Optimizing MPF Queries: Decision
Support and Probabilistic Inference

Hector Corrada Bravo
Raghu Ramakrishnan

Technical Report #1567

August 2006

RSITY OF

UNIVE

Optimizing MPF Queries: Decision Support and Probabilistic Inference

Héctor Corrada Bravo!

t University of Wisconsin-Madison

Raghu Ramakrishnan'*
t Yahoo! Research

{hcorrada, raghu } @cs.wisc.edu

Abstract

We identify a broad class of aggregate queries, called
MPF queries, inspired by the literature on marginalizing
product functions. MPF queries operate on “functional re-
lations,” where a measure attribute is functionally deter-
mined by the other relation attributes. An MPF query is an
aggregate query over a stylized join of several functional
relations. In the motivating literature on probabilistic in-
ference, this join corresponds to taking the product of sev-
eral probability distributions, and the grouping step corre-
sponds to marginalization. Thus, MPF queries represent
probabilistic inference in a relational setting.

While they play a central role in probabilistic inference,
and our work complements recent work that provides a
framework for probabilistic inference in a database set-
ting, we present MPF queries in a general form where arbi-
trary functions other than probability distributions are han-
dled. We demonstrate the value of MPF queries for deci-
sion support applications through a number of illustrative
examples. We exploit the relationship to probabilistic infer-
ence in query evaluation by combining database optimiza-
tion techniques for aggregate queries with traditional algo-
rithms from the probabilistic inference literature, such as
Variable Elimination and Belief Propagation. We consider
how to optimize individual queries, combining features from
Variable Eliminaiion and Chaudhuri and Shim’s algoriifun
for optimizing Group By queries. We also present an algo-
rithm to find a cache of materialized views in order to effi-
ciently evaluate a workload of MPF queries, combining Be-
lief Propagation, Junction Trees, and database-style Group
By optimizations. These results are especially interesting
and timely because of the growing interest in managing data
with uncertainty using probabilistic frameworks.

1. Introduction
We consider a class of queries that generalize proba-

bilistic inference on some graphical models [2]. Functions
over discrete domains are naturally represented as relations

where an attribute (the value of the function) is determined
by the remaining attributes (the inputs to the function) via
a Functional Dependency (FD). We define such relations,
called Functional Relations, and present an extended Rela-
tional Algebra that operates on them. A functional view V
is defined by the join of a set S of smaller, ‘local’ func-
tional relations, and specifies a joint function over the union
of domains of functions in 5. MPF (Marginalize a Product
Function) queries are a type of aggregate query that com-
pute Vs value in arbitrary subregions of its domain:

select Vars, Agg(V[f]) from V group by Vars.

There are two options for evaluating an MPF query: 1)
the relation defined by V is materialized, and maintained
as base relations are updated; or, 2) each query is rewrit-
ten using V's definition and evaluated, so that construct-
ing the relation defined by V' is an intermediate step. The
problem of view maintenance is avoided, but this approach
is prohibitive if computing V’s relation is too expensive.
The latter option is likely to be appropriate for answering
individual queries, and variations of the former might be
appropriate if we have knowledge of the anticipated query
workload. In this paper, we study the second approach.

A simple extension of the algorithm of Chaudhuri and
Shim [4, 5] for optimizing aggregate queries yields signifi-
cant gains over how MPF queries must be evaluated in exist-
ing systems (see Section 7). We also get similar gains from
using the Variable Elimination technique [26] from the lit-
erature on optimizing probabilistic inference. Additionally,
we present extensions to VE based on ideas in the Chaud-
huri and Shim algorithm that yield even better plans than
traditional VE. Finally, we present an algorithm for defin-
ing a collection of materialized views to efficiently support
a workload of MPF queries. This algorithm builds on Be-
lief Propagation [17] and Junction Trees [14, 1, 6], which
are techniques for optimizing a specific type of probabilis-
tic inference workload.

The contributions of this paper are as follows:

1. We introduce MPF queries which significantly
generalize the relational framework introduced by

Wong [21] for probabilistic models. The generalized
class of queries is motivated by decision support ap-
plications, and also allows us to represent probabilistic
inference in a relational setting.

2. We extend the optimization algorithm of Chaudhuri
and Shim for aggregate queries to the MPF setting, tak-
ing advantage of the semantics of functional relations
and the extended algebra over these relations. This ex-
tension produces better quality plans for MPF queries
than those given by the procedure in [4, 5],

3. We build on the connection to probabilistic inference
and extend existing inference techniques to develop
novel optimization techniques for MPF queries. Even
for the restricted class of MPF queries that correspond
to probabilistic inference, to the best of our knowledge
this is the first approach that addresses scalability and
cost-based plan selection.

4. We implement our optimization techniques in a mod-
ified Postgres system, and present a thorough evalua-
tion that demonstrates the significant gains they yield.

The paper is organized as follows: in the next section we
formally define the MPF query setting; in Sections 3 and 4
we introduce two application settings for MPF queries, de-
cision support and probabilistic inference; Sections 5 and 6
describe and analyze optimization schemes for single MPF
queries and workloads of MPF queries respectively; exper-
imental results for single query optimization are shown in
Section 7.

2. MPF Query Definition

We now formalize the MPF query setting. First, we de-
fine functional relations:

Definition 1. A relation s with schema
{A1,A2,..., A, f} is a functional relation (FR) if
f € R, and the FD A1 Ay -~ Ay — f holds. The attribute
f is referred to as the measure attribute of s.

We make several observations about FRs. First, any de-
pendency of the form A, — f can be extended to the max-
imal FD in Definition 1 and is thus sufficient to define an
FR. Second, we do not assume relations contain the entire
cross product of domains of Al,..., A, although this is
required in principle for probability functions. We refer to
such relations as complete. Third, f € R is not necessary.
We will see that for the purposes of the optimizations we
present, a number of domains are allowable. Finally, any
relation can be considered an FR where f is implicit and
assumed to take the value 1 (the multiplicative identity ele-
ment of f’s domain).

Functional relations may be joined to create functions
with larger domains:

Definition 2. Let sy and so be functional relations, the
product join of s1 and s; Is defined as:

*

51 M sy = WVar(sl)UVar(sz),sl{f]*sz[f}(sl M 52))

where Vax(s) is the set of non-measure attributes of s.
This definition is clearer when expressed in SQL:
select Al,.

from si,s82
where s1[A1]l= s2[A1],...

.., Am, (s1[f) * s2[f]) as f

, s1[AkJ= s2[Ak]

where {Al,...,Am} = Var(s;) U Var(sy), and
{A1,..., Ak} = Var(s1) N Var(ss).

Some observations: Implicit in the Relational Algebra
expression for product join is the fact that each table de-
fines a unique measure; measure fields are never included
in the set of join conditions; and, the product join of two
FRs is itself an FR. Although we have defined this opera-
tion in terms of products over R, it may be defined over the
multiplicative operation of allowable domains (see below).

We are now in position to define the MPF problem.

Definition 3. The MPF Problem. Given view definition r
over base functional relations s;, ¢ = 1,2,...,n such that

* * *

T =81 M 8 X - X 8,, compute

7x,AGG(r[f)) GroupBy x (7)

where X C \Ji_, Var(s;), and AGG is a suitable additive
aggregate function. We refer to X as the query variables.

Note that the result of an MPF query is an FR; thus MPF
queries may be used as subqueries defining further MPF
problems.

We propose the following SQL extension to define views
in the MPF setting:

create mpfview r as
(select vars, measure = (* si.f,s2.f,..
from sl, 82, ..., sn
where joinguals)

.,5n.f)

where the last argument in the select clause lists the measure
attributes of base relations and the multiplicative operation
used in the product join.

