost	$p_{c, r}$
p_{1}	Madison	F150	100	1
p_{2}	Madison	S10	150	1
p_{3}	Dells	F150	100	1
p_{4}	Madison	F150	175	0.6
p_{4}	Dells	F150	175	0.4
p_{5}	Madison	F150	50	0.7
p_{5}	Dells	F150	50	0.3
p_{6}	Madison	F150	100	0.5
p_{6}	Madison	S10	100	0.5

Table 3: An EDB D^{\prime} for the database of facts D in Table 2.
$\left\langle A_{1}, \ldots, A_{k}, M_{1}, \ldots, M_{n}\right\rangle$, where each dimension attribute A_{i} has an associated domain $\operatorname{dom}\left(A_{i}\right)$ that is imprecise, and each measure attribute M_{j} has an associated domain $\operatorname{dom}\left(M_{j}\right)$ that is numeric. Next, we define

Definition 2 (Fact and fact table). A fact table D is a collection of facts of the form $\left\langle a_{1}, \ldots, a_{k}, m_{1}, \ldots, m_{n}\right\rangle$ where $a_{i} \in \operatorname{dom}\left(A_{i}\right)$ and $m_{j} \in \operatorname{dom}\left(M_{j}\right)$. In particular, if $\operatorname{dom}\left(A_{i}\right)$ is hierarchical, a_{i} can be any leaf or non-leaf node in $\operatorname{dom}\left(A_{i}\right)$. We will use the terms "fact table" and "imprecise database" interchangeably, when there is no ambiguity.

Intuitively, such a fact $r=\left\langle a_{1}, \ldots, a_{k}, m_{1}, \ldots, m_{n}\right\rangle$ maps into a region $\operatorname{reg}(r)$ in the k-dimensional space S formed by the dimension attributes A_{1}, \ldots, A_{k}. To formalize this notion, we defined a cell in S to be a vector $\left\langle c_{1}, \ldots, c_{k}\right\rangle$ such that every c_{i} is an element of the base domain of A_{i}. The region $\operatorname{reg}(r)$ is then the set of cells $\left\{\left\langle c_{1}, \ldots, c_{k}\right\rangle \mid c_{i} \in a_{i}, i \in 1 \ldots k\right\}$. Each cell in $\operatorname{reg}(r)$ represents a possible completion of a fact r, formed by replacing all non-leaf node a_{i} with a leaf node from the subtree rooted at a_{i}.

Example 2. Table 2 shows a fact table with two dimension attributes: Loc and Auto, and one measure attribute: Cost. The dimensions take values from their associated hierarchical domains. Figure 2 shows the structure of these domains and the regions of the facts.

Facts $p_{1}-p_{3}$ are precise in that their dimension attributes take leaf-node values. Therefore they map to individual cells in Figure 2. Facts $p_{4}-p_{6}$ on the other hand are imprecise and map to the appropriate two-dimensional regions. For example, fact r_{6} is imprecise because dimension Auto takes the non-leaf node value Truck. The region of r_{6} consists of cells (Madison,F150) and (Madison, S10), which represent possible claims of p_{6}.

Possible-World Semantics for Querying: Next, we defined a possible-world semantics for imprecise facts as follows. Let D be a database of facts. As discussed earlier, completing an imprecise fact $r \in D$ means "assigning" r to a cell $c \in r e g(r)$, thereby eliminating the imprecision of r. By completing all imprecise facts in D, we obtain a database W that contains only precise facts. We call W a possible world for D, and the multiple choices for completion (for each fact) clearly lead to a set of possible worlds for D.

To formalize the above process, in [10] we first defined the notion of allocation: given a fact r, the allocation of r to a cell $c \in$ $\operatorname{reg}(r)$ is a non-negative quantity $p_{c, r}$, called allocation weight, which denotes the weight of completing r to cell c, such that $\sum_{c \in r e g(r)} p_{c, r}=1$.

Next, we defined an allocation policy to be a procedure that inputs a fact table D and outputs a table D^{\prime} that consists of the allocations of all facts in D. We now can define

Definition 3 (Claim and extended database EDB). Let D be a fact table. For each fact $r \in D$, an allocation policy creates a set of tuples $\left\{\left\langle i d(r), c, p_{c, r}\right\rangle \mid c \in \operatorname{reg}(r), p_{c, r}>\right.$ $0, \sum p_{c, r}=1$, where id (r) is the id of r. Observe that each precise fact has a single allocation of 1 for the cell to which it maps. We call each such tuple a claim, and the collections of all such claims an extended database D^{\prime}, or EDB for short.

Intuitively, each claim for an imprecise fact r corresponds to a possible completion of r. In this work, we use the terms completion and claim interchangeably. In [10, 9] we introduced several important allocation policies, and showed how to efficiently execute them over a fact table D.

Now if we select from the EDB D^{\prime} a set of claims that correspond to one claim per fact, then we obtain a possible world W for D. Furthermore, we compute the probability of the world W to be the product of the allocation weights of all selected claim tuples. (See [10] for a motivation of this procedure.)

Example 3. Table 3 shows a possible EDB D^{\prime} for the database offacts D in Table 2. Here, attribute $\mathrm{Loc}=W I$ of fact p_{4} can complete to either Mad or Dells, thus creating the two claims with id p_{4} in the table. These completions have probabilities 0.6 and 0.4 , respectively (see column $p_{c, r}$ of the table). Suppose we select the very first completion for each of the facts $p_{1}-p_{6}$. Then we obtain a world W with probability $1 \cdot 1 \cdot 0.8 \cdot 0.6 \cdot 0.7 \cdot 0.5=0.168$.

Thus, given any database of fact D and an allocation policy A, the resulting EDB D^{\prime} conceptually defines a set of all possible worlds W_{1}, \ldots, W_{m}, together with probabilities p_{1}, \ldots, p_{m}, respectively. We then defined the result of an OLAP query Q over D to be the expected value of Q over the worlds W_{1}, \ldots, W_{m}. For instance, if Q is Sum and its answers for W_{1}, \ldots, W_{m} are v_{1}, \ldots, v_{m}, respectively, then its answer for D is $\sum_{i=1}^{m} p_{i} * v_{i}$.

In [10] we then demonstrated that the answer computed using the above possible-world semantics have several desirable properties (e.g., consistency and faithfulness). Finally, we showed how to compute such an answer efficiently, via a single scan of the EDB D^{\prime} (thus avoiding the expensive process of enumerating all possible worlds). See [10] for more details.

4. CONSTRAINT LANGUAGE

We now describe a relatively simple yet powerful language to specify domain constraints over the imprecise data. Sections 5-6 show how to execute OLAP queries in the presence of such constraints.

4.1 Syntax

We begin by defining the notion of atom, which we then use later to define constraints:

Definition 4 (Atoms). Let D be a fact table (see Definition 2), an atom is of the form $[r . A \theta c]$ or $\left[r . A \theta r^{\prime} . A\right]$ or exist(r) where:

- r, r^{\prime} are either variables that bind to factIDs in D or specific factIDs themselves, and r.A is the value of (dimension or measure) attribute A of fact r;
- $\theta \in\{=, \leq, \geq,<,>\}$ is a comparison operator over the appropriate domain;
- c is a constant from $\operatorname{dom}(A)$; and
- exist $(r)(\neg e x i s t(r))$ is a predicate that holds iffact r exists (cannot exist).

Note that in the above definition, constant c is from $\operatorname{dom}(A)$, and hence can be either precise (e.g., Madison) or imprecise (e.g., $W I)$. The operators in θ can be the domain-specific version of the comparison operators listed. For example, for dimensions extracted from text " $=$ " may be the implemented as a string comparison routine. The only requirement placed on θ is that each atom must evaluate to logical true or false. We now can define constraints as follows:

Definition 5 (Constraints). A constraint is an implication of the form $\Phi_{1} \Rightarrow \Phi_{2}$, where Φ_{1}, Φ_{2} are conjunctions of atoms (i.e., \wedge_{i} atom $_{i}$).

EXAMPLE 4. As an example, using the above language, we can write the first constraint introduced in Example 1, "repairs with the same customer names and models took place in the same city", as follows:

$$
\begin{aligned}
\left(r . N a m e=r^{\prime} . N a m e\right) \wedge & \left(r . \text { Auto }=r^{\prime} . \text { Auto }\right) \\
\Longrightarrow & \left(r . \text { Loc }=r^{\prime} . L o c\right) .
\end{aligned}
$$

Here r and r^{\prime} are two variables that bind to FactIDs in the fact table D. As another example, we can write the second constraint in Section 1 "Madison can be either a person name or a city, but not both, and so is the case with Dells" as follows:

$$
\begin{aligned}
\left(p_{3} \cdot L o c=\text { Madison }\right) & \Rightarrow\left(\neg \operatorname{exists}\left(p_{4}\right)\right) \\
\left(p_{4} \cdot L o c=D e l l s\right) & \Rightarrow\left(\neg \operatorname{exists}\left(p_{3}\right)\right) .
\end{aligned}
$$

Note that here p_{3} and p_{4} are not variables, but refer to specific FactIDs in the fact table D.

As yet another example, for the fact table in Table 2 we can write the constraint from Example 1, "if repairs p_{4} and p_{5} take place in Mad, then repair p_{6} refers to a car of model $F 150$ and repair p_{3} does not exist":

$$
\begin{aligned}
& \left(p_{4} \cdot L o c=M a d\right) \wedge\left(p_{5} \cdot L o c=M a d\right) \Rightarrow \\
& \quad\left(p_{6} \cdot \text { Truck }=F 150\right) \wedge\left(\neg \operatorname{exists}\left(p_{3}\right)\right)
\end{aligned}
$$

As these examples demonstrate, this constraint language is relatively simple, and yet already allows us to write expressive constraints. Our experience with fact extraction in two real-world domains - Web data in the DBLife system of the Cimple project [15] and emails in the Avatar project [24] - shows that we can use this language to capture a majority of domain constraints in those domains. In Section 8 we briefly discuss generalizing this language to more expressive types of constraints (e.g., aggregations over a set of facts).

