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Abstract

Distributed denial of service (DDoS) attacks are a grave
threat to Internet services and even to the network it-
self. Widely distributed “zombie” computers subverted
by malicious hackers are used to orchestrate massive at-
tacks. Despite significant research efforts and the exis-
tence of a wide range of commercial products defending
against them, DDoS attacks are still a concern for most
network operators and companies relying on the Inter-
net. A particularly hard problem is distinguishing the
packets that are part of the attack from legitimate traf-
fic so that the attack can be filtered out without much
collateral damage. In this paper we explore the use of
ACL rules that distinguish the attack packets from the
legitimate traffic based on prefixes derived from models
of the historic distribution of legitimate packet source
addresses. One advantage of this defense is that these
ACL rules can be deployed in routers deep in the net-
work where the attack isn’t large enough to cause loss
of legitimate traffic due to congestion. The most im-
portant disadvantage is that these ACL rules can also
cause collateral damage by discarding some legitimate
traffic. We use simulations to study this damage. We
examine the effect of various factors: magnitude of at-
tacks, attack strategy, degree of network overprovision-
ing, number of ACL rules used, service targeted (web,
email, DNS), and algorithm for generating ACL rules.
For attacks 100 times larger than the link capacity provi-
sioned to match peak traffic we applied SAPF to reduce
the total traffic to within link capacity and it discarded
on average 54% of the legitimate traffic for a mail server
and 67% for a web server. For smaller attacks of only
5 times the link capacity the collateral damage was 8%
and 31% respectively.

1 Introduction

Distributed denial of service (DoS) attacks are a ma-
jor threat to the reliable functioning of Internet services
and current measures against them, while effective in
some instances, have not been sufficient to eradicate this

threat. Moore et al.[21] identified more than 4,000 at-
tacks per week using a conservative method that under-
estimates the number of attacks. While most attacks are
short and target small sites, large well-provisioned sites
are far from immune from this threat. There are reports
of large attacks with between 600,000 and 1,800,000
packets per second or more {21, 10, 28] and data vol-
umes as high as 3 Gbits/s [3]. These statistics are for
attacks from 2003 and earlier; today’s attacks are likely
larger. (D)DoS attacks have disrupted large search en-
gines, e-commerce sites, news sites [11], and root DNS
servers [28]. The threat of floods has been used repeat-
edly by various criminal organizations to extort “pro-
tection money” from businesses with an online pres-
ence [24, 3]. A disturbing development is that in the
last few years malicious hackers have launched DDoS
attacks using large networks of “zombies”; comput-
ers taken over through a worm or through some other
automated method. The Code Red II worm infected
359,000 computers [20] and an earlier version of that
worm has been programmed to perform a DDoS attack
against www . whitehouse.gov. The sheer size of ob-
served zombie networks together with the fact that many
of the zombie computers have high speed Internet con-
nections gives us reason to fear that future attacks could
be more vicious than what we have witnessed so far and
their effects even more crippling.

In this paper we investigate a light-weight approach
to filtering attack traffic based on the historic distribu-
tion of packet source addresses arriving at a given IP ad-
dress and service port. We hypothesize that the distribu-
tion of source addresses is relatively stable over a period
of days for some services and weeks for other services.
The results of our measurements are consistent with this
hypothesis. Further the distribution of source addresses
in the flood can differ significantly from the historic dis-
tribution of clients for the server under attack. We then
use these distributions combined with examples of cur-
rent traffic to generate prefix filtering rules that allow as
much traffic through as possible so as to nearly fill the
capacity of the link. The goal is to avoid congestion on
the link and at the same time allow as much legitimate



traffic through as possible. We refer to any legitimate
traffic that is filtered out as collateral damage. Collat-
eral damage can occur for two reasons. A new source
address is filtered out because it falls into an address
range that is being actively filtered. Or, an address in
the historic distribution of source address is filtered be-
cause the constraints we place on the number of ACL
rules cause a portion of that distribution to be excluded.
Our method of generateing ACL rules also allows for
the possibility of accepting new legitimate sources that
don’t fit the historic distribution of source address.