We used two operations on measure attributes of FRs to
define the MPF setting: the multiplicative operation in the
product join, and the additive aggregate AGG(-) in the MPF
problem. This setting can be equivalently defined on mea-
sures in arbitrary commutative semi-rings [1, 15]. A semi-
ring is a set closed on additive and multiplicative opera-
tions; both operations are associative and commutative; the
additive operation distributes with respect to the multiplica-
tive operation; and, the set contains the identity elements of

purchase
rice
~BE

Figure 1. A supply chain decision support schema

both operations. Another pertinent allowable domain is the
set {0,1} with A and V as the multiplicative and additive
operations. The core idea behind the optimization proce-
dures we present in Sections 5 and 6 takes advantage of the
distributivity of operations on semi-rings. In the next two
sections, we motivate the study of MPF queries.

3. MPF Queries and Decision Support

Consider the following enterprise schema: 1) Contracts:
stores terms for a part’s purchase from a supplier; 2) Ware-
houses: each warehouse is operated by a contractor, and has
an associated multiplicative factor determining the storage
overhead for parts; 3) Transporters: transporters entail an
overhead for transporting a part; 4) Location: the quantity
of each part sent to a warehouse; 5) Ctdeals: contractors
may have special contracts with transporters which reduce
the cost of shipping to their warehouses using that trans-
porter. Since contracts with suppliers, storage and ship-
ping overheads and deals between contractors and trans-
porters are not exclusively controlled by the company, it
draws these pieces of information from diverse sources and
combines them to make decisions about supply chains. Fig-
ure 1 shows an ER diagram of this schema, with measure
attributes set in italic font.

Total investment on each supply chain may be computed
by the view

create mpfview invest(pid,sid,wid,cid,tid,inv) as
select pid, sid, wid, cid, tid,
measure=(* p_price, w.overhead, t.overhead,
qty, ct.discount)
from contracts ¢, warehouses w, transporters t,
location 1,ctdeals ct
where c.pid = 1.pid and l.wid = w.wid ...

3.1. MPF Query Forms

Using this schema we present templates and examples for
a number of MPF query variants that arise in a decision sup-

port context. In the following, we assume that r is as in
Definition 3:

Basic: This is the query form used in the definition of the
MPF problem above:

select X,AGG(r.f) from r group by X
Example: What is the minimum investment on each part?

select pid, min(inv) from invest group by pid

Restricted answer set: Here we are only interested in
a subset of a query’s answer as given by specific values of
the query variables. We add a where X=c clause to the
Basic query above. Example: How much would it cost for
warehouse w1 to go off-line?

select wid, sum(inv) from invest where wid=wl
group by wid

Constrained domain: Here we compute the function’s
value for the query variables conditioned on given values for
other variables. We add a where Y=c clause to the Basic
query for Y ¢ X. Example: How much money would each
contractor lose if transporter t1 went off-line?

select cid, sum(inv) from invest where tid=tl
group by cid

The optimization schemes we present in Sections 5 and 6
are for the three query types above. There are other useful
types of MPF queries; optimizing them is a challenge for
future work:

Constrained range: Here function values in the result
are restricted. This is useful, for example, when only values
that satisfy a given threshold are required. This is accom-
plished by adding a having f<c clause to the basic query.

The next two query types are of a hypothetical nature
where alternate measure or domain values are considered.
Alternate measure: here the measure value of a given base
relation is hypothetically updated. For example, how much
money would contractor cl lose if warehouse wl went off-
line if, hypothetically, part pl was a different price? Alter-
nate domain: alternatively, variable values in base relations
may be hypothetically updated. For example, how much
money would contractor ¢l lose if warehouse wl went
off-line under a hypothetical transfer of cl’s contractor-
transporter deal with t1 to t2?

4. MPF Queries and Probabilistic Inference

In this section, we show how MPF queries can be used
to query Bayesian Network (BN) models of uncertain data.
BNs [17, 14, 6] are widely-used probabilistic models of dis-
tributions that satisfy some conditional independence prop-
erties, allowing the distribution to be factored into local dis-
tributions over subsets of random variables.

Pr{D|B.C)
0.2
0.8
7
0.3
0.5
0.5
1
0

ClA | P(ClY)
G40 0.2

1110 0.5
011 0.7
1 {1 0.3

P E=1 R P P Fet B B R
B K= E=1 B B R Rl | R o]

AT r{4)
1] 0.9
1 0.1

B | A} Pr{Bl4)
010 0.9
170 0.1
011 0.4
111 0.6

Figure 2. A simple Bayesian Network

To understand the intuition behind BNs, consider a prob-
abilistic model over the cross product of large discrete do-
mains. A functional relation can represent this distribution
but its size makes its use infeasible. However, if the func-
tion were factored, we could use the MPF setting to express
the distribution using smaller local functional relations. For
probability distributions, factorization is possible if some
conditional independence properties hold; a BN represents
such properties graphically. We now discuss how to effi-
ciently compute properties of the BN distribution when the
functional relations that define the local distributions are so
large that they are disk-resident.

For binary random variables A,B,C,D a func-
tional relation of size 2% can represent a joint prob-
ability distribution. If, however, a set of condi-
tional independencies exists such that Pr{A, B,C, D) =
Pr(A) Pr(B|A) Pr(C|A) Pr(D|B, C) then the BN in Fig-
ure 2 may be used instead. For this admittedly small ex-
ample, the gains of factorization are not significant, but for
a large number of large domains, factorization can yield a
significant size reduction. The joint distribution is specified
by the MPF view:

create mpfview joint as (

select A,B,C,D, measure = (* tA.p, tB.p,
tC.p, tD.p) as p

from tA, tB, tC, tD
where tA.A=tB.A and tA.A=tC.A ...)

The set of conditional independence properties that in-
duce a factorization may be given by domain knowledge, or
estimated from data [12]. Given the factorization, the local
function values themselves are estimated from data [12]. In
either case, counts from data are required to derive these es-
timates. For data in multiple tables where a join dependency
holds, the MPF setting can be used to compute the required
counts.

After the estimation procedure computes the local func-
tional relations we can use MPF queries to infer exact val-
ues of marginal distributions. An example inference task is
given by the MPF query

select C,SUM(p) from joint where A=0 group by C

which computes the marginal probability distribution of
variable C when A = 0 is observed, Pr(C]A = 0).

4.1. Discussion and Related Work

In a number of publications, Wong et al. [21, 22, 23] ad-
dress the probabilistic inference task in relational terms and
propose an extended relational model and algebra capable
of expressing this problem. The MPF setting we present
here is a generalization and reworking of their formulation.
A major benefit of framing this task in a relational setting is
that existing and new techniques for efficient query evalua-
tion can then be used. This opportunity has not, to the best
of our knowledge, been investigated; our study of query and
workloadoptimization of MPF queries in Sections 5 and 6
is a first step in this direction.

Modeling and managing data with uncertainty has drawn
considerable interest recently. A number of models have
been proposed by the Statistics and Machine Learning [2,
10, 13, 20] and Database [7, 8, 3, 11] communities to de-
fine probability distributions over relational domains. For
example, the DAPER formulation [13] extends Entity-
Relationship models to define classes of conditional inde-
pendence constraints and local distribution parameters. The
general applicability of MPF queries to these approaches is
an important issue for future investigation.

In particular, Dalvi and Suciu [7] and R€ et al. [18] de-
fine relational operators for probabilistic databases [11] and
give a method for query answering. Part of their evaluation
scheme produces queries which utilize a join operator that
corresponds to our product join, and a projection operator
that corresponds to our marginalization operator. They push
as much of the evaluation as possible into the DB engine by
posing these rewritten queries. Our optimization schemes
are a first attempt at using cost-based query optimization in
the DB engine to evaluate queries resulting from this rewrit-
ing.