4.2 Semantics

Let D be a fact table and C be a set of constraints as defined earlier. We now describe what it means to answer OLAP queries over D, given C. Recall from Section 3 that in the case of no constraint, to answer an OLAP query Q, we

1. create an EDB table D^{\prime}, whose tuples are claims, from D, using an allocation policy,
2. select claims from D^{\prime} (one for each fact) to generate multiple possible worlds W_{1}, \ldots, W_{m}, then compute a probability p_{i} for each world W_{i}, and
3. compute the expected answer over all these worlds: $\sum_{i=1}^{m} p_{i}$ * $\operatorname{ans}\left(Q, W_{i}\right)$ and return it as the answer $\operatorname{ans}(Q)$ for Q.

To accommodate constraints C, we keep the above multiple-world semantics, but discard those that do not satisfy C. To do so, we start with the following notion:

DEFINITION 6 (VALID WORLD). Let W be a world created by selecting claims, one for each fact, from an EDB table, as described earlier, and let C be a set of constraints. Then each constraint $c_{i} \in C$ can be evaluated to TRUE or FALSE on W. In particular, if c_{i} contains variables, then it evaluates to TRUE iff all possible bindings of the variables to factIDs in W make c_{i} evaluate to TRUE. We say W is valid (wrt C), or W satisfies C, iff all constraints in C evaluates to TRUE on W.

Example 5. Consider a simple example with two facts $r_{1}=$ (WI,F150) and $r_{2}=(W I, F 150)$, and the single constraint that "two facts with the same model must have the same location". There are 4 possible worlds, since both r_{1} and r_{2} have two possible completion claims: $\{($ Mad,F150),(Dells,F150) $\}$. The only valid worlds are where the same claim is selected for both r_{1} and r_{2}. For example, if (Mad,F150) is selected for r_{1} in world W, then (Mad,F150) must be selected for r_{2} for W to be valid.

Suppose after discarding invalid worlds from W_{1}, \ldots, W_{m}, we obtain the valid worlds $W_{i 1}, \ldots, W_{i k}$. Recall that they have been assigned probabilities $p_{i 1}, \ldots, p_{i k}$, which are now incorrect because most likely these probabilities sum to less than 1 . In the absence of any additional information, a common solution for revising these probabilities is to scale them proportionally, so that they sum to 1 [20].We adopt this solution for our context. We now can define our query semantics as follows:

DEFINITION 7 (CONSTRAINT-BASED QUERY SEMANTICS). Given a fact table D and a set of constraints C, let $W_{i 1}, \ldots, W_{i k}$ be the valid worlds (wrt C) with revised probabilities $p_{i 1}, \ldots, p_{i k}$, as described earlier. Then for any OLAP query Q, we return the expected answer over the valid worlds $\sum_{j=1}^{k} p_{i j} * \operatorname{ans}\left(Q, W_{i j}\right)$ as the answer for Q over D in the presence of C, denoted $Q(D, C)$.

5. QUERY ANSWERING WITH MDB

We now describe our solution for answering OLAP queries over an imprecise database D, given a set of constraints C.

We begin by defining the types of queries we consider. While the OLAP paradigm offers a rich array of query operators, the basic query consists of selecting a value from $\operatorname{dom}\left(A_{i}\right)$ for each dimension i, and applying an aggregation operator to a particular measure attribute.

DEFINITION 8 (BASIC QUERY AND QUERY REGION). [10] For each dimension i, define a query domain, denoted $q \operatorname{dom}\left(A_{i}\right)$, to be some non-empty subset of $\operatorname{dom}\left(A_{i}\right)$. A query Q over a fact table D with schema $\left\langle A_{1}, \ldots, A_{k}, M_{1}, \ldots, M_{n}\right\rangle$ has the form $Q\left(a_{1}, \ldots, a_{k} ; M_{j}, \mathcal{A}\right)$, where (a) each $a_{i} \in q \operatorname{dom}\left(A_{i}\right)$ and together a_{1}, \ldots, a_{k} describe the k-dimensional region being queried, denoted $\operatorname{reg}(Q)$, (b) M_{j} is a measure of interest, and (c) \mathcal{A} is an aggregation function.

In this paper, as in [10], we consider the common aggregation functions Sum, Count, and Average. All general queries (e.g., rollup, slice, drill-down, pivot, etc.) can be described in terms of repeated applications of basic queries. Hence, we focus on answering basic queries in the presence of constraints.

Example 6. Figure 3.a shows a database D of four facts and a query $Q=$ "What is the Sum of Sales for Madison?" over D. For query Q, A_{1} is Model, with value ALL (i.e., the one that contains all singleton values in $\operatorname{dom}\left(A_{1}\right)$), A_{2} is Loc, with value Mad, M_{j} is Sales, and \mathcal{A} is Sum. Figure 3.b shows a multi-dimensional view of $D . \operatorname{reg}(Q)$ is the dotted region in this view.

Recall from Definition 7 that answering a (basic) query Q reduces to evaluating it over all valid worlds. This basic approach is clearly impractical. Hence we seek a more efficient solution. In the rest of this section we first define the notion of a marginal database MDB $D *$, then prove that we can answer Q efficiently using $D *$. Later in Section 6 we show how to efficiently construct $D *$.

Definition 9 (MARginal database). Let D be an imprecise database and D^{\prime} be an EDB obtained from D via some allocation policy. Let C be a set of constraints, and \mathcal{W} be the set of all valid worlds (i.e., those that are derived from D^{\prime} and satisfy C, see Section 4).

Recall that each claim t in D^{\prime} consists of a precise fact f_{t} and an allocation weight w_{t}. Let m_{t} be the total probability of all words in \mathcal{W} where f_{t} is true. That is, $m_{t}=\sum_{W \in \mathcal{W}} p(W)$, where f_{t} is true in W and $p(W)$ is the probability of W. Then we refer to m_{t} as the marginal probability of f_{t}, and refer to the pair $\left(f_{t}, m_{t}\right)$ as a marginal tuple. We refer to the set of all marginal tuples as the marginal database (MDB for short) $D *$.

Example 7. Continuing with Example 6, Figure 3.c shows an EDB D^{\prime}, obtained via an allocation policy, and a set C of just one constraint, " t wo facts with the same model must have the same location", over D. From D^{\prime} and C we can compute the MDB $D *$ in Figure 3.d.

It is important to note that each tuple in $D *$ has a corresponding tuple in D^{\prime}. Furthermore, $D *$ depends only on D, a particular allocation policy, and a set of constraints C. It does not depend on Q. Hence, once constructed, $D *$ can be used to answer all queries.

Specifically, if Q is Sum, then we can compute $Q(D *)$ to be the weighted sum over all cells of $\operatorname{reg}(Q)$. Formally, $Q(D *)=$ $\sum_{f_{t} \in \operatorname{reg}(Q)} Q\left(f_{t}\right) \cdot m_{t}$, where $\left(f_{t}, m_{t}\right)$ ranges over all tuples in $D *$, and $Q\left(f_{t}\right)$ is the value of M_{j}, the measure of interest of Q (see Definition 8).

Example 8. The answer for query Q in Figure 3.a is $1 * 0.78$ $+4 * 0.78+3 * 0.72+2 * 0.72=7.5$

We can compute $Q(D *)$ for Count and Approximate Average (see [10] for details) in an analogous fashion. Overall, $Q(D *)$ can be computed via a single scan over $D *$. However, we note that many existing optimizations for evaluating OLAP queries over a fact table (e.g., materialized views and indexes) could be used to speed up query processing after $D *$ has been materialized.

We now prove that $Q(D *)$ is the same as $Q(D, C)$ in Definition 7. This result is important because it suggests that we can focus our effort on constructing MDB $D *$, which we do in Section 6 . For space reasons, we will state and prove the result for Sum only, though the result and proof for Count and Approximate Average are similar.

Proposition 1. Let C be a set of constraints, and $Q(D, C)$ be the answer to Q over an imprecise database D (Definition 7). Let $D *$ be an MDB obtained from D and C. Suppose Q is a Sum query. Then $Q(D, C)=Q(D *)$.