We consider this a light-weight solution because no
new hardware is required to implement the ACL rules,
the computational requirements to derive the ACL rules
are small, and a relatively small number of rules are re-
quired, 20 to 50 in our experiments. We consider any
solution which requires little effort to implement, and al-
lows a server to continue to function, significantly “rais-
ing the bar” against DDoS attacks. Trust issues are also
minimal. Properly configured ACL rules only reference
the destination address being protected therefore an ISP
that allowed an end user to set the ACL rules need only
confirm that the destination address and port belongs to
that end user. Alternatively an ISP could offer this as
a service. Filtering massive attacks is possible because
the ACL rules performing the filtering can be installed
at high speed routers.

2 Related work

Defending against distributed denial of service attacks is
an important problem that has the attention of the aca-
demic community and industry alike. We divide the re-
lated work into three distinct categories: detection of
DosS floods, tests to distinguish attack traffic from legiti-
mate traffic, and complete solutions to the DoS problem.
The difference between the second category and the first
is the focus on filtering out the attack traffic. The differ-
ence between the second and the third category is less
well defined. But we consider a piece of work to be in
the second category if its main contribution is to pro-
pose a good test for differentiating attack traffic from
legitimate traffic, and in the third if it proposes a com-
prehensive solution to the DDoS problem. Our work fits
into the second category.

2.1 Detecting DoS attacks

A first step in defending against a flood is to detect that
an attack is in progress and to identify the victim(s).
MULTOPS [9] is a system that allows routers to detect
the victims of flooding attacks by tracking inbalances
between the two directions of traffic using a data struc-

ture that adapts to the current distribution of destination
addresses. Jung et al. use mappings from IP addresses
to AS numbers [14] to distinguish between flooding at-
tacks and flash crowds.

2.2 Differentiating between the attack and
the legitimate traffic

Some denial of service attacks achieve their goals with
relatively little traffic by exploiting protocol weaknesses
or vulnerabilities in implementations. SYN floods ex-
haust the memory of servers that allocate per connection
state in response to SYN packets. The Teardrop, New
Tear, Bonk, and Boink attacks use malformed [P frag-
ments to crash or reboot vulnerable Windows machines.
Defenses against such attacks work by recognizing and
discarding the packets or packet sequences crafted to
cause damage. The focus of this paper is not on such
attacks but on brute force attacks that cause damage by
producing severe congestion on the links connecting the
victim to the Internet.

Floods can cause damage irrespective of the contents
and the headers of their packets. Yet, packets that are
part of the flood can be easy to distinguish. Starting
with the earliest DDoS tools, floods of ICMP and UDP
packets have been a popular weapon [18]. It is relatively
easy to defend against such attacks if they are directed at
a web or mail server if one can install a few ACL rules
at uncongested high speed routers instructing them to
drop the attack traffic. When the flood packets are not
this easily distinguishable (a flood of TCP packets with
destination port 80 against a web server), filtering them
out is harder. “Blackholing” the IP address of the vic-
tim using the routing protocol to instruct all routers to
drop traffic sent to the victim promptly stops the attack.
The problem with this approach is that the routers also
drop all the legitimate traffic to the victim. Often the at-
tackers spoof the source addresses of the packets in the
flood to make it harder to filter the attack. Many de-
fenses rely on identifying and filtering out the spoofed
packets. Egress filtering [17] often implemented us-
ing uRPF BGP source filtering uses knowledge of the
network topology to drop many of the spoofed packets
close to the sources of the attack. Park and Lee show
[25] that filtering based on routing information available
to routers can be very effective against spoofed traffic in
Internet-like topologies if deployed by as few as 20%
of ISPs. The Spoofer project [4] estimates that despite
such measures, one quarter of the computers in the Inter-
net can still spoof source addresses. Close to the victim,
TTL based filtering proposed by Jin et al. [13] can be
applied to detect spoofed packets. This approach can
filter out up to 90% of the flood without much collateral
damage, but it requires custom equipment since it is not



supported by current routers.