Finally, we remark that in this paper, we consider the
problem of scaling exact inference. This is required in set-
tings where results are composed with other functions that
are not monotonic with respect to likelihood. An example
are systems where computation of expected risk or utility
is performed. In these settings approximate values are not
sufficient. However, for other systems where only relative
likelihood suffices, e.g., ranking in information extraction,
approximate inference procedures are sufficient and can be
more efficient.

5. Single Query Optimization

The Generalized Distributive Law (GDL) has been pro-
posed as a generic algorithm for efficiently solving MPF
problems [1, 15]. The key property is the distributivity of

Table 1. Example cardinalities and domain sizes

| Table [# tuples | f Varable | #ids |
contracts 100K part.ids 100K
warchouses SK . supplier.ids 10K
transporters 500 warehouse.ids 5K
location 1M contractor.ids 1K
ctdeals 500K transporler.ids 500

the addition and multiplication operations over measures.
In relational terms, the GroupBy (“additive’) operation dis-
tributes with the product join (‘multiplicative’) operation so
that GroupBy’s can be pushed into a query’s join tree reduc-
ing the size of join operands.

We study two algorithms and their variants for imple-
menting GDL: (CS) Chaudhuri and Shim’s algorithm for
optimizing aggregate queries [4, 5]; (CS+) a simple exten-
sion of CS that yields significant gains over the original;
(VE) the Variable Elimination algorithm [26] proposed for
probabilistic inference; and (VE+) an extension to VE based
on the CS algorithm that finds better plans than VE.

These algorithms optimize basic, restricted answer and
restricted domain MPF query types. We use Q1 as a running
example:

Q1: select wid, SUM(inv) from invest group by wid;
and consider an instance with table cardinalities and vari-
able domain sizes given in Table 1.

Chaudhuri and Shim [4, 5] define an optimization scheme
for aggregate queries that pushes GroupBy nodes into join
trees. They consider the usual non-functional join and
describe correctness conditions for these plan transforma-
tions. This space of linear plans is explored using an exten-
sion of the dynamic programming optimization algorithm
of Selinger et al. [19].

Algorithm 1 illustrates the CS procedure. The dy-
namic programming algorithm is modified so that in line 2,
joinplan() finds the best linear plan that joins new relation
75 to the optimal plan for relation set S, while in line 3 it
finds the best linear plan that joins r; to the optimal plan for
relation set S; modified to include a GroupBy node as its
topmost node. Grouping in this new node is done on query
variables and variables appearing in a join condition for any
relation not yet joined into S;, ensuring the semantic cor-
rectness of the plan transformation. The cheapest of these
two candidates is selected in line 4. The authors showed that
this greedy-conservative heuristic produces a plan that is no
worse in terms of IO cost than the original single GroupBy
node plan.

As defined, the CS procedure cannot evaluate MPF
queries efficiently. It does not consider the distributivity of
GroupBy and functional join nodes since it assumes that ag-
gregates are computed on a single column; not on the result
of a function of many columns. The resulting evaluation
plan would be the plan in Figure 3, which is the best plan
without any GDL optimization.

Algorithm 1 The CS optimization algorithm

1: forall v, S; such that Q' = S; U {r;} do

2 q1; = joinplan(optPlan(S5;), r5)

3 gz2; = joinplan(GroupBy(optPlan(5;)), ;)
: p; = minCost;i(gi;)

5: end for

6: optPlan(Q’) = minCost; (p;)

The CS+ algorithm is an extension of CS where joins are
annotated as product joins, the distributive property of the
aggregate and product join is verified, and the correctness
condition of line 3 is retained. The CS+ algorithm im-
plements the GDL restricted to left-linear plans. Figure 4
shows the CS+ plan for Q1. A GroupBy node is added after
the join of Location and Contracts since the subplan joining
Warehouses is cheaper. This simple extension can produce
much better plans than unmodified CS.

The Variable Elimination algorithm {26] is based on a
purely functional interpretation of MPF queries; our paper
is the first to apply VE to relational query optimization. The
domain of the function defined by the MPF view is reduced
one variable at a time until only the query variables remain.
While this is an entirely different approach to query opti-
mization, not based on transformations between equivalent
Relational Algebra expressions, we can cast it in relational
terms: to eliminate a variable, all the tables that include it
are product-joined, and the result is aggregated and grouped
by the variables not eliminated yet. Algorithm 2 lists the VE
algorithm. We abuse notation in this definition: in line 6,
joinplan() returns the best plan joining the relations in the
set given as argument, and in line 9, p denotes the relation
resulting from the execution of plan p in line 6. The set
rels(v;, S) contains the relations in S where variable v; ap-
pears. Figure 5 shows the VE plan for Q1 with elimination
order tid,pid,cid.

Algorithm 2 The Variable Elimination Algorithm

1: Set§ = {81,52,“ “,Sn}

2: SetV = Var(r) \ X

3: setp = nuli

4: while V 3 0 do

select v; € V according to heuristic order

set p = GroupBy(joinplan(rels(v;, 5)))
set V =V \ {v;}

remove relations containing v from S

set S = S U {p}

10: end while

WD

The efficiency of VE for query evaluation is determined
by the variable elimination order (see Section 5.5). In the
GDL literature, the cost metric being minimized is the num-
ber of additions and multiplications used in evaluating the
query. This is a valid cost metric in the original setting since
operands are assumed to be memory-resident, and more sig-
nificantly, single algorithms are assumed to implement each
of the multiplication and marginalization operations. These
are not valid assumptions in the relational case, where there

8K

500M

500M

™ @ 500
G @ B,

|M OOK sK

500K
!van 5P
- ﬁ E -

Figure 3. A CS plan for Q1

lecation -

5K ‘ Q;‘:K ‘\500 (;335)(@:K m

5K
transp.

c\d 00K
SDDKOSDO
Se—— —
———

Figure 5. A VE plan for Q1

Figure 4. A CS+ plan for Q1

are multiple algorithms to implement join (multiplication)
and aggregation (summation), and the choice of algorithm
is based on the cost of accessing disk-resident operands.

5.1. Plan Linearity

Including nonlinear plans in the space searched by an op-
timization algorithm for MPF queries is essential since there
are join operand reductions available to these plans that are
not available to linear plans. When query variables are of
small domain, but appear in large tables, this is a signif-
icant advantage. The example plan in Figure 4 illustrates
this point. Also note that the elimination order in Figure 5
induces a non-linear join order. In fact, an advantage of
VE is that it produces nonlinear plans with, in many cases,
small optimization time overhead.

For an MPF query on variable X we can, conservatively,
determine if a linear plan can efficiently evaluate it. We
can check this using an expression that depends on the do-
main size of X, ox = |X]|, and the size of the smallest
base relation containing X, & x. Both of these statistics are
readily available in the catalog of RDBMs systems. To see
the intuition behind this test, consider the following exam-
ple: X occurs in only two base relations s, and s, where
Is;] > |s2|, thus 6x = |s2]. A linear plan must, at best, join
9 to an intermediate relation s’ of size oy resulting from a
join or GroupBy node where s; is already included. On the
other hand, a nonlinear plan is able to reduce s5 to size ox
before joining to s'. Under a simple cost model where join-
ing R and S costs |R}|S| and computing an aggregate on R
costs | R|log | R|, a linear plan is admissible if the following
inequality holds:

ok +oxlogdx > oxbx. €3]

We extend the CS+ procedure to consider nonlinear plans
as follows: (a) extend the search strategy to a dynamic pro-
gramming algorithm for nonlinear plans where for relation
set S; we consider joining every relation set of size < j;
(b) instead of comparing two plans we now compare four:

one without any GroupBy nodes (corresponding to line 2);
another with a GroupBy on S} (corresponding to line 3; an-
other with a GroupBy on the operand (say, s’) being joined
to Sy; and finally, a plan with GroupBy nodes on both S;
and ¢'. The cheapest of these four plans is selected.