Proof. From Definition 7, we have

$$
\begin{equation*}
Q(D, C)=\sum_{i: W_{i} \text { valid }} p_{i} * Q\left(W_{i}\right) \tag{1}
\end{equation*}
$$

Let the $D_{j}, j=1, \ldots, k$ be an arbitrary k-partitioning of the facts. We refer to the contents of the partition for world W_{i} as $D_{j, i}$. Then,

Q = Sum for Mad			
FactID	Model	Loc	Sales
$r 1$	Cam	WI	1
$r 2$	Cam	WI	4
$r 3$	Civ	WI	3
$r 4$	Civ	WI	2

(a)

Set of Constraints:
IF (r.Model $=r^{\prime}$.Model) THEN (r.Loc $=r^{\prime}$. Loc $)$

Set of Constraints: IF (r.Model $=r^{\prime}$.Model) THEN (r. Loc $\left.=r^{\prime} . L o c\right)$											
ID	FactID	Model	Loc	Sales	$\mathbf{p}_{\text {c, },}$	ID	FactID	Model	Loc	Sales	$\mathbf{m}_{\text {cr }}$
p1	rl	Cam	Mad	1	0.7	p1	r1	Cam	Mad	1	. 78
p2	r1	Cam	Dells	1	0.3	p2	r1	Cam	Dells	1	. 22
p3	r2	Cam	Mad	4	0.6	p3	r2	Cam	Mad	4	. 78
p4	r2	Cam	Dells	4	0.4	p4	r2	Cam	Dells	4	. 22
p5	r3	Civ	Mad	3	0.5	p5	r3	Civ	Mad	3	. 72
p6	r3	Civ	Dells	3	0.5	p6	r3	Civ	Dells	3	. 28
p7	r4	Civ	Mad	2	0.1	p7	r4	Civ	Mad	2	. 72
P8	r4	Civ	Dells	2	0.9	P8	r4	Civ	Dells	2	. 28

(c)

(e)
Figure 3: An example to illustrate query answering with MDB $D *$.
from the distributivity of Sum, we obtain

$$
\begin{equation*}
Q(D, C)=\sum_{i: W_{i} \text { valid }} p_{i} *\left(\sum_{j} Q\left(D_{j, i}\right)\right)=\sum_{j_{1}^{k}} \sum_{i: W_{i} \text { valid }}\left(p_{i} * Q\left(D_{j, i}\right)\right) \tag{2}
\end{equation*}
$$

where $Q\left(D_{j, i}\right)$ is the result for Q on the facts in partition $D_{j, i}$ for world W_{i}. Let $Y_{i, r, Q}$ be a variable that takes value 1 if fact r completes to a cell $c \in \operatorname{reg}(Q)$ in the valid world W_{i}, and 0 otherwise. Let v_{r} be the measure value for fact r. Then we have

$$
\begin{equation*}
Q(D, C)=\sum_{j_{1}^{k}} \sum_{i: W_{i} \text { valid }} p_{i} *\left(\sum_{r \in D_{j, i}} v_{r} * Y_{i, r, Q}\right) \tag{3}
\end{equation*}
$$

By pulling v_{r} out, we obtain

$$
\begin{align*}
Q(D, C) & =\sum_{j_{1}^{k}} \sum_{r \in D_{j, i}} v_{r} *\left(\sum_{i: W_{i} \text { valid }} p_{i} * Y_{i, r, Q}\right) \tag{4}\\
& =\sum_{r \in D} v_{r} *\left(\sum_{c: c \in \operatorname{reg}(Q)} m_{c, r}\right)=Q(D *) \tag{5}
\end{align*}
$$

EXAMPLE 9. Continuing with Example 7, given the single constraint in Figure 3, only four out of 16 possible worlds satisfy the constraints. Figure 3.e. shows these four worlds. Here each dotted box denotes the query region reg (Q). Recall that the probabilities of the valid worlds are computed by normalizing their "old" probabilities. For example, the "old" probability p_{1} of world W_{1} is $(0.7$ $* 0.6 * .0 .5 * 0.1)=0.021$ Similarly, $p_{2}=0.189, p_{3}=0.006$, and $p_{4}=0.054$.

So the revised p_{1}, denoted p_{1}^{N} is
$p_{1}^{N}=\frac{p_{1}}{p_{1}+p_{2}+p_{3}+p_{4}}=\frac{0.021}{0.021+0.189+0.006+0.054}=\frac{0.021}{0.27}=0.08$. Similarly, $p_{2}^{N}=0.7, p_{3}^{N}=0.02, p_{4}^{N}=0.2$.
W.l.o.g., assume we create two partitions $D_{1}=\left\{r_{1}, r_{2}\right\}$ and $D_{2}=\left\{r_{3}, r_{4}\right\}$. Thus, $i=4$ worlds, and $j=2$ partitions for the example. To visualize the summations in the proof, consider Figure 4. The summation in Line 2 of the proof can be thought of as evaluating the Sum query separately over each of these 8 "datasets". In Line 2, we process all partitions for each world together (i.e. process these "datasets" column-wise). In Line 3, we now process the same partition in each possible world together (i.e., process these datasets row-wise). Now, we describe how each partition is processed (Lines 4 and 5). The value for Q on partition D_{i} can be considered the Sum of the Sales measure for facts which complete to a cell $c \in \operatorname{reg}(Q)$. For example, consider fact r_{1}. The only cell r_{1} completes to inside $\operatorname{reg}(Q)$ is $(C a m, M a d)$. Thus, $Y_{r_{1}, i, Q}=1$ for $i=1,2$ (i.e., worlds W_{1} and W_{2}) with normalized weights 0.08 and 0.7 respectively; and $Y_{r_{1}, i, Q}=0$ for $i=3,4$. Thus, fact r_{1} contributes to the answer for Q in 0.78 of the possible worlds, (i.e., $\sum_{i} p_{i}^{N} * Y_{r, i, Q}=0.08(1)+0.7(1)+0.02(0)+0.2(0)=0.78$.

This is the sum of the $m_{c, r}$ values for the claims in MDB $D *$ for fact r_{1} where r_{1} completes to a cell $c \in \operatorname{reg}(Q)$. This can also be interpreted as the expected contribution of r_{1} to the answer to Q is $0.78 * \operatorname{sales}\left(r_{1}\right)=0.78 * 1=0.78$, which is the $m_{c, r}$ for r_{1} in $D *$.

6. MARGINALIZATION ALGORITHM

We have shown that OLAP queries can be answered quickly, given a MDB $D *$. We now show how to construct MDB $D *$ from an EDB D^{\prime} and a set of constraints C. Definition 9 immediately suggests a naive algorithm to compute $D *$: enumerate all possible worlds w_{i} (i.e., by selecting one claim per fact from D^{\prime}), retain only those that are valid (with respect to C), then compute the marginal $m_{c, r}$ for each claim tuple c as the probability portion of valid worlds where claim c is selected for r.

This algorithm is clearly infeasible in practice, due to the exponential number of possible worlds (in the size of D). Let $|D|$ be the size of D, and $|c|$ be the maximal number of claims in D^{\prime} for any fact. Then, the Naive Algorithm has complexity $O\left(|c|^{|D|}\right)$.

To address this problem, our solution is to (a) exploit the regularities in the constraint space to decompose D^{\prime} into independent connected components, (b) exploit the regularities in the fact space to process each component in isolation, yielding a portion of the MDB $D *$, then (c) combining these portions to obtain the entire MDB $D *$. To further speed up these steps, we employ a RDBMS whenever possible. The rest of this section elaborates on the above steps.

6.1 Decomposing D^{\prime} into Components

We first introduce the notion of constraint hypergraph, which we use to capture the regularities in the constraint space. We then show how to use this hypergraph to decompose D^{\prime} into connected components.

6.1.1 Constraint Hypergraph

We begin by establishing several notions.

Figure 5: Hypergraph for Example in Figure 3

Definition 10 (Configuration). Let $S=\left\{r_{1}, \ldots, r_{j}\right\}$ be a subset of j facts in D. Let claims (r) be the set of possible claims for r in D^{\prime}. We refer to an element $\left(c_{1}, \ldots, c_{j}\right) \in$ claims $\left(r_{1}\right) \times \cdots \times \operatorname{claims}\left(r_{j}\right)$ as configuration C_{S} for $\left\{r_{1}, \ldots, r_{j}\right\}$.

Definition 11 (Valid Configuration). Configuration $C_{S}=\left(c_{1}, \ldots, c_{j}\right)$ for fact set $S=\left\{r_{1}, \ldots, r_{j}\right\}$ violates a constraint c if there exists a subset of C_{S} violating the conjunction of atoms in c. Otherwise, configuration C_{S} satisfies constraint c.
C_{S} is a valid configuration if all constraints in constraint set C are satisfied; otherwise, C_{S} is invalid. The set of all valid configurations for S is denoted \mathcal{C}_{S}. A configuration for all facts in D is a possible world, and a valid configuration for D is a valid possible world.

By this definition, configuration C_{S} implicitly satisfies a constraint c which may not be directly applicable to C_{S} (e.g., c has more than j variables or c mentions factIDs for facts not in S).

Definition 12 (Constraint Hypergraph). We define the constraint hypergraph $G=(V, H)$ as follows: For each fact $r \in$ D, create a corresponding node $v_{r} \in V$. Let $S=\left\{r_{1}, \ldots, r_{k}\right\} \in$ D be a fact set such that there exists a configuration $\left(c_{1}, \ldots, c_{k}\right)$ of S violating a constraint in C and there exists no subset of S which does. For each such S, introduce an (undirected) hyperedge $\left(v_{r_{1}}, \ldots, v_{r_{k}}\right) \in H$.

Example 10. Consider the example fact table D in Figure 3.a, and a set C of just one constraint "two facts with the same model must have the same location". The resulting hypergraph $G=$ (V, H) for D, shown in Figure 5, has a node in V for each of the 4 facts in D. H has two hyperedges $\left\{r_{1}, r_{2}\right\},\left\{r_{3}, r_{4}\right\}$. For example, the edge $\left\{r_{1}, r_{2}\right\}$ is added to H because the possible configuration [(Cam,Mad),(Cam,Dells)] for r_{1} and r_{2} violates the constraint. Likewise, the edge $\left\{r_{3}, r_{4}\right\}$ is present since configuration [(Civ,Mad),(Civ,Dells)] for r_{3} and r_{4} violates the constraint.

We designate the node in V corresponding to fact r as v_{r}. Observe that a node is added to the constraint graph for each fact in D, not each claim tuple in the EDB D^{\prime}. We now describe how to use the constraint graph G to partition D^{\prime} into sets of claim tuples which can be processed separately to assign the marginals.