Since early 2005 floods that are harder to filter have
been reported. As large zombie networks have at least
tens of thousands of computers, attackers started using
the real IP addresses of the zombies to initiate “legiti-
mate” sessions that overload the server with large vol-
umes of traffic [27]. Tests that rely on detecting spoof-
ing cannot defend against such attacks. Kandula et al.
[15] propose using CAPTCHAs (challenging clients to
type a word shown in an image) to distinguish humans
sending requests to a web server from automated pro-
grams flooding it with requests. This solution can de-
fend against DDoS attacks with little collateral damage,
and it is especially effective against “uplink” attacks that
try to congest the path taking packets from the server to
the Internet. This solution does not generalize to non-
interactive services such as DNS and email and it cannot
protect the server from “downlink” attacks that congest
the links bringing client requests to the server.

2.3 Complete solutions to the DDoS prob-
lem

Some of the proposed DDoS defenses take more radi-
cal steps to provide a definitive solution. Extending the
Internet architecture with capabilities [29, 30] makes it
impossible for the attackers to send large floods because
routers check the capabilities in the packets and drop all
traffic not authorized by the receiver. The SOS proposal
[16] takes a different approach: hiding the server behind
an overlay network so that the attacker cannot find out
the actual address of the server and thus cannot direct a
flood at it.

Some proposals for filtering out DDoS attacks ad-
vocate filtering close to the sources [19, 2]. These so-
lutions can achieve good filtering with small collateral
damage, but deployment of such solutions is hindered
by a misalignment of incentives: the networks with the
zombies spend on defenses and the potential victims
benefit,

There are numerous commercial solutions imple-
menting DDoS filtering at the victim or the victim’s ISP
[23, 22, 5, 7] (see Appendix B of [18] for a survey of
commercial DoS Defenses). These solutions use one or
both of the following approaches: filtering the traffic at
high speed routers using ACL rules derived from mea-
surements of the attack traffic, and running the traffic
through “traffic scrubbing” devices placed between the
server to be protected and the rest of the Internet. Pub-
lic material describes the architecture that allows these
devices to handle relatively high volumes of traffic by
using specialized hardware, but there aren’t many de-
tails about the tests used to distinguish between attacks
and legitimate traffic. We found no indication that any

. ISP network
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Figure 1: ACL rules can be applied at the access router
or deeper in the ISP’s network.

of these solutions do source IP based filtering as pro-
posed in this paper, and we believe that these solutions
could achieve better filtering by also employing some
of the ideas presented here. Individual traffic scrubbing
appliances can be overwhelmed by very large attacks.
Agarwal et al. propose building regional centers with
many such appliances within the ISP [1] and redirecting
the traffic of servers under attack through these centers.
Prolexic [26] uses a similar approach based on redirec-
tion to a high bandwidth data center that performs traffic
cleaning using custom tools.

3 Source address prefix based fil-
tering of DDoS floods

In this section we describe the test we propose for dis-
carding enough packets to keep the link uncongested
and yet allow the majority of legitimate traffic through.
We start with two sets of sampled flow records. The first
has the entire traffic of the victim during a non-attack pe-
riod which we use as a “baseline” description. The other
set of records has the traffic sent to the victim during an
on-going attack. The filtering algorithm generates a list
of ACL rules for routers at the victim’s ISP (for example
the access router in Figure 1) that filter the traffic sent to
the victim based on source IP addresses. The filtering al-
gorithm ensures that the filtered traffic doesn’t congest
the bottleneck link (for example the victim’s low speed
link to the ISP in Figure 1) while the collateral damage
is minimized and the number of rules kept within a pre-
specified budget. ACL rules are recomputed repeatedly
throughout the attack so that the filtering can adapt to
changes in traffic.