5.2. Plan Spaces

We now turn to a characterization of the plan spaces ex-
plored by nonlinear CS+ and VE.

Definition 4 (GDL Plan Space). Denote as GDLPlan
the space of all nonlinear evaluarion plans where either
GroupBy or join nodes are inner nodes, and are equivalent
to a plan with only inner join nodes and a single GroupBy
node at the roof.

CS+ performs a complete (but bounded) search of non-
linear join orders using dynamic programming with a lo-
cal greedy heuristic that adds inner GroupBy nodes. This
space, denoted GDLPlan(CS+) has the property that for any
plan, if a single inner GroupBy node is removed, the cost of
the subplan at its parent join node is greater. As before,
CS+ yields a plan that is no worse than the plan with a sin-
gle GroupBy at the root.

VE searches through a region of GDLPlan where a) all

joins where a variable appears as a join condilion are con-

tiguous, and b) a GroupBy node immediately follows the
last join on a variable. Denote this space as GDLPlan(VE).
No guarantee of optimality is given by VE due to its
greedy heuristic search, and finding the variable ordering
that yields the minimum cost plan is NP-complete in the
number of view variables.

The following theorem characterizes these plan spaces:

Theorem 1. [Inclusion Relationships] Using the notation
above, we have:

GDLPlan > GDLPlan(CS+) > GDLPlan(VE).

We need the following Lemma:

Lemma 1. Consider relations Sn = {ri,...,rn} and
variable v which only appears in v, Let S, =
{ri,...,GroupBy(rk),...,7n}. The following holds:
Cost{optPlan(S,)) < Cost(optPlan(S},)).

Proof. By induction on n. If n = 2 the Lemma follows
since the plans are compared directly in line 4. Now as-
sume true form < n — 1. If rp = r, then the Lemma
follows since, again, the plans are compared directly in
line 4. Otherwise, if r, # 7, then 7, € Sp.1 we
have by the inductive hypothesis Cost(optPlan(S,-1)) <
Cost(optPlan(S% _;)) and the Lemma follows. O

Proof. (Theorem 1) We say that a plan is in a space
G DLPlan(-) if the optimization algorithm either computes
its cost, or can guarantee that it is more expensive than a
plan for which it has computed cost.

e (GDLPlan(CS+) C GDLPlan) This follows by
definition of CS+ and the semantic correctness of its
plan transformation.

o (GDLPlan(CS+) # GDLPlan) By the greedy
heuristic, any plan p’ extending the plan not chosen in
line 4 is not included in GDLPlan{CS+). However,
no guarantee is given that p’ is more expensive than the
plans extending the least expensive plan of line 4.

o (GDLPlan(VE) C GDLPlan(CS5+)) Let p be the
VE plan for elimination order vy,...,v,. We prove
this by induction on n. If n = 1, the theorem holds
trivially. Now assume true for m = n — 1 and con-
sider variables v,, and v, and S,, = rels{v,,S,).
By the inductive hypothesis we have that the subplan
in p that eliminates v,;, has been considered by CS+.
But since v.,, only appears in the relation resulting
from optPlan(Sy,,), by Lemma 1 we have that CS+
considers the subplan eliminating v, as well. Thus
p € GDLPlan(CS+).

o (GDLPlan(VE) # GDLPlan(CS+)) Consider a
variable ordering where v; is preceded by vy but
rels(v;) C rels(vz). In this case VE does not consider
adding Group By nodes in the subplan that eliminates
va, but CS+ considers Group By nodes to ‘eliminate’
vy once rels(v;) are joined.

O

It is easy to construct plans with cost lower than the min-
imum of the enclosed set at the non-overlapping regions
of these spaces. There is no guarantee that the minimum
cost plan for a query is contained in GDLPlan(CS+); if it
is, the dynamic programming procedure in CS+ will re-
turn it. Also, even if the minimum cost plan is contained
in GDLPlan(VE), there is no guarantee that VE will return
it for an arbitrary ordering.

‘ N tables

Figure 6. An example star MPF view.

5.3. Optimization Complexity

Another dimension of comparison between these two
procedures is planning time. Since search for optimal sub-
plans in VE only occurs in line 6, for views where variables
exhibit low connectivity, that is, they appear only in a small
subset of base relations, the cost of finding a VE plan is low.

As opposed to CS+, VE optimization time can be in-
sensitive to variables that have high connectivity if aver-
age connectivity is low. Consider the star schema in Fig-
ure 6. This is the classic example where the optimization
time of Selinger-type dynamic programming procedures de-
grades. In fact, the optimization time complexity for CS+ is
O(N2N) for N relations. For VE with a proper ordering,
only two relations have to be joined at a time for each vari-
able, yielding optimization time complexity of O(M) for
M variables.

We summarize these findings by the following theorem:

Theorem 2 (Optimization Time Complexity). Let S be the
average variable connectivity, M be the number of vari-
ables, and N the number of tables. The worst-case op-
timization time complexity of VE with a proper heuristic
computable in linear time is O(MS2%). The worst-case
optimization time complexity of CS+ is O(N2N).

Proof. The CS+ result is the standard complexity result for
Salinger-type dynamic programming algorithms. For the
VE result, a proper heuristic chooses a variable v; in line 5
of Algorithm 2 where, on average, |rels(v;)| = S. Finding
a plan for these tables in line 6 takes O(S2%). At worst, this
is done M times, once for each variable. 0

5.4. Extending the Variable Elimination Plan Space

We saw in Section 5.2 that the plan space considered by
VE is a subset of the plan space considered by CS+. In this
section we extend VE to close this gap. The first addition we
make consists of delaying the elimination of variables if that
results in better quality plans. There are two ways in which
we implement this: by using Functional Dependencies on
the base relations and by using cost-based local decisions
similar to that used by CS+.

As defined, VE considers all variables as candidates for
elimination; however, variables that satisfy the following

property need not be considered since their elimination has
no effect:

Proposition 1. Let v be an MPF view over base relations
81y, 8n, and Y € Var(r). If for each i,1 < i < nan
FD X; — s;|f] holds and Y & X; for X; C Var(s;), then
GroupByVar(r)\Y(r) = TVar(r)\Y (T)

Proof. First, we note that for any functional relation s with
XY = Var(()s) where the FD X — s[f] holds, then
GroupBy y(s) = mx:(s) for all X’ 2 X since the FD
implies that there is only one row per value of X'. By
the condition that FD’s X; — s;[f] hold, we have that
U; X; = r[f] holds. That means we may divide Var(r)
into U; X; and Z with Y € Z. The Proposition follows by
the first statement above.]

A sufficient condition for this Proposition is that for each
base relation a primary key is given where Y is not part of
any key. Furthermore, this Proposition holds for any set of
relations, that is, at any point in the VE algorithm if a vari-
able satisfies the Proposition for the current set of relations,
that variable can be removed from the set of elimination
candidates.