Definition 13 (Independent, Dependent Facts). Consider facts $r, r^{\prime} \in D$, with possible claims claims (r), claims $\left(r^{\prime}\right)$ respectively. Let $\mathcal{W}_{c^{\prime}, r^{\prime}}$ be the set of valid possible worlds where claim c^{\prime} is selected for fact r^{\prime}. We define $\operatorname{frac}(c, r)$ as the probability portion of all valid possible worlds where claim c is selected for r, and $\operatorname{frac}\left(c, r \mid \mathcal{W}_{c^{\prime}, r^{\prime}}\right)$ as the probability portion of $\mathcal{W}_{c^{\prime}, r^{\prime}}$ where claim c is selected for fact r.

If $\operatorname{frac}(c, r)=\operatorname{frac}\left(c, r \mid \mathcal{W}_{c^{\prime}, r^{\prime}}\right)$ for each $c^{\prime} \in \operatorname{claims}\left(r^{\prime}\right)$, we refer to r and r^{\prime} as independent. Otherwise, r and r^{\prime} are dependent.

Example 11. Continuing with Example 10, for the given constraint in Figure 3 the four valid possible worlds are shown in Figure 3.e, with each valid world having the following "revised" probabilities, respectively: $p_{1}^{N}=0.08, p_{2}^{N}=0.7, p_{3}^{N}=0.02, p_{4}^{N}=0.2$. (see Example 9).

Consider facts r_{1} and r_{2}. The weighted fraction of valid worlds where claim $c_{1}=($ Cam,Mad $)$ is selected for r_{1} is 0.78 , (i.e. frac $\left(r_{1}, c_{1}\right)$ $=0.78)$, since claim $(C a m, M a d)$ is selected for $r 1$ in worlds w_{1} and w_{2}, and $p_{1}^{N}+p_{2}^{N}=0.08+0.7=0.78$. Fact r_{2} has 2 possible claims, (Cam,Mad) and (Cam,Dells), with (Cam,Dells) selected for r_{2} in worlds w_{3} and w_{4}. However, in neither w_{3} nor w_{4} is claim $c 1$ selected for r_{1} (i.e., $\left.\operatorname{frac}\left(c_{1}, r_{1} \mid \mathcal{W}_{(\text {Cam,Dells }), r_{2}}\right)=0\right)$. Since $\operatorname{frac}\left(c_{1}, r_{1} \mid \mathcal{W}_{(\text {Cam }, \text { Dells }), r_{2}}\right) \neq \operatorname{frac}\left(c_{1}, r_{1}\right), r_{1}$ and r_{2} are dependent.

In contrast, consider facts r_{1} and r_{3}, where r_{3} has two possible claims, (Civ,Mad) and (Civ,Dells). It is easily verified from Figure 3.e that $\operatorname{frac}\left(c_{1}, r_{1}\right)=\operatorname{frac}\left(c_{1}, r_{1} \mid \mathcal{W}_{(C i v, M a d), r_{3}}\right)=$ $\operatorname{frac}\left(c_{1}, r_{1} \mid \mathcal{W}_{(\text {Civ,Dells }), r_{3}}\right)=0.78$, and that a similar result holds for the other possible claims of fact r_{1}. Thus, facts r_{1} and r_{3} are independent.

Intuitively, claims in MDB $D *$ for fact set S can have marginals assigned separately of other facts in $D-S$ if each fact in S is independent of all facts in $D-S$. The next theorem gives the necessary condition (in terms of G) for two facts r, r^{\prime} to be dependent.

Theorem 1. Consider facts $r, r^{\prime} \in D$. The existence of a path between r, r^{\prime} in constraint hypergraph G is a necessary condition for r, r^{\prime} to be dependent.

Proof. Assume r, r^{\prime} are dependent. Then, there exists a minimal set of facts $S \subseteq D$ such that 1) $r, r^{\prime} \in S$ and 2) at least one configuration C_{S} of S is invalid. If no such S exists, every possible world is valid and r, r^{\prime} would be independent (i.e., the case when no constraints are present).

For S, let $S_{1}, S_{2}, \ldots, S_{k}$ be subsets of S such that 1) $\cup_{i=1}^{k} S_{i}=$ S with $r \in S_{1}$ and $r^{\prime} \in S_{k}$ and 2) for each S_{i}, at least one configuration $C_{S_{i}}$ of S_{i} is invalid, but no proper subset of S_{i} has such a configuration. Then, by the construction of G (see Definition 12), each S_{i} corresponds to a hyperedge.

We will now show that r, r^{\prime} being dependent implies these edges form a path between r, r^{\prime} in G. Proof by contradiction. Assume no path exists between r, r^{\prime} using the edges corresponding to S_{1}, \ldots, S_{k}. Then these edges can be partitioned into two sets S_{1}, \ldots, S_{j} and S_{j+1}, \ldots, S_{k} such that no edge in the first set overlaps an edge in the second. This partitioning of edges corresponds to a partitioning of the facts in S into two sets $S^{\prime}, S^{\prime \prime}$, s.t. $r \in S^{\prime}$ and $r^{\prime} \in S^{\prime \prime}$. Then, from the construction of the hypergraph, the set of valid configurations for $S \mathcal{C}_{S}=\mathcal{C}_{S^{\prime}} \times \mathcal{C}_{S^{\prime \prime}}$. This implies that all facts in S^{\prime} are independent of each fact in $S^{\prime \prime}$, since the selection of a configuration for S^{\prime} does not invalidate any configurations for $S^{\prime \prime}$. In other words, we can trivially show the condition for independence in Definition 13 holds between any pair of facts r, r^{\prime} s.t. $r \in S^{\prime}, r^{\prime} \in S^{\prime \prime}$.

Since $r \in S^{\prime}, r^{\prime} \in S^{\prime \prime}$, we have shown $r, r^{\prime \prime}$ independent and our assumption that r, r^{\prime} dependent is contradicted. Thus, S_{1}, \ldots, S_{k} form a path between r, r^{\prime}.

Example 12. Consider the example fact table in Table 4 with 3 imprecise facts. The multidimensional view of the data is given in Figure 6a, and the EDB created using allocation (see [10, 9]) is given in Table 5. Set C contains a single constraint "two facts with the same model have must have the same location". Thus of the $2 * 4 * 2=16$ total possible worlds for this dataset, only the 8 shown in Figure 7 are valid. Fact r_{1} has two possible claims,
$c_{1}=($ Cam,Mad $)$ and $c_{2}=($ Civ,Dells $)$. Consider facts r_{1} and r_{3}, where fact r_{3} has two possible claims, (Civ,Mad) and (Civ, Dells). After enumerating all valid worlds, we obtain $\operatorname{frac}\left(c_{1}, r_{1}\right)=0.749$, but $\operatorname{frac}\left(c_{1}, r_{1} \mid \mathcal{W}_{(C i v, M a d), r 3}\right)=0.766$. Thus, r_{1} and r_{3} are dependent. The hypergraph for G is given in Figure 6b. In the example, $S=\left\{r_{1}, r_{2}, r_{3}\right\}$. Notice there are two subsets of S, $S_{1}=\left\{r_{1}, r_{2}\right\}$ and $S_{2}=\left\{r_{2}, r_{3}\right\}$ which are minimal sets of S which violate the constraint, and each has a corresponding edge in G. Observe these edges form a path between r_{1} and r_{3} in G.

We now modify the above example to obtain a counterexample showing a path in G between r, r^{\prime} is not sufficient for r, r^{\prime} to be dependent.

Example 13 (Sufficient Counter-example). We modify Example 12 by assuming uniform allocation is used to assign allocation weights (see [10, 9]). Now, all 16 possible worlds have the same probability 0.0625 and all 8 valid worlds in Figure 7 have the same normalized weight of 0.125. It is easily verified that $\operatorname{frac}\left(c_{1}, r_{1}\right)=\operatorname{frac}\left(c_{1}, r_{1} \mid \mathcal{W}_{(C i v, M a d), r_{3}}\right)=$ $\operatorname{frac}\left(c_{2}, r_{1}\right) \mid \mathcal{W}_{\left(\text {Civ,Dells }, r_{3}\right)}=0.5$. Thus, r_{1} and r_{3} are independent (Definition 13) even though a path exists between them in G.

FactID	Loc	Model	Sales
p_{1}	WI	Cam	1
p_{2}	WI	Sedan	2
p_{3}	WI	Civ	3

Table 4: Example Dataset for Theorem Proof

FactID	Loc	Model	Sales	$p_{c, r}$
p_{1}	Mad	Cam	1	0.8
p_{1}	Dells	Cam	1	0.2
p_{2}	Mad	Cam	2	0.1
p_{2}	Dells	Cam	2	0.2
p_{2}	Mad	Civ	2	0.3
p_{2}	Dells	Civ	2	0.4
p_{3}	Mad	Civ	3	0.3
p_{3}	Dells	Civ	3	0.7

Table 5: EDB for Theorem Proof Example

FactID	Loc	Model	Sales	$p_{c, r}$
p_{1}	Mad	Cam	1	0.5
p_{1}	Dells	Cam	1	0.5
p_{2}	Mad	Cam	2	0.25
p_{2}	Dells	Cam	2	0.25
p_{2}	Mad	Civ	2	0.25
p_{2}	Dells	Civ	2	0.25
p_{3}	Mad	Civ	3	0.5
p_{3}	Dells	Civ	3	0.5

Table 6: EDB with Uniform Allocation for Sufficient Counterexample (Example 13)

Corollary 1. Identifying strongly connected components in constraint graph G is equivalent to partitioning EDB D^{\prime} into sets of claim tuples such that marginals can be assigned to claims in each set independently of the other sets. The partition D_{i}^{\prime} of $E D B$ D^{\prime} corresponding to connected component G_{i} of $G D_{i}^{\prime}$ is trivially obtained by assigning all claims $t \in D^{\prime}$ corresponding to v_{r} in G_{i} to D_{i}^{\prime}.