Our measure of the effectiveness of a set of ACL
rules is the amount of legitimate traffic dropped, mea-
sured in bytes. We could use other metrics such as



the number of blocked IP addresses that send legitimate
traffic, or something that differentiates between impor-
tant clients and unimportant ones. Ideally we should
minimize the monetary loss due to collateral damage.
While the number of bytes of legitimate traffic discarded
is not an exact measure of monetary loss, we consider
it a better approximation than the number of legitimate
IP addresses blocked. For example there can be many
clients behind a large web proxy and thus blocking that
proxy inflicts more damage than blocking a single user
not using a proxy.

We impose two limitations on the sets of ACL rules
we consider: the traffic that passes should not exceed
the bottleneck link bandwidth and the number of rules
should be below a pre-specified threshold. The number
of ACL rules routers can support is limited by hardware
resources (e.g. the size of the TCAM used to imple-
ment packet classification). Furthermore, these rules are
used for purposes other than incident response [6], 50
the number of rules we can use for filtering out DDoS at-
tacks is significantly smaller than hardware limits. And
if there are multiple attacks active at the same time, the
hardware has to support separate ACL rules for each at-
tack because each rule will have the destination IP ad-
dress, protocol and destination port of the victim it pro-
tects. In our experiments we typically limit the number
of rules to 100.

3.1 Evading source address prefix based
filtering

Source address prefix filtering (SAPF) can only be ef-
fective if the addresses that most legitimate traffic comes
from do not appear often as source addresses in attack
traffic. Since attackers can spoof source addresses, what
keeps them from exactly matching the distribution of
source addresses in legitimate traffic? There are two
main reasons why SAPF can be helpful despite attackers
trying to mimic the distribution of the sources address
of legitimate clients. First, the attackers are not likely
to have an accurate description of the typical legitimate
traffic for the server; second, spoofing sources to mimic
the legitimate traffic exposes the attackers to other coun-
termeasures such as TTL based filtering [13]. For the at-
tacker to get the exact distribution of clients, she would
have to break into the server itself or into another com-
puter used for storing its logs or the flow records col-
lected by the first-hop router. But if the attacker can
break into these systems, she can probably take the vic-
tim off-line without a flooding attack. In some sense the
distribution of the source address of legitimate clients is
the secret key that allows SAPF to protect the victim to
some extent from the attackers.

In our experimental evaluation of collateral damage

we consider the two strategies widely employed by cur-
rent tools: spoofing source addresses at random from the
routable unicast address space, and using the actual ad-
dresses of the zombies. We also consider attacks that try
to mimic the legitimate traffic. For these attacks we as-
sume that the attacker has the logs of servers other than
the victim and uses them as a model for the distribution
of source addresses in the flood: each source address
present in the legitimate traffic of the model server will
appear in the attack traffic, and it will represent the same
percentage of both types of traffic. The collateral dam-
age caused by filtering such attacks depends on the sim-
ilarity between the client populations of the two servers
and this is influenced not just by the type of server (web,
DNS, email, etc.) but also by the type of information the
two servers are hosting and how much overlap there is
between the sets of users interested in it. Section 4.4
has the full details of the experimental setup and a dis-
cussion of our results.

3.2 Source address prefix based filtering
as part of broader DDOS solutions

We do not consider source address prefix based fiood
filtering a complete solution, but an imperfect test for
distinguishing legitimate traffic from some types of at-
tack traffic. It could be used by DDoS defenses in com-
bination with other tests. SAPF could be used in com-
bination with traffic scrubbing approaches when the at-
tack is larger than the capacity of the available traffic
scrubbing appliance: routers within the ISP could filter
out some of the traffic directed at the victim, while the
appliance would apply its filtering to the remaining traf-
fic. Qur current approaches filter out source prefixes that
send much traffic during the attack, but not during nor-
mal operation. It is possible to combine our approach
with other tests, for example to filter out source prefixes
that have an unusually large percentage of incomplete
connections. For attacks large enough to congest the
backbone links of the access router connecting the vic-
tim (see Figure 1), SAPF could be applied at multiple
routers, deeper in the network. In this paper we evaluate
automatic algorithms for filtering out flood traffic, but
we expect that in actual DDoS defenses network admin-
istrators would be able to override or modify the ACLs.
For example they might forbid the algorithm from filter-
ing out some important, low volume customers whom
the algorithm could discriminate against. Network ad-
ministrators might also assign weights to different pre-
fixes of client addresses, to bias our algorithms towards
protecting more important clients. In this paper we only
evaluate SAPF as a defense operating on its own through
ACL rules installed in a single high speed router.