In the absence of FD information, we present an exten-
sion to Variable Elimination that uses cost-estimation to
delay variable and push GroupBy nodes. Algorithm 2 re-
quires two changes: 1) in line 6 we assume that the func-
tion joinplan() uses the local greedy conservative heuris-
tic of CS+, and 2) we substitute line 6 with the line “set
p = joinplan(rels(v;, §))” to delay elimination. These ad-
ditions have the effect of extending GDLPlan(VE) , so the
following holds:

Theorem 3 (Extended Variable Elimination Space). De-
note by GDLPlan(VE+) the space of plans explored by Vari-
able Elimination with the two cost-based extensions above,
then

GDLPlan(VE) C GDLPlan(VE+) C GDLPlan(CS+).
Proof. e (GDLPlan(VE) < GDLPlan(VE+))

Given the same elimination order, the same proof for
CS+ and V E shows this case.

o (GDLPlan(VE) # GDLPlan(V E+)) Consider an
elimination order where v; follows v; but rels(v;) C
rels(v;), VE+ considers adding GroupBy nodes to
eliminate v; while creating the joinplan for rels(v;),
where V E does not. This is the same argument given
above for VE and C'S+.

o (GDLPlan(VE+) C GDLPlan(CS+)) The proof
for this is the same as the proof of GDLPlan(V E) C
GDLPlan(CS+).

e (GDLPlan(VE+) # GDLPlan(CS+)) The issue
here is that V E+ only considers plans where the joins
for a given variable are contiguous, whereas CS+
does not follow that constraint. In the presence of in-
dices and alternative access methods, contiguous joins
are not necessarily optimal, therefore C'S+ is able to
produce plans that are not reachable to V E4-.

0

Although there is still a gap between GDLPlan(VE+) and
GDLPlan(CS+) corresponding to plans where joins for a
variable are not necessarily contiguous, our experimental
results in Section 7, show that C'S+ rarely produces plans
that are not reachable by V E+.

5.5. Elimination Heuristics

Finally, we turn to elimination heuristics. In the VE liter-
ature [9] there are two main heuristics: a) degree, which, in
relational terms, estimates the size of post-elimination rela-
tion p in line 6, and b) width, which estimates the size of the
pre-elimination relation joinplan(rels(v;, S)) on the same
line. In the literature, these estimates are given by the do-
main sizes of variables. For example, the degree heuristic
computes the size of the cross-product of the domains of
variables in p.

The degree heuristic greedily minimizes the size of join
operands higher in the join tree. However, there are cases
where executing the plan that yields these small operands
is costly, whereas plans that use a different order are less
expensive. In this case looking at estimates of the cost of
eliminating a variable as an ordering heuristic is sensible.
We call this ordering heuristic Elimination Cost.

A straightforward way of implementing the elimination
cost heuristic is to call the query optimizer on the set of re-
lations that need to be joined to estimate the cost of the plan
required to eliminate a variable. However, for this heuristic
to be computed efficiently, both average variable connec-
tivity and maximum variable connectivity must be much
lower than the number of tables, otherwise Variable Elimi-
nation would exhibit the same optimization time complexity
as CS+.

While width and elimination cost estimate the cost of
eliminating variables, the degree heuristic seeks to mini-
mize the cost of future variable eliminations. There is a
tradeoff between greedily minimizing the cost of the cur-
rent elimination plan vs. minimizing the cost of subsequent
elimination plans. To address this tradeoff we combine the
degree and either width or elimination cost heuristics to de-
rive elimination orders. We study the effect of these heuris-
tics and their combinations in Section 7.

To summarize the contributions of this central section: 1)
‘We presented a necessary condition for requiring nonlinear

plans when answering a query; 2) We characterized the plan
spaces explored by each of the algorithms given; 3) We ana-
lyzed the optimization time complexity of both algorithms,
and gave conditions based on schema characteristics where
one would be better than the other; 4) We extended VE so
that its plan space is the space of CS+ plans without adding
much optimization overhead; and 5) We proposed a cost-
based ordering heuristic for Variable Elimination.

6. MPF Query Workload Optimization

MPF queries are stylized aggregate queries that follow a
strict syntax. This means that workloads of MPF queries
have a common structure that we want to exploit for effi-
cient evaluation. In this section we describe an algorithm
that decides on a set of materialized views for this purpose.

MPF Wgrkloaq Problem Given an MPF view definition
r o= 8§ K - M 8, we define a workload as follows: (1)
a set of queries @ = {q1,...,gn} wWhere each ¢; is a single
variable basic or restricted answer MPF query, (2) each g;
is associated with a probability p; that gives the likelihood
of a user posing g;. We want to build a set S of materialized
views such that C(S) + Ecost(Q(g, S)) where C(S) is the
cost of materializing S, cost(Q(g, S)) is the cost of answer-
ing query g with respect to materialized views in S, and ex-
pectation is taken over the probability distribution specified
by (2) above.

To ensure correctness of query answering with respect to
S, we constrain S to satisfy the following invariant:

Definition 5. A set of functional relations S satisfies the
workload correctness invariant if for every functional rela-
tion s € S that includes X; as a variable, computing an
MPF query q on X; using s yields the same result as evalu-
ating q view .

To build S so that it satisfies the invariant of Definition 5,
we extend the GDL all-vertex algorithm [1]. This algorithm
first modifies the given view if it is not acyclic by using
the Junction Tree algorithm. It then updates each of the
resulting local functions using Belief Propagation (BP), a
message passing algorithm that gathers in each local func-
tion information about the joint function. After the message
passing algorithm is completed each local function now sat-
isfies the invariant in Definition 5. See Appendix A for the
BP and JT algorithms in the relational setting.

Our algorithm, VE-cache (Algorithm 3) creates a VE
plan p from which S is induced. Here all variables are can-
didates for elimination, that is, no variable is treated as a
query variable. While executing p it materializes and in-
cludes in S tables that precede a GroupBy node. At this
point the relation resulting from the VE-cache plan has been

reduced with respect to all base relations, but it is required
that the tables in S be reduced as well. The correctness of
VE-cache follows from the aciclicity of tables in S.

The following operations based on functional join are
used in the algorithm.

Definition 6. Let U = Var(t) N Var(s), define the product
semijoin of t and s as
txs=1tM (GI‘OUPBYU,SUM(s[f]))(8))'

Also, define update semijoin as
txs=t n (GroupByy sumes)(t))
% (GroupByy sum(ss)) ($))s

where W is defined exactly like product join, but uses the
division operation instead of the product operation.

In short, these are extensions of the product join that use
aggregation to reduce operators with respect to common
variable subsets.

Algorithm 3 The VE-cache Optimization Scheme

Output:Set of cached relations that satisfy the correctness invariant

1: Create a no-query-variable Variable Elimination plan (Algorithm 2)
2: Cache all tables that precede a Group By node, say ¢1, ..., %

3: forallt;,j=k,...,1do

4 for all t;, such that 7 > i and GroupBy(2:) was used to create t; do
5: compute t; X t;
6: endfor
7

end for

Given the VE plan of Figure 5, S contains three tables
t1(sid, pid, wid), t2(wid, cid) and t3(cid, tid), while the
propagation required the operations 2 x t3 and £1 x £2.
Since the materialized tables resulting from this algorithm
satisfy the correctness invariant then evaluating Q1 on 2
gives the correct answer.

Theorem 4 (Correctness of VE-cache). The set S of materi-
alized tables in VE-cache satisfies the correctness invariant
of Definition 5

Proof of this theorem is given as Appendix A.

We can add restricted range queries to workloads and use
the VE-cache scheme for optimization. The cached tables
containing query variables have been reduced with respect
to other tables where the full domain of the other tables are
used. Thus, further reduction is required to absorb informa-
tion about the function under the constrained domain.

The protocol to carry this out is the following: 1) apply
the selection predicate to any VE-cache containing the con-
strained variable, 2) perform reductions along the schema
between the cache table where the selection predicate was
applied and every other cache table.

In our running example, if the following query were part
of the workload:

w
o

A
0

~&o—Linear CS+

|~ Nonlinear CS+ >

i

—+—Linear CS+

- NonW

,:‘:::;«a~n~l—l"~‘”*

25 50 75
CTDeals Density

w
<3
n
S

e
n
-
o

=3

o

Q1 Running Time (secs}
Q2 Running Time (secs)

25 50 75
CTDeals Density

o

100

-
P
o
=2

Figure 7, Plan Linearity Experiment

select wid, min{inv) from investment where tid=l
group by wid

then, after applying the selection on 3, the reduction t2x £3
is required.