(a)

(b)

Figure 6: Multidimensional view of the data in Table 4

Figure 7: Valid possible worlds for data in Table 4

6.1.2 Generating Connected Components

Although identifying connected components in a given disk-resident graph is a well-studied problem [2, 14, 32], there exists no straightforward application of these solutions to our problem setting, since we consider hypergraphs and the constraint hypergraph is not provided as input (as in the setting existing algorithms consider).

The algorithm we propose, called GenerateComponent, takes as input a given EDB D^{\prime} (as a RDBMS table with the schema given in Definition 3) and constraints set C, and outputs the hyperedges in G. The algorithm generates the conflict hypergraph G in a "component-wise" fashion, generating all edges for each connected component G_{i} together. Thus, the connected components are identified during the hypergraph generation process.

GenerateComponent starts by creating a relational database table CompID with schema (factid, cid), which stores the component identifier cid assigned to fact factid. Initially, all facts are given a special "unassigned" value. The algorithm continually selects a node with unassigned cid as a "seed node" v_{r}, and performs a breath-first enumeration of G from v_{r} until the component containing v_{r} is completely enumerated. The edges in the component are generated separately for each constraint $c_{i} \in C$ and stored in a separate database table CiEdges (e.g., edges for constraint c_{1} are stored in table $C 1 E d g e s$, edges for c_{2} in $C 2 E d g e s$, etc.). The schema for each CiEdge table is (fid $1, \ldots$, fidk) for k-constraint c_{i}. At each step, the algorithm identifies a set of border nodes which require expansion, and these are stored in the relation activeSet. Edges are generated only from nodes in activeSet by executing for each constraint c of the form $A \Rightarrow B$ a SQL query of the form:
SELECT D1.factid, D1.cid, D2.factid, D2.cid, . . . Dk.factid, Dk.cid
FROM activeSet AS D1, EDB AS D2, . . , EDB AS Dk
WHERE [logic for A] AND [\neg logic for B] AND [D2.fid $<\ldots<$ Dk.fid]
EXAMPLE 14. The constraint from Example 11 "all facts with the same location must have the same model" generates the SQL query:
SELECT D1.factid, D1.cid, D2.factid, D2.cid

FROM activeSet $A S D 1, E D B A S D 2, E D B A S D 3$
WHERE $D 2 . l o c=$ D3.loc AND D2.model ! = D3.model AND D2.fid $<$ D3.fid

After all queries are executed, activeSet is set to nodes with unassigned cid in the edges created by these queries, and the cid for the corresponding tuples in CompID are updated to the current component id. This query is executed until activeSet contains no additional tuples. At this point, all edges in the component have been generated. The algorithm repeats this process for a new "seed node"; if none are available, the algorithm terminates. The complete pseudocode for GenerateComponent is listed in Algorithm 1.

Theorem 2 (Correctness). The GenerateComponent Algorithm correctly identifies connected components in the constraint hypergraph G.

Proof. The GenerateComponents Algorithm performs a breathfirst generation of G from a given node. For the constraint language we consider, every iteration of the breadth-first enumeration will either 1) identify previously unvisited nodes, and add these to activeTable or 2) activeTable will be empty. In Case 1, the algorithm will continue processing, since activeSet will be updated to activeTable, and the condition in the while loop in Step 11 is satisfied. This is correct behavior, since additional nodes and edges remain in the component. In Case 2, the current component has been completely identified, and the algorithm continues processing the next component. When the while condition in Step 6 is satisfied, all facts have been assigned to a component, and the algorithm correctly terminates.

```
Algorithm 1 GenerateComponent Algorithm
    // initialize compID; compID stores the component assignment
        CREATE TABLE compID(factid, cid) AS SELECT DISTINCT factid,
        1 FROM EDB
        CREATE TABLE activeSet(fid);
    initialize current component id ccid to 0 ;
    // while facts are not assigned to connected components
    while ( \(0<\operatorname{SELECT} \operatorname{COUNT}(*)\) FROM CompID C WHERE C.cid==-1)
        do
            // increment the current connected component id
            ccid \(\leftarrow \operatorname{ccid}+1\);
        select fact r not yet assigned to a component (i.e., tuple in compID s.t. com-
        pid.cid = -1 )
        initialize activeSet to \(r\)
        while (activeSet has tuples) do
            // generates table with edges for each constraint \(c_{i} \in \mathcal{C}\)
            for (each constraint \(c_{i} \in \mathcal{C}\) of form \(A \Rightarrow B\) ) do
                // materialize conflict edges from activeset for \(c_{i}\)
                    INSERT INTO TABLE CiEdges
            (fid1,cid1,fid2,cid2,. . . ,fidk,cidk)
            SELECT D1.factid, D1.cid, D2.factid, D2.cid, . . . Dk.factid, Dk.cid
                FROM activeSet AS D1, EDB AS D2, ..., EDB AS Dk
                WHERE [logic for A] AND [ \(\neg\) logic for B] AND [D1.fid \(<\) D2.fid
            \(<\ldots<\) Dk.fid]
            // find the set of active nodes
                CREATE TABLE activeTable AS
            SELECT fid1 FROM C1Edges WHERE (cid1 ==-1) UNION ...
            SELECT fidk FROM CkEdges WHERE ( \(\operatorname{cidk}==-1\) )
            // update the component ids for the activeSet
            UPDATE CompID SET cid \(=-1\)
            WHERE activeID.fid IN (SELECT * from activeTable)
            update activeSet to activeTable
```


6.2 Processing Components to Create Portions of MDB ${ }_{D *}$

By Corollary 1, each connected component G_{i} of constraint hypergraph G corresponds to a partition D_{i}^{\prime} of EDB D^{\prime} such that claims in D_{i}^{\prime} can be assigned marginals by only processing other claims in D_{i}^{\prime}. This section describe the process to assign the marginal
$t . m_{c, r}$ to each claims in each identified component, thus generating the claims in MDB $D *$ corresponding to D_{i} (see Figure 1.c).

The Naive Algorithm and the results in Section 6.1.1 suggest the following Component-wise Naive Algorithm: For each connected component $G_{i}=\left(V_{i}, H_{i}\right)$ in G, enumerate every possible configuration for facts in imprecise database D corresponding to V_{i}. Then, for each claim t in MDB $D *$ for a fact in V_{i}, assign $t . m_{c, r}$ the weighted portion of valid configurations where claim c is selected for r. The complete MDB $D *$ is obtained by concatenating the portion output for each component.

The complexity of this Component-wise Naive Algorithm is $O(N *$ $|c|^{m}$), where N is the number of components, $|c|$ is the maximal number of claims in D^{\prime} for any fact, and m the maximal number of imprecise facts in any component. Although this compares favorably with the complexity for the Naive Algorithm, which was $O\left(|c|^{|D|}\right)$, we will present a more efficient algorithm than Componentwise Naive in this section.

6.2.1 Reducing the Number of Enumerated Configurations

We now present a more efficient algorithm for assigning marginals, called ProcessComponent, which requires enumerating fewer configurations that Component-wise Naive. Given the subgraph for $G_{i}=\left(V_{i}, H_{i}\right)$ and the corresponding partition of EDB D_{i}^{\prime} as input, ProcessComponent assigns a marginal $t . m_{c, r}$ to each corresponding claim t in $D *$. The final Marginal Database $D *$ is obtained by concatenating the outputs of ProcessComponent for each G_{i} together.

At the highest level, ProcessComponent proceeds as follows: For every claim $t_{c, r}$ in D_{i}^{\prime}, we maintain a running sum of configuration weights for valid configurations $C_{V_{i}}$ where claim c is selected for fact r. The nodes in V_{i} are partitioned into two sets I, J. Since the nodes in V_{i} correspond to facts in the imprecise database D, we refer to V_{i} as nodes or facts interchangeably. We enumerate each possible configuration C_{J} for facts in J, and compute configWeight as the total weight of all valid configurations of $V_{i}=I \cup J$ for which C_{J} is a sub-configuration for J (i.e., the claims selected for facts in $J \in V_{i}$ are given by C_{J}).

For each C_{J}, configWeight is computed as follows: For each fact $r_{I} \in I$, we find the set of claims
$c \in \operatorname{claims}\left(r_{I}\right)_{C_{J}}$ for r_{I} such that $\left(c, C_{J}\right)$ is a valid configuration for $r_{I} \cup J$. Let the sum of allocations for these claims be sumValid $\left(r_{I}\right)_{\mid C_{J}}$. configWeight is then given by $\left(\prod_{r_{I} \in J} p_{c, r_{I}}\right)$ * $\left(\prod_{r_{I} \in I} \operatorname{sumValid}\left(r_{I}\right)_{\mid C_{J}}\right)$, and is added to the running sum for each claim tuple corresponding to a completion in $C_{V_{i}}$. The complete pseudocode for ProcessComponent is listed in Algorithm 2.