3.3 Discussion of algorithms generating
ACL rules

In this section we briefly discuss the algorithms we pro-
pose for generating the ACL rules. Appendix A gives
a more detailed description. Our algorithms generate
the filtering rules based on a comparative analysis of the
traffic at the time of the attack with regular traffic dur-
ing an earlier “baseline” period. There are 232 — 1 possi-
ble prefixes, and the number of combinations of prefixes
we could use is many orders of magnitude larger. We
do not advocate performing some kind of search in this
space for the optimal list of ACL rules, but the use of
simpler, faster, greedy heuristics. We experiment with
three types of algorithms, producing three types of out-
puts: the “positive” algorithm denies all traffic going to
the victim with the last (default) rule in the list and the
other rules specify non-overlapping source prefixes that
are allowed to pass; the “negative” algorithm allows all
traffic by default and the list contains rules for specific
non-overlapping prefixes that should be filtered out; the
“mixed” algorithm gives a list with a mix of “accept”
and “deny” rules with possibly overlapping prefixes ar-
ranged so that the more specific prefixes come before
the more general ones.

To simplify the choice of prefixes in the output, all
three algorithms cluster the traffic. Once we have clus-
tered the traffic, the algorithms choose prefix lengths
and determine which prefixes to add to the output list
and which not to (and the mixed algorithm also needs to
decide whether to allow or deny the prefixes it adds to
the output). This stage ensures that the number of rules
is within the budget and that the total traffic that passes
the filter does not exceed the bottleneck link capacity. In
picking which prefixes to allow and which to deny, the
algorithms make simple greedy choices: prefixes that
send much traffic during the flood but not much in the
baseline period are denied, and prefixes that send much
traffic in the baseline but are a smaller percentage of the
traffic during attack are allowed.

4 Experimental evaluation of col-
lateral damage

The usefulness of SAPF depends on the extent of the
collateral damage it inflicts. As discussed in Section
3, we measure collateral damage as the percentage of
the legitimate traffic (in bytes) that is filtered out. We
use synthetic DDoS floods combined with actual Net-
Flow data on the legitimate traffic of various servers to
evaluate the amount of collateral damage under various
scenarios. We look at how the following factors affect
collateral damage: the size of the attack, the strategy

the attackers use to mimic legitimate traffic, the degree
of overprovisioning, the number of ACL rules used, the
choice of filtering algorithm and the choice of “base-
line” period used as description of the legitimate traffic.

4.1 Methodology and description of data
used

We use two sets of NetFlow data for our experiments.
The first set has traffic coming from the Internet into
our university’s campus over two one-week periods sep-
arated by a month in the first half of 2005. The sec-
ond data set represents the traffic for June 2005 on an
OC12 peering link of a regional ISP. The Campus data
was collected with a sampling rate of 1 in 256 pack-
ets and the ISP data with 1 in 10 packets. We simulate
an 8 hour attack during the busiest time of a Thursday,
from 9:00 AM to 5:00 PM. For each server type we pick
the one with the most traffic in its trace as a victim of
the simulated DDoS attack. For the ISP data we use
the largest SMTP server (peak traffic 74.4 MB/5 minute
bin), the largest HTTP server (peak traffic 4.67MB/5
minute bin)', and the largest DNS server (peak traffic
1.36 MB/5 minute bin). For the Campus data set we use
the largest mail server (peak traffic 95.6 MB/5 minute
bin), the largest HTTPS server (peak traffic 40.7 MB/5
minute bin), and the largest DNS server (peak traffic
1.28 MB/5 minute bin). We do not consider the largest
web server from the Campus data set because it experi-
enced an apparent outage during the period of the simu-
lated attack.