Theorem 5. After carrying out the given protocol, the new
VECS-cache tables satisfy the correctness invariant of Def-
inition 5.

Proof. This protocol defines a BP semijoin program over
an acyclic schema, so result follows from Theorem 10. O

7. Experimental Results

We now present experimental results illustrating the dis-
cussion in Section 5. We modified the PostgreSQL 8.1 op-
timizer and implemented each algorithm at the server (not
middleware) level. The extensions in Section 2 were added
to the PostgreSQL language with an extension that specifies
the evaluation strategy. Experiments were performed on a
3 GHz Pentium IV Linux desktop with 2.4 GB of RAM
and 38 GB of hard disk space. In most of these experi-
ments, we do not compare the CS algorithm since its per-
formance is substantially worse and distorts the scale of the
plots, making it harder to see the relative performance of the
other (much better) algorithms. However, the results in Sec-
tion 7.4 make this comparison and illustrate the significant
difference in performance.

7.1 Plan Linearity

Section 5.1 showed the benefit of nonlinear plans for
MPF query evaluation, The experiment in Figure 7 illus-
trates how the plan linearity test heuristic is applied. On our
example decision support schema we run two queries:

Ql:select cid, SUM(inv) from invest group by cid;

Q2:select tid, SUM(inv) from invest group by tid;

We plot evaluation time as the density of the CTdeals re-
lation is increased. For Q1, we see that as density increases
nonlinear plans execute faster, whereas for Q2, a linear plan
is optimal for all densities. Since the nonlinear version of

10

2

i CS+
~#~ VE(deg)
[4~ VE(deg) Extended

=+ Nonlinear CS+
~g- VE(deg)
~&-VE(deg) Extended

e

25 50 75
DB Scale

3

w
o

ES

N
e

o

~

Q1 Running Time (sacs)
IS

o

Q2 Running Time (secs)

o
H

o

» 100
DB Scale

-
=S

~+- Norlinear CS+ o
8- VE(deg)
~4- VE(deg) Extended
4

—

0 25 50 75
DB Scale

Figure 8. VE Extended Space Experiment

N

a

=]

Q3 Running Time (Secs)
o

100

CS+ also considers linear plans, the Q2 running times for
both plans coincide. For Q1, we have that ooy = 1000
and 0.¢ = 5000, so the inequality in Eq. 1 does not hold,
whereas for Q2, we have g4 = 644 = 500 which makes
the inequality hold showing the applicability of the linearity
condition.

7.2 Extended Variable Elimination Space

Section 5.4 showed how to extend the VE plan space to
that of nonlinear CS+. Figure 8 compares the resulting plan
quality for CS+ and VE with the degree heuristic with and
without the space extension. We ran the following three
queries as the total scale of the database is increased:

Q1l:select cid, SUM(inv) from invest group by cid;

(2:select sid, SUM(inv) from invest group by sid;

03:select wid, SUM(inv) from invest group by wid;

For Q1, the degree heuristic produced the optimal CS+
nonlinear plan without the VE extension. For Q2, the de-
gree heuristic produced a suboptimal plan, but with the
space extension we obtain the optimal plan. Q3 is a dif-
ferent case where we have that the degree heuristic is not
able to find the optimal plan even with the extended space.
While for the extended version of VE there exists a elimi-
nation order that includes the optimal plan from CS+, it is
not the degree heuristic in this case. Also, the extension to
VE guarantees that we find a plan no worse than the plan
obtained by VE without extensions; this is reflected in the
results shown here.

7.3 Elimination Heuristics

We now show experimental results on the effect of order-
ing heuristic on plan quality. Using our example schema we
run two queries and plot their running time as a function of
the scale of the DB:

2)

2 30 . G g g e e gy

87 |- VE(deg) k2 —+— VE(deg)

o ~g- VE(width) g 15 L 8= VE(width)

E20 ~4— VE(elim_cost) e ~#~VE(elim_cost)

it o 10

£ £ /

£ S5

= -

[&

- 0 . ~ 0 - .

o 0 25 50 75 100 @ 0 25 50 75 100
DB Scale DB Scale

Figure 9. Ordering Heuristics Experiment

Qi:select cid, SUM(inv) from invest group by cid;

(2:select pid, SUM(inv) from invest group by pid;

For QI, the width heuristic which minimizes GroupBy
operands yields a plan worse than both degree and elimi-
nation cost. Interestingly, width can be seen as an estimate
of elimination cost, whereas degree seeks to minimize join
operands, or, equivalently, minimize the cost of future vari-
able eliminations. For Q2, all heuristics derived the same
" plan.

Table 2 summarizes another experiment on order heuris-
tics. Three views were created similar to that in Figure 6:
a) a star view exactly like Figure 6, b) a linear view where
the variable connecting all tables is removed, and ¢) a ‘mul-
tistar’ schema where instead of a single common variable
there are several common variables each connecting to three
different tables. The number of tables NV = 5, all variables
had domain size 10 and all functional relations were com-
plete. A query on the first variable in the linear section was
run on each schema. For each of the degree, width and elim-
ination cost heuristics described in Section 5.5 we ran both
the original VE algorithm and its extended space version de-
scribed in Section 5.4. We implement the elimination cost
heuristic using an overestimate: we fix a linear join ordering
and allow choice of access paths and operator algorithms.
We also include results for combinations of the degree and
width and degree and elimination cost heuristics!. We re-
port the cost of the plan selected by the nonlinear CS+ al-
gorithm, which is optimal in the plan space considered.

We see that for the star schema, the width heuristic per-
forms best. This is not surprising since the degree heuristic
selects the common variable: after joining all of its corre-
sponding tables, all but the query variable can be eliminated
and the resulting relation is small (10 tuples). This requires
joining all base tables thus performing no GDL optimiza-
tion. However, we see that by combining the degree and
width heuristics we are able to produce a much better plan
than degree but only slightly worse than width. The elimi-
nation cost heuristic performs better than the degree heuris-
tic, but due to its overestimate, does not perform as well as

'Combinations are implemented by normalizing each estimate (divid-
ing by the largest among candidates) and multiplying the normalized val-
ues

11

Table 2. Ordering Heuristics Experiment Result

{ Ordering [star | multistar | linear |
Nonlinear CS+ 429,62 363.02 | 21.23
VE(deg) 240225.15 843.84 34,57
VE(deg) ext. 429.62 363.02 | 21.23
VE(width) 705.03 593.43 34.57
VE(width) ext. 429.62 363.02 | 21.23
VE(elim-cost) 1045.44 936.34 73.78
VE(elim.cost) ext. 429.62 363.02 | 21.23
VE(deg & width) 950.44 843.84 34.57
VE(deg & width) ext. 429,62 363.02 | 21.23
VE(deg & elim_cost) 240225.15 843,84 34.57
VE(deg & elim_cost) ext. 429.62 363.02 | 21.23

Table 3. Random Heuristic Experiment Result

[Ordering | star multistar | linear |
[VE(andom) | 3083042 & 1470.78 | 11730.35 & 298.86 | 72.037 £0.29 |
[VE(random) ext. | 77078 £ 5.60 | 455058 & 149.03 | 31783 % 0.36 |

the width heuristic. The difference in performance lessens
as maximum variable connectivity drops.