Proposition 2 (Complexity). Let N be the number of components, $|c|$ the maximal number of claims in D^{\prime} for any fact, and let m be the maximal number of imprecise facts in any component. Assume we partition these m imprecise facts into two sets I, J of size m_{I}, m_{J} s.t. m_{I} is the size of set I, m_{J} is the size of set J, and $m=m_{I}+m_{J}$. Then, the complexity of ProcessComponents is $O\left(N *|c| * m_{I} *|c|^{m_{J}}\right)$

We observe that the complexity for ProcessComponents is an improvement over Component-Naive, since ProcessComponent is guaranteed to have a smaller exponent than Component-Naive (i.e., $m_{J}<m$). For the practical-sized datasets (up to several million facts) considered in our experiments (Section 7.1), the complexity of ProcessComponent was not an issue; how far this extends to other practical datasets is an intriguing issue for future work. The reason for this was that the observed value for m_{J} tended to be small (i.e., less than 20 for datasets we consider). We note the

Naive Algorithm with complexity $O\left(|c|^{|D|}\right)$ is clearly intractable for practical-sized datasets. We now provide intuition for selecting the "best" set J of imprecise facts in the component.

```
Algorithm 2 ProcessComponent Algorithm
    Input: EDB partition \(D_{i}^{\prime}\), Constraint Hypergraph Component \(G_{i}\)
    Output: Marginals for MDB \(D *_{i}\) (corresponds to \(D_{i}^{\prime}\) )
    \(I \leftarrow \operatorname{BestNonAdjecentSet}\left(G_{i}\right)\)
    \(J \leftarrow V_{i}-I\)
    create MDB entries \(D *_{i}\) for \(D_{i}^{\prime}\)
    initialize array sumV alid []\(/ /\) stores \(\sum_{I} p_{c, r_{I}}\) where \(c, C_{J}\) valid
    for (each valid configuration \(C_{J}\) of \(J\) ) do
        for (each fact \(r_{I} \in I\) ) do
            sumValid \(\left[r_{I}\right] \leftarrow 0\)
            for (each \(c \in \operatorname{comp}(r)\) ) do
                if \(\left(c \cup C_{J}\right.\) is valid configuration of \(\left.\left\{r_{I} \cup J\right\}\right)\) then
                    sumValid \(\left[r_{I}\right] \leftarrow \operatorname{sumValid}\left[r_{I}\right]+p_{c, r}\)
        \(/ / p_{c, r_{J}}\) is allocation for completion used in \(C_{J}\) for \(r_{J}\)
        configWeight \(\leftarrow\left(\prod_{J} p_{c, r_{J}}\right) *\left(\prod_{r_{I} \in I}\right.\) sumValid \(\left.\left[r_{I}\right]\right)\)
        totalWeight \(\leftarrow\) totalweight + configWeight
        // update weights for each fact in \(J\)
        for (each fact \(r_{J} \in J\) ) do
            \(t . m_{c, r} \leftarrow t . m_{c, r}+\) configWeight
        // update weights for facts in \(I\)
        for (each fact \(r_{I} \in I\) ) do
            for (each \(c \in \operatorname{comp}(r))\) do
                if \(\left(c \cup C_{J}\right.\) is valid configuration of \(\left.\left\{r_{I} \cup J\right\}\right)\) then
                    \(t . m_{c, r} \leftarrow p_{c, r} *\) configWeight
    // normalize the weights in \(t . m_{c, r}\)
    for (each \(t \in M_{i}\) ) do
        \(t . m_{c, r} \leftarrow \frac{t . m_{c, r}}{\text { totalWeight }}\)
```

Definition 14 (Non-adjacent Set). Consider a connected component $G_{i}=\left(V_{i}, H_{i}\right)$ in G. We refer to $I \subseteq V_{i}$ as a nonadjacent set if there does not exist a pair of nodes $v, v^{\prime} \in I$, such that v, v^{\prime} share an edge in H_{i}.

A non-adjacent set is equivalent to the notion of strong independent set in a hypergraph $G=(V, H)$, which is defined as a set of nodes $I \subseteq V$ such that no pair $v, v^{\prime} \in I$ share a hyperedge in H [19].

THEOREM 3. Consider connected component $G_{i}=\left(V_{i}, H_{i}\right)$ with corresponding partition D_{i}^{\prime} of $E D B D^{\prime}$ (i.e., the claims in D^{\prime} for facts corresponding to nodes in V_{i}). Let $V_{i}=I \cup J$. If I is a non-adjacent set in G_{i}, then ProcessComponent correctly assigns marginals to claim tuples in D_{i}^{\prime}.

Proof. First, we prove ProcessComponent finds the correct total weight for each configuration. Let $V_{i}=I \cup J$, and C_{J} be a valid configuration for facts in J. Let $\operatorname{claims}(r)_{\mid C_{J}}$ be the set of claims for fact r in D^{\prime} such that for each $c \in \operatorname{claims}(r)_{\mid C_{J}},\left(c, C_{J}\right)$ is a valid configuration for $r \cup J$. For $I=\left\{r_{I 1}, r_{I 2}, \ldots\right\}$, let $C_{I \mid C_{J}} \in \operatorname{claims}\left(r_{I 1}\right)_{\mid C_{J}} \times \operatorname{claims}\left(r_{I 2}\right)_{\mid C_{J}} \times \ldots$ be a valid configuration for I given configuration C_{J} for J. Since we assume I is a non-adjacent set in G_{i}, no pair of elements in I share a hyperedge in H_{i}. By construction of G, this implies that for each valid C_{J}, every element of $\operatorname{claims}\left(r_{I 1}\right)_{C_{J}} \times \operatorname{claims}\left(r_{I 2}\right)_{\mid C_{J}} \times \ldots$ is a valid configuration for I given C_{J}. From the definition of $C_{I \mid C_{J}}$, it follows that for each valid C_{J}, every possible $C_{I \mid C_{J}}$ results in a valid configuration for facts corresponding to $V_{i}, C_{J} \times C_{I \mid C_{J}}$.

From this result and the distributivity of multiplication and addition, we obtain that ProcessComponent computes the correct total weight for all valid configurations of D_{i}. That each marginal $t . m_{c, r}$ is assigned the correct fraction of this total weight follows from the enumeration order of ProcessComponent.

6.2.2 Identifying Non-adjacent Sets

The result in Theorem 3 holds for any possible non-adjacent set in V_{i}. We now propose a cost model for comparing the cost of marginal assignment by using the various possible non-adjacent sets in G_{i}.

Definition 15 (Cost Model). Let size $\left(v_{r}\right)$ be the number of completions for fact r. Let α be a constant capturing the cost of enumerating a configuration. Likewise, β is a constant for processing a single completion for a single fact. Assume $V_{i}=I \cup J$, where I is a non-adjacent set. The cost of processing component G_{i} using sets I and J is given by
$\operatorname{cost}\left(G_{i}, I, J\right)=\alpha\left(\prod_{v_{J} \in J} \operatorname{size}\left(v_{J}\right)\right) * \max \left\{1,\left(\beta\left(\sum_{v_{I} \in I} \operatorname{size}\left(v_{I}\right)\right)\right\}\right.$
The second term is required to be at least 1, to handle the special case when $I=\emptyset$.

In practice $\alpha>\beta$, since enumerating a configuration involves more work than processing facts separately. For this case, ComponentWise Naive Algorithm has the highest possible cost. The lowest possible cost would be obtained by making the product of the $\operatorname{size}\left(v_{I}\right)$ for $v_{I} \in I$ as large as possible.

Proposition 3 (Optimal). 1) For $\alpha>\beta, \operatorname{cost}\left(G_{i}, I, J\right)$ in our model is optimized when I is assigned the non-adjacent set with the largest product of sizes (i.e., I s.t. $\prod_{v_{I} \in I}$ size $\left(v_{I}\right)$ is maximized). 2) The problem BEST-NON-ADJACENT of finding the I which minimizes $\operatorname{cost}\left(G_{i}, I, J\right)$ is an NP-complete problem.

We can trivially reduce the problem of finding the maximal weighted strong independent set in an undirected hypergraph, which is NPcomplete [19], to BEST-NON-ADJACENT. The hypergraph given as input to the weighted strong independent set problem is given as input to BEST-NON-ADJACENT, along with $\alpha=\left|V_{i}\right|, \beta=1$, where $\left|V_{i}\right|$ is the size of V_{i}. The non-adjacent set returned for I is the maximal weight strong independent set in G. Thus, a polynomial time algorithm cannot exist for BEST-NON-ADJACENT. [19] presents negative theoretical results on the existence of good approximation algorithms for the weighted strong independent set problem and the related problem of hypergraph coloring.

We now present an algorithm MaxNonAdjacent which find a maximal non-adjacent set in a given hypergraph component $G_{i}=$ $\left(V_{i}, H_{i}\right)$, which is an approximation of the maximal non-adjacent set optimizing our cost model. Our algorithm is semi-external, since we are only required to store in memory at all times a bitvector status with an entry $\operatorname{status}(v)$ for each node $v \in V_{i}$ indicating whether v is in the maximal non-adjacent set or not. Essentially, the MaxNonAdjacent algorithm scans the set of hyperedges H, and greedily maintains the "best" strong independent set of V for the edges seen. The pseudocode is listed in Algorithm 3.

```
Algorithm 3 MaxNonAdjacent Algorithm
    Input: Hypergraph \(G_{i}=\left(V_{i}, H_{i}\right)\)
    Output: Returns approximate maximal weighted non-adjacent set \(I \subseteq V\)
    allocate bit-vector status with a bit for each \(v \in V_{i}\)
    \(/ /\) define NON-ADJACENT \(=0\), ADJACENT \(=1\)
    for (each \(v_{i} \in V\) ) do
        Initialize status \((v)\) to NON-ADJACENT
    for (each edge \(h \in H\) ) do
        select node \(v \in h\) with highest weight s.t. status(v) \(=\) NON-ADJACENT.
        update status \(\left(\mathrm{v}^{\prime}\right)=\) ADJACENT for all other nodes \(v^{\prime} \in h\)
        \(I \leftarrow\) subset of nodes in \(V\) with status NON-ADJACENT
        return \(I\)
```


6.3 Combining $D *$ Portions to Obtain Complete $D *$

We use GenerateComponent to identify the portion of G for each connected component $G_{i}=\left(V_{i}, H_{i}\right)$. After generating the component edges, ProcessComponent is called to generate MDB $D *$ tuples for facts corresponding to nodes in V_{i}. After ProcessComponent completes, the edges H_{i} may be discarded. After processing all components, all MDB $D *$ claim tuples have been generated. When combining the portions of $D *$ together, we handle an inconsistent set of constraints by insuring all MDB claims have marginals set to 0 , which is correct behavior by Definition 9 . During algorithm execution, if ProcessComponent finishes and each MDB claim for a component is assigned a marginal of 0 , then the constraints are inconsistent. Processing stops immediately, and marginals of 0 are assigned for all MDB entries.