Interestingly, for all schemas, the extended VE algorithm
with any heuristic produces optimal plans. This might indi-
cate that the choice of elimination ordering becomes irrele-
vant when the extended version of VE is used. To study this
phenomenon we implemented a heuristic that selects vari-
ables to eliminate at random. We ran the same query ten
times using the random heuristic with and without the space
extension. Table 3 reports the result. The cost displayed is
the mean of the 10 runs and an estimated 95% confidence
interval around the mean. We see that the minimum cost
is not within the confidence interval in either case, which
suggests that elimination ordering is still significant in the
extended plan space version of VE.

7.4 Optimization Cost

The following experiment illustrates the trade-off be-
tween plan quality and optimization time of the algorithms.
For each view in the previous experiment (with /V = 7), we
query all variables in the linear part. In Figure 10 we plot the
average estimated cost of evaluating the query against the
average time required to derive the execution plan. Points
closer to the origin are best.

‘We first note significant gains provided by the algorithms
proposed here compared to the CS algorithm. Next we note
that nonlinear plans provide gains of around one order of
magnitude compared to linear plans. The degree heuris-
tic performs better when maximum variable connectivity is
low, but still achieves quality plans when considering the
extended space. The width and elimination cost heuristics
are not affected by maximum variable connectivity indicat-
ing that their performance is controlled by average connec-
tivity. Finally we note the lower optimization time, in gen-

Linear View Star View

-~ P
B 0.25 qo o - . 9 1.00 7 l
@ % 5

2020 2 o080 x 1
o @

£ 0.15 2t E 060 |
IS x [

o 010 . o 0:40

[- £

'€ 0.05 E 0.20 L] ”
& 0.00] had |
g 000s = 0.00 4 :

1.E+00 31.6+02 1,E+04 LE+D5 1.E+08 1.E4+00 1.E+02 1.E+04 1.E+06 1.E+0B

Estimated Pian Cost (log) Estimated Plan Cost (log)

Multistar View
0.25 . i

0 | ecs

8020 a | miinear CS+

@ i 4 Nonlinear CS+
0.15 :

~§ R ! X VE(deg)

o 0.10 ™ § X VE(deg) ext,

E 0.08 x % °] ® VE({width)

E ° + VE(width) ext

& 0.00+ ! = VE(elim cost)

1.E+00 1.E+02 1.E+04 1,E+06 1.E+08 1.E+10
Estimated Plan Cost (log)

Figure 10. Optimization Time Tradeoff Experiment

- VE(elim cost} ext,

eral, for VE compared to nonlinear CS+.

8. Conclusion and Future Work

We introduced the MPF class of queries, showed its value
in a variety of settings, and presented optimization tech-
niques to evaluate MPF queries and view materialization
strategies for evaluating workloads of MPF queries.

Our work is an early step in synthesizing powerful ideas
from database query evaluation and probabilistic inference.
A number of models have recently been proposed for defin-
ing probability distributions over relational domains, e.g.,
Plate Models [2], PRMs [10], DAPER [13], and ML.Ns [20].
Applying MPF query optimization to support inference in
such settings is a promising and valuable next step.

Theoretical properties of MPF queries, for example, the
complexity of deciding containment, are intriguing. While
general results for arbitrary aggregate queries exist, we
think that the MPF setting specifies a constrained class of
queries that might allow for interesting and useful results.

References

[1] S. Aji and R. McEliece. The generalized distributive law.

IEEE Trans. Info. Theory, 46(2):325~343, March 2000.
W. L. Buntine. Operations for learning with graphical mod-

els. J. Artif. Intell. Res. (JAIR), 2:159-225, 1994,

D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan,
and S. Vaithyanathan. Olap over uncertain and imprecise
data. In VLDB, pages 970-981, 2005.

S. Chaudhuri and K. Shim. Including Group-By in Query
Optimization. In VLDB, pages 354-366, 1994,

S. Chaudhuri and K. Shim. Optimizing queries with aggre-
gate views. In Proc. 5th Int’nl. Conf. on Extending DB Tech-
nology, pages 167—182. Springer-Verlag, 1996.

(2]
[3]

(4]
(5]

12

[6] R.G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. I. Spiegel-
halter. Probabilistic Networks and Expert Systems. Springer-
Verlag, New York, 1999.

N. Dalvi and D. Suciu. Efficient query evaluation on proba-
bilistic databases. In VLDB, 2004.

N. N. Dalvi and D. Suciu. Answering queries from statistics
and probabilistic views. In VLDB, pages 805-816, 2005.

Y. E. Fattah and R. Dechter. An evaluation of structural pa-
rameters for probabilistic reasoning: Results on benchmark
circuits. In UAJ, pages 244-251, 1996,

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. In IJCAI pages 1300-1309,
1999,

N. Fuhr and T. Rolleke. A probabilistic relational algebra for
the integration of information retrieval and database systems.
ACM Trans. Inf. Syst., 15(1):32-66, 1997,

D. Heckerman. A tutorial on learning with bayesian net-
works. Technical Report MSR-TR-95-06, Microsoft Re-
search, 1999.

D. Heckerman, C. Meek, and D. Koller. Probabilistic entity-
relationship models, prms and plate models. In SRL2004.

ICML, August 2004.

F. V. lJensen. Bayesian networks and decision graphs.
Springer-Verlag, 2001.

F. R. Kschischang, B. I. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Trans. Info.
Theory, 47(2):498-519, 2001.

D. Maier. The Theory of Relational Databases. Computer
Science Press, 1983.

1. Pearl. Probabilistic reasoning in intelligent systems: net-

works of plausible inference. Morgan Kaufmann, 1988,
C. Ré, N. Dalvi, and D. Suciu. Query evaluation on

probabilistic databases. /EEE Data Engineering Bulletin,
29(1):25-31, 2006.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In SIGMOD, pages 23-34,
1979.

P. Singla and P. Domingos. Discriminative taining of
markov logic networks. In AAAZ pages 868873, 2005.

S. K. M. Wong. The relational structure of belief networks.
J. Intell, Inf. Syst., 16(2):117~148, 2001.

S. K. M. Wong, C. I. Butz, and Y. Xiang. A method for
implementing a probabilistic model as a relational database.
In UAI pages 556-564, 1995.

S. K. M. Wong, D. Wy, and C.]. Butz. Probabilistic reason-
ing in bayesian networks: A relational database approach. In
Canadian Conference on Al, pages 583590, 2003.

D. Wu and S. K. M. Wong. Local propagation in bayesian
networks versus semi-join program in databases. In FLAIRS,
2004,

M. Yannakakis. Computing the minimum fill-in is np-
complete. SIAM J. Alg. Disc. Meth., 2(1):77-79, March 1981
1981.

N. L. Zhang and D. Poole. Exploiting causal independence
in bayesian network inference. JAIR, 5:301-328, 1996.

7
(8]
(9

[10]
{11]
[12
[13]

[14]

(15]

f16]
[17]

(18]
[19]
[20]

f21]

[22]

[23]

(24]

[25]

{26]

A. Proof of Theorem 4

We now prove the correctness of the VE-cache algorithm
by showing that it implements the GDL, all-vertex algo-
rithm. We first present the Belief Propagation algorithm

to motivate the need for the acyclic schema the Junction
Tree algorithm creates. Algorithm 4 is an adaptation of the
Belief Propagation (BP) message passing algorithm to the
relational setting.

BP selects an order of the relations in the schema ac-
cording to some heuristic and reduces each functional re-
lation in the order with respect to any table that precedes
it with which it shares variables using the product semijoin

operation (o*<) defined above. This step propagates values
for variable subsets from one function to another if they
have common variables, in a sense, propagating informa-
tion about those variables to the latter function. Once this
first pass is completed, the reverse reductions are done, so
that function values are propagated in the reverse direction
for all pairs of overlapping functions. This reverse reduc-
tion uses the update semijoin operation above so that values
propagated in the first pass are not propagated again in the
second pass.