7. EXPERIMENTAL RESULTS

To empirically evaluate the performance of the proposed algorithms, we conducted experiments using both real and synthetic data. The experiments were carried out on a machine running CentOS 4 with a dual Pentium 2.66 GHz processor, 2GB of RAM, and a single IDE disk. All algorithms were implemented as Java applications that accessed a local instance of IBM DB2 UDB Version 8.1 using JDBC to interface with the database.

Since existing data warehouses cannot directly support multidimensional imprecise data, obtaining "real-world" datasets is difficult. However, we were able to obtain one such real-world dataset from an anonymous automotive manufacturer. The fact table contains 797,570 facts, of which 557,255 facts were precise and 240,315 were imprecise (i.e., 30% of the total facts are imprecise). There were 4 dimensions, and the characteristics of each dimension are listed in Table 7. Two of the dimensions (SR-AREA and BRAND) have 3 level attributes (including ALL), while the other two (TIME and LOCATION) have 4.

Each column of Table 7 lists the characteristics of each level attribute for the particular dimension, and ordered from top to bottom in decreasing granularity. Thus, the bottom attribute is the celllevel attribute for the dimension. The two numbers next to each attribute name are, respectively, the number of distinct values the attribute can take and the percentage of facts that take a value from that attribute for the particular dimension. For example, for the SR-AREA dimension, 92% of the facts take a value from leaf-level Sub-Area attribute, while 8% take a value from the Area attribute.

SR-AREA	BRAND	TIME	LOCATION
ALL(1)(0\%)	ALL (1)(0\%)	ALL (1)(0\%)	ALL (1)(0\%)
Area(30)(8\%)	$\operatorname{Make(14)(16\%)~}$	Quarter(5)(3\%)	Region(10)(4\%)
Sub-Area(694)(92\%)	$\operatorname{Model}(203)(84 \%)$	$\operatorname{Month}(15)(9 \%)$	State(51)(21\%)
		$\operatorname{Week}(59)(88 \%)$	City(900)(75\%)

Table 7: Dimensions of real dataset

Of the imprecise facts, approximately 67% were imprecise in a single dimension (160,530 facts), 33% imprecise in 2 dimensions (79,544 facts), 0.01% imprecise in 3 dimensions (241 facts), and none were imprecise in all 4 dimensions. For this dataset, no imprecise fact had the attribute value ALL for any dimension.

For several experiments synthetic data was generated using the same dimension tables as the real-world data. The process for generating synthetic data was to create a fact table with a specific number of precise and imprecise facts by randomly selecting dimension
attribute values from these 4 dimensions. Each tuple was 40 bytes in size.

7.1 Algorithm Performance

We first evaluate the scalability of the Marginalization Algorithm along two dimensions. The first dimension is the "complexity" of constraint set C and the second is the database size. While an obvious metric exists for the latter, defining an appropriate metric for comparing the "complexity" of different constraint sets on the same dataset is more involved. For example, an obvious metric like the number of constraints in C is potentially misleading since the amount of work required to evaluate a constraint c depends on how many facts c potentially applies to. For example, evaluating a single constraint "All facts with the same Model have the same cost" involves more work than the constraint "All facts in the city Madison with the same Model have the same cost," since the latter only applies to facts with location Madison and only pairs of these facts must be considered to evaluate the constraint.

Using this intuition, the metric we define to measure the complexity of a constraint is the number of potential bindings the constraint has in the fact table. In other words, the number of potential bindings for constraint c of the form $A \Longrightarrow B$ is the number of times the conjunct of atoms in A could potentially hold in the fact table. The potential bindings for a constraint set C is the sum of potential bindings for each constraint $c \in C$.

For these experiments, we evaluated the scalability of the Marginalization Algorithm with respect to constraint complexity on the following three datasets: 1) the real Automotive dataset, 2) a randomly selected subset of 200,000 facts from Automotive (selected such that the 60,000 facts (30%) were imprecise), and 3) a synthetically generated dataset with 3.2 million total facts (of which 960,000 (30%) were imprecise). For each imprecise database D, we used Count-based allocation [10] as an off-line process to create the EDB D^{\prime}, which was stored in a relational table in the database. For these experiments, we randomly generated 35 constraint sets with varying degrees of complexity. Each constraint set was generated as follows: 1) First, we create a constraint "template" $A \Longrightarrow B$ by: a) Randomly select 2 of the 4 dimensions, D_{1}, D_{2} and creating for A the following conjunct of atoms: "r. $D_{1}=$ r'. D_{1} AND r. $D_{2}=$ $r^{\prime} . D_{2}$ ", where r and r ' are variables, and b) randomly selecting one of the remaining dimensions D_{3} to create an atom for B with similar form. 2) We generate a set of constraints by repeatedly "instantiating" this template k times (for various k between 20 and 100) as follows: Randomly select values v_{1}, v_{2} from $\operatorname{dom}\left(D_{1}\right), \operatorname{dom}\left(D_{2}\right)$ respectively, and add to the constraint the condition "where $D_{1}=$ v_{1} AND $D_{2}=v_{2}$." The result of each such "instantiation" is a constraint, and there are k constraints in the final constraint set.

All reported running times are "wall-clock" times and are warm numbers. Although the step to generate edges begins processing a constraint collection cold, the buffer pool is not flushed between the SQL queries over the EDB table used to generate hyperedges in the constraint hypergraph (see Section 6.1.2 for details). Thus, subsequent queries would be warm, since EDB D^{\prime} tuples would still be in the buffer. The database was not tuned in any manner and no indexes were created over any tables. The buffer pool was set to 100 MB for all experiments.

The results for the three datasets are shown in Figures 8, with the figures displaying total running time versus number of possible bindings for each of the 35 randomly generated constraint sets, along with the most appropriate "best-fit" curve. A best-fit line did not appear appropriate, indicating running time increases superlinearly with respect to the number of bindings. This makes sense since the ProcessComponent algorithm generates an exponential

Figure 8: Scalability with respect to constraint complexity

Figure 9: Decomposition of runtime for algorithm components
number of configurations. This intuition is confirmed by the results in Figure 9, which shows the decomposition of the running times for the two main algorithm components, GenerateComponent and ProcessComponent (see Section 6), along with total running time. Separate best-fit curves were determined for each algorithm component, and indicate that while the running time of GenerateComponent grows linearly, the running time for ProcessComponent is indeed exponential. The main take-away from these results is that while the Marginalization algorithm is theoretically exponential, the coefficient in the exponential is very small and Marginalization is indeed practical for real-world databases with millions of facts. Also, since Marginalization will be performed as an off-line process in most settings, this performance is reasonable.

We conducted a second set of experiments to explore the scalability of the Marginalization algorithm with respect to fact table size. For these experiments, we used the process described above to randomly generate a constraint set, and ran Marginalization on the same three datasets. The results are shown in Figure 10, with each figure showing the total running time for Marginalization for each dataset on a particular constraint set. From the graphs, we see the running time increases linearly as the dataset size increases. This result is not surprising, since the distribution of the datasets are similar. Thus, for a fixed set of constraints, the number of possible bindings increased linearly as well.

Figure 10: Scalability with respect to database size

7.2 Component Size

The next set of experiments examines the size and number of connected components in the constraint hypergraph. For these experiments, we used the same 3 datasets and 35 randomly generated constraint sets used for experiments in Section 7.1. The results in Table 8 give the most extreme value observed over the 35 constraint sets, with each row corresponding to a dataset. The Dataset column contains the number of facts in the dataset. Min \# CC and Min \# $C C$ contain respectively the minimum and maximum number of components observed in the constraint hypergraph over the 35 constraint sets. Largest Comp and \# Imp contain respectively the total number of facts and the number of imprecise facts in the largest observed component. We note that the largest observed component also contained the most imprecise facts for all three datasets. Finally, \# Confs gives the number of configurations enumerated to process this largest component. For each dataset, the largest component required enumerating the most configurations.

From Table 8 we see that for the datasets we consider no large connected components emerge in the constraint graph. The complexity analysis of the ProcessComponent step in Section 6.2 shows the number of configurations enumerated by ProcessComponent grows exponentially with respect to the number of imprecise facts in a component. Since no large connected component emerges, we see that the number of configurations enumerated for even the largest component remains reasonable despite the negative complexity results.

While these results demonstrate no large connected component emerges in the constraint hypergraph, they do not provide insight into the distribution of component sizes. We do not have enough information to conclude whether most of the components are extremely small (i.e, contain 1 or 2 imprecise facts) or if a significant number are "modestly" sized (i.e., contain 10-20 imprecise facts). This difference is significant since the number of configurations

Figure 11: Component size distributions for datasets (a) 200K, (b) 800 K (real Automotive), (c) 3200 K

Figure 12: Partition size distributions for datasets (a) 200K, (b) 800 K (real Automotive), (c) 3200K

Dataset	Min \# CC	Max \# CC	Largest Comp	\# Imp	\# Confs
200 K	174198	205455	25 facts	7	2304
800 K	691689	821733	78 facts	15	110592
3200 K	2829814	3199461	120 facts	20	5308416

Table 8: Results for component size experiment

ProcessComponent enumerates to process a component grows exponentially with the number of imprecise facts it contains.

The next set of results we present addresses this by reporting the distribution for imprecise fact count over the components for each dataset we consider. The results for each dataset over the 35 constraint sets used in the prior experiments are given in Figures 11.a-c. Each curve in a graph gives the number of components with the indicated number of imprecise facts as the constraint set size varies. E.g., the curve labelled " $2-5$ " indicates the number of components with between 2 and 5 imprecise facts. Constraint set size k was defined in Section 7.1. We omit the curves for the range 0 to 1 imprecise facts since the number of configurations generated by these components is negligible (i.e., less that 5% of the total enumerated configurations) for the datasets we consider, and these negatively impact the readability of the graph.

We draw the following two conclusions from these results. First, as constraint set size increases, the number of modestly sized components remains small. Only the number of extremely small components (with between 2 - 5 imprecise facts each) increases noticeably. Thus, the total number of configurations enumerated by the ProcessComponents step for all connected components in the hypergraph remain reasonable as constraint set size increases.

7.3 Regularity Experiments

One way the Marginalization algorithm achieves algorithmic efficiency is by exploiting constraint-space regularity, which the next
set of experiments explores.

7.3.1 Constraint Partitioning

The next set of experiments examines how constraint-space regularity affects the distribution of connected component sizes. For the constraint language we propose in Section 4.1, we can think of the "head" of a constraint $A \Longrightarrow B$ as partitioning the facts into non-overlapping sets such that hyperedges only contain facts in the same set. For example, consider a constraint "two facts with the same location must have the same model". We can think of this constraint as first partitioning all facts by their Location value. Then, hyperedges introduced for this constraint can only contain facts in the same Location partition (e.g., facts which potentially have different models for Auto). Thus, the size of a connected component is limited to be at most the size of these partitions. Even if every hyperedge within one of these partitions is present, the size of the partition ultimately limits component size since a hyperedge can only contain facts within the partition. Essentially, the distribution of these partition sizes represents the worst-case distribution of component sizes.

Our next set of experiments investigates the distribution of partition sizes as constraint set size increases, and is similar to the component size distribution experiments in Section 7.2. The same 35 constraint sets were used for these experiments and the results are given in Figures 12.a-c. Each curve in a graph gives the number of partitions with the indicated number of imprecise facts as the constraint set size varies. E.g., the curve labelled " $2-5$ " indicates the number of partitions with between 2 and 5 imprecise facts. The partitions are created by grouping together facts which satisfy the head of the constrant, and the reported sizes are the number of imprecise facts in the partitions. Constraint set size k was defined in Section 7.1. We omit the curves for the range 0 to 1 imprecise facts for reasons similar to the ones given for the component size results (Figure 11).

By directly comparing between these figures and the correspond-
ing results for component size distribution in Figures 11.a-c, we see the observed component size distributions are pretty similar to the partition size distributions. Thus, we conclude that for the datasets and constraint sets we consider, the component distribution is pretty close to worst-case. Despite this worst-case behavior, the total number of configurations ProcessComponents enumerates reamins reasonable.

7.3.2 Graph Connectivity

The purpose of this experiment is to directly measure the impact of the Non-Adjacent set optimization on running time. For this experiment, we used the Automotive dataset and generated a collection of related constraint sets so that we could control the connectivity of the constraint graph, which we define as the percentage of possible edges within a constraint hypergraph that are actually present. Intuitively, if the non-adjacent set optimization was not used, the number of configurations enumerated by ProcessComponent would be the same regardless of the hypergraph connectivity (i.e., all possible configuration for each component would have to be enumerated), thus increasing the running time of ProcessComponent. The results in Figure 13 indicate the Non-Adjacent set optimization significant impacts running time if the hypergraph connectivity is low. For the real-world Automotive dataset, the constraint sets we consider resulted in constraint hypergraphs with very low connectivity (under 10\% in many cases).

Figure 13: Regularity Experiment

7.4 Summary of Experimental Results

Together, the results in Sections 7.2 and 7.3 explain the scalability and efficiency of our approach observed shown in Section 7.3.1. The favorable distribution of connected component sizes we observed in Section 7.2 is a result of constraint-space regularity leading to many trivially small connected components. Second, the non-adjacent set optimization significantly reduces the number of configurations which ProcessComponents enumerates, and in practice significantly improves the performance of the Marginalization Algorithm. We note that further experimentation on additional datasets from other domains is required to determine the generality of these results.

8. CONCLUSIONS AND FUTURE WORK

In this work, we significantly extend the framework for OLAP over imprecise data presented in [10] to support domain constraints. This extension removes the strong independence assumptions that work required, which are often violated in practice.

There are several interesting directions for further exploration. First, the constraint language we propose could be generalized to support more expressive types of constraints, similar in spirit to the ones proposed in [16]. For example, the language could be extended to support constraints over aggregation query results in each possible world (e.g., "The sum of all Sales in a world must be $\$ 1000$ "). A second related direction would be to develop a less expressive (but still useful) constraint language which would allow
for development of more efficient marginalization algorithms, with the simpler language having additional regularity in the constraintspace for the algorithm to exploit. Finally, it would be fruitful to develop incremental maintenance algorithms for the MDB $D *$, similar in spirit to the EDB maintenance algorithms proposed in [9]. Incremental maintenance of the MDB is challenging since support is required for both updates to the underlying fact table and the set of constraints C.

9. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2] R. Agrawal, S. Dar, and H. V. Jagadish. Direct transitive closure algorithms: Design and performance evaluation. ACM Trans. Database Syst., 15(3):427-458, 1990.
[3] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases: A probabilistic approach. ICDE, 0:30, 2006.
[4] L. Antova, C. Koch, and D. Olteanu. 10(106̂) worlds and beyond: Efficient representation and processing of incomplete information to appear in icde, 2007.
[5] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar aggregation in inconsistent databases. Theor. Comput. Sci., 296(3):405-434, 2003.
[6] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. Uldbs: Databases with uncertainty and lineage. In $V L D B$ 2006, pages 953-964.
[7] L. Bertossi. Consistent query answering in databases. SIGMOD Rec., 35(2):68-76, 2006.
[8] L. Bertossi and J. Chomicki. Query answering in inconsistent databases. In G. S. J. Chomicki and R. van der Meyden, editors, Logics for Emerging Applications of Databases. 2003.
[9] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. Efficient allocation algorithms for olap over imprecise data. In VLDB 2006, pages 391-402.
[10] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. Olap over uncertain and imprecise data. In VLDB '05: Proceedings of the 31st international conference on Very large data bases, pages 970-981. VLDB Endowment, 2005.
[11] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26(1):65-74, 1997.
[12] J. Chomicki, J. Marcinkowski, and S. Staworko. Computing consistent query answers using conflict hypergraphs. In CIKM 2004, pages 417-426.
[13] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In $V L D B$, pages 864-875, 2004.
[14] S. Dar and R. Ramakrishnan. A performance study of transitive closure algorithms. In SIGMOD, pages 454-465, 1994.
[15] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann, M. Sayyadian, and W. Shen. Community information management. IEEE Data Eng. Bull., 29(1):64-72, 2006.
[16] S. Flesca, F. Furfaro, and F. Parisi. Consistent query answers on numerical databases under aggregate constraints, 2005.
[17] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. DMKD, 1(1):29-53, 1997.
[18] R. Gupta and S. Sarawagi. Creating probabilistic databases from information extraction models. In VLDB, pages 965-976, 2006.
[19] M. Halldorsson. Approximations of weighted independent set and hereditary subset problems. Journal of Graph Algorithms and Applications, 4(1):1-16, 2000.
[20] J. Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge, MA, USA, 2003.
[21] C. A. Hurtado, C. Gutierrez, and A. O. Mendelzon. Capturing summarizability with integrity constraints in olap. ACM TODS, 30(3):854-886, 2005.
[22] C. A. Hurtado and A. O. Mendelzon. Olap dimension constraints. In PODS 2002, pages 169-179.
[23] T. Imielinski and W. L. J. Incomplete information in relational databases. J. ACM, 31(4):761-791, 1984.
[24] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu. Avatar information extraction system. IEEE Data Eng. Bull., 29(1):40-48, 2006.
[25] S. A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica, 16:83-94, 1963.
[26] J. Lechtenbörger, H. Shu, and G. Vossen. Aggregate Queries Over Conditional Tables. JIIS, 19(3):343-362, 2002.
[27] H.-J. Lenz and A. Shoshani. Summarizability in olap and statistical data bases. In SSDBM 1997, pages 132-143.
[28] M. Rafanelli. Multidimensional Databases: Problems and Solutions. Idea Group Inc (IGI), 2003.
[29] K. A. Ross, D. Srivastava, P. J. Stuckey, and S. Sudarshan. Foundations of aggregation constraints. In Principles and Practice of Constraint Programming, pages 193-204, 1994.
[30] P. Sen and A. Deshpande. Representing and Querying Correlated Tuples in Probabilistic Databases. UM Computer Science Dept Tech Report CS-TR-4820. 2006.
[31] M. Vardi. On the integrity of databases with incomplete information. In PODS '86: Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of database systems, pages 252-266, New York, NY, USA, 1986. ACM Press.
[32] J. Vitter. External memory algorithms and data structures: dealing with massive data. ACM Computing Surveys, 33:209-271, 2001.
[33] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. In CIDR 2005, pages 262-276.
[34] C. Zaniolo. Database relations with null values. J. Comput. Syst. Sci., 28(1):142-166, 1984.