Algorithm 4 The Belief Propagation Algorithm

1: Choose a table order sy, s2,...,8n

2: for all Table s; in order do

3. for all Table s;, such that ¢ < j and s; and s; share

variables do .

4 compute s; X §;
5 end for
6: end for
7
8

: for all Table s; in reverse order do
for all Table s;, such that j > 4 and s; and s; share

variables do
9: compute s; X Sj
10: end for
11: end for

Belief Propagation defines a semijoin program reduction
on the set of base relations which, as opposed to the classi-
cal semijoin setting where projection is used, grouping and
aggregation is used to ‘project’ tables. This connection be-
tween Belief Propagation and semijoin programs was made
by Wu et al. [24].

Theorem 6. [Pearl [17]] The updated base relations re-
sulting from BP satisfy the invariant of Definition 5.

Figure 11 shows the program resulting from BP with the
order Transporters (1), Ctdeals (ct), Warehouses (w), Loca-
tion (1), Contracts (c). For illustration we expand the func-
tional semijoins for the first and last steps of the program:

ct ™ (GrOupBYtid,SUM(t.t_overhead) (t))
tw (GroupBYtid,SUM(ct_ct_dz'scount) (Ct)

x (GroupByy;4 sum(s.s.overhead) ())-

13

Letwt S.iwe
2.w;<ct 6. wxl
3ikw T.oetxw
4.cr>*<l 8. txct

Figure 11. A BP semijoin program

lustb*<t 7.lxc¢
2etwt 8wl
3.cb*<st 9. ct x w
4wwect 100 stxc
5.ikw 1l txct
6. cxl 12. t x st

Figure 12. A BP semijoin program on a cyclic
schema

The Belief Propagation algorithm is not correct for cyclic
schemas. Consider an extension to our Decision Support
schema that adds the table
Stdeals(supplier_id, transporter_id, st_discount)
which stores agreements between suppliers and trans-
porters, Using the order Transporters (t), Stdeals (st), Ct-
deals (ct), Warehouses (w), Location (1), Contracts (¢} we
get the program in Figure 12, In step 1, st is reduced with
respect to t, and in step 3, ¢ is reduced with respect to st,
thus by step 3, ¢ has been reduced with respect to t. How-
ever, in step 2, ct is reduced with respect to ¢, in steps 4,5
and 6 we have reductions from ct to ¢ through w and [. Thus
in step 6, ¢ is reduced with respect to ¢ again. Since each
step involves the product of the measure attribute of the re-
lations involved, the measure field of ¢ has been incorrectly
updated with the measure of ¢ twice.

Acyclic schemas have the running intersection property:

Theorem 7. (Maier [16]) Given schema S = {s1,...,8n}
creaie undirecied graph G = (V,E) where V. = § and
(siys;) € E if Var(s;) N Var(s;) # 0, that is, the nodes
of G are relations and an edge exists between two relations
if they share variables. S is an acyclic schema if and only
if there exists a tree T' that spans G with the property that
for vertices s;, s;, Var(s;) N Var(s;) is contained in every
relation in the path between s; and s;.

The spanning tree with this property is also called a Junc-
tion Tree. Our original example schema has this property,
while the schema with the addition of Stdeals does not.

Acyclic schemas have a further property:

Theorem 8. (Jensen [14]) Given schema S = {s1,...,5n}
create undirected graph G (V, E) where V
U; Var(s;) and (v;,v;) € E if there exists a relation s,

Figure 13, Variable graph for acyclic schema

such that v;,v; € Var(sg), that is, the nodes of G are the
variables appearing in the schema and there is an edge be-
tween two variables if they co-occur in a relation. S is an
acyclic schema if and only if G is chordal.

A chordal graph is one where every cycle of length
greater than 3 has a chord, that is, an edge between two
non-consecutive nodes in the cycle. Figure 13 has the vari-
able graph for our original acyclic schema. The addition
of Stdeals would add an edge between sid and fid which
creates a cycle of length 5 that has no chord. We refer the
reader to Cowell et al. [6] and Jensen [14] for a more ex-
tended discussion of chordal graphs and junction trees in
the context of probabilistic inference, and to Wu [24] for
further discussion on the links between Junction Trees, Be-
lief Propagation and acyclic database schemas.

The Junction Tree algorithm creates an acyclic schema
by transforming the variable graph of a cyclic schema into
a chordal graph. The acyclic schema is then induced from
this resulting chordal graph. Algorithm 5 lists the Junction
Tree algorithm. Step 2 modifies the variable graph of the in-
put schema to create a chordal graph using triangulization 2
which is listed as Algorithm 6. It adds edges to the graph by
choosing a vertex, connecting any of its disconnected neigh-
bors and then removing it from the graph. Figure 14 shows
a chordal graph resulting from triangulization for our exam-
ple cyclic schema using the vertex order fid,sid and added
edges drawn dotted. Figure 15 shows the new schema and
the Junction Tree resulting from that chordal graph. The
final step of the algorithm populates the tables of the new
schema by assigning relation s; of the original schema to a
relation s; of the new schema such that Var(s;) C Var(s;),
and then computing the product join of tables assigned to
each relation of the new schema.

The size of the resulting schema, and thus the complex-
ity of Belief Propagation on the resulting schema, is deter-
mined by the size of the cliques in the new graph. This in
turn is determined by the order in which vertices are cho-
sen during triangulization. The size of the largest clique in
the resulting graph is called the induced width of the new
graph.

Theorem 9. (Yannakakkis [25]) Finding the chordal graph
with minimum induced width is NP-complete in the number

2A chordal graph is also said to be triangulated

14

Algorithm 5 The Junction Tree Algorithm

1: Construct variable graph G from schema S

2: Triangulate G to create new graph G’

3: Create new schema S’ where each maximal clique in
G is a relation

4: Assign relations from schema S to relations in S’ that
contain all of its variables

5: Create the new relation by product joining all S tables
assigned to each relation in S’

Algorithm 6 The Triangulization Procedure
Input: Graph G = (V, E)
Output: Chordal graph G’ = (V', E')

1: Set & = (V',E'ywhere V' =V and B’ = E

2: while V £ 0 do

3: select vertex v € V from a non-chordal cycle

4: for every pair (v,u;) and (v,up) € E, add (u, uz)
to E and B’

5 remove v from V

6: end while

Figure 14. A chordal
graph for the cyclic
schema

t1{sid,tid,cid,f)

12(sid,cid,pid.f)

13(pid,wid,cid,)
Figure 15. The
resulting Junction

Tree

of variables.

The equivalence between the Triangulization and the
Variable Elimination algorithms is clear. Choosing a vertex
and connecting any unconnected neighbors in trianguliza-
tion is equivalent to selecting a variable v and joining the
tables where it appears in Variable Elimination. The clique
resulting from the added edges will be a relation in the new
schema, caching the result of this join in Variable Elimi-
nation creates the relation in the new schema. Removing
the vertex from the graph in triangulization yields a clique
of its neighbors equivalent to the relation resulting from
marginalizing, or, eliminating the chosen variable.

Theorem 10. Denote the set of cached tables in VE-cache
asT = {t; :i=1,...,k}. Then the following hold:

1. T is the schema result of triangulating using the vari-
able order given by the VE plan of line 1,

2. T is an acyclic schema, and
3. VE-cache performs a BP semijoin program over T

Proof. (1) follows from the equivalence of triangulation
and variable elimination and the fact that the relations that
precede Group Bys give the relations from triangulation.
(2) follows from (1) since triangulation results in an acyclic
schema. For (3) we first note that VE-cache implements di-
rectly the backward pass of lines 7 through 10, and that by

the definition of x we have that VE-cache also performs the
forward pass when it executes the given VE plan. O

Proof. (Theorem 4). Follows directly from Theorems 10
and 6. O

15