During the attack, we re-run the algorithms for gen-
erating the ACL rules every 5 minutes. In an actual de-
ployment the available measurement data about an at-
tack would be a few minutes old. To capture this dis-
advantage in our experiments, we evaluate the collateral
damage inflicted by the filtering rules on the next 5 min-
utes’ traffic, not on the traffic the rules were computed
for. For each setup, we have 95 data points for the 5
minute bins in the 8 hour period of the attack when fil-
tering of the attack takes place.

For the attack traffic we use three methods for gener-
ating the distribution of source addresses corresponding
to the three strategies discussed in Section 3.1. For at-
tacks with source addresses spoofed at random we use
a uniform distribution of 100,000 random IP addresses
from the unicast address space (except unroutable pre-
fixes 0.0.0.0/8, 10.0.0.0/8, 127.0.0.0/8, 172.16.0.0/12,
and 192.168.0.0/16). For attacks where zombies use
their own IP addresses we need to model the distribu-
tion of addresses for the zombies. We do not have data
that allows us to measure directly such distribution, so

"Note that this is the direction of traffic going towards the web
server, traffic in the opposite direction is much larger.



we used an indirect method instead. Zombies are of-
ten subverted through worms, and computers infected
by worms continue to scan. By logging scans to un-
used address space we can get an approximate distribu-
tion of the computers infected by worms and we use it
to model the distribution of zombies. We used a one
week trace of scans captured by two unused /19 campus
networks. The third attack strategy we consider tries to
mimic the distribution of legitimate clients of the victim
by using the traffic of another server as a model. We use
as models other servers from our data sets. For all types
of attacks we control the volume of the attack by con-
trolling the amount of traffic sent by individual source
addresses.

4.2 A first look at collateral damage

In subsequent experiments we look at the effect of var-
ious factors on the size of the collateral damage. The
first experiment discussed here uses the default values
for the various factors. We assume a link capacity of 2
times the peak traffic of the victim, a flood volume of 5
times the peak traffic of the victim, an attack that uses
the actual addresses of the zombies, a limit of 100 on the
number of ACL rules, and we use the positive algorithm
with the previous 3 days’ traffic as baseline.

We can quantify the reduction in collateral damage
we achieve by using filtering rules that discriminate
against attack traffic and favor legitimate traffic. To do
this we compare against a simple “uninformed filtering”
algorithm that drops legitimate and attack connections
with the same probability. For the default configura-
tion the total traffic is 6 times the peak legitimate traf-
fic, whereas the link capacity is 2 times peak legitimate
traffic, so two thirds of the traffic is dropped. Note that
uninformed filtering is better than the behavior of rou-
ters which drop packets indiscriminately because their
queues are full: under the current behavior of routers,
congestion aware TCP compliant legitimate clients re-
duce their sending rate whereas the attackers don’t and
they end up using the entire bandwidth.

Table 1 and 9 show that for all victims, SAPF positive
and mixed algorithms have around an order of magni-
tude lower collateral damage than uninformed filtering.
SAPF is more effective protecting SMTP and HTTPS
servers than HTTP and DNS servers which incur larger
collateral damage. The reason is that the distribution of
legitimate clients for HTTP and DNS servers is more
similar to distribution of zombies. We note that the
HTTPS server had by far the fewest distinct client IP ad-
dresses of all servers (149 per week in the campus Net-
Flow data sampled 1/256 compared to 21,384 for DNS
and 59,017 for SMTP), and it was easier to protect such
a small client population.

Collateral damage

Victim 5th percentile/avg./95th percentile
server

Src. addr. filtering |  Uninformed filt.
ISP 04/2.6/12.7% | 62.8/64.0/65.7%
Mail
ISP 2.4/83/17.0% | 64.6/66.1/67.3%
Web
ISP 7.0/9.6/12.8% | 66.9/67.7/68.3%
DNS
Campus|| 0.9/4.1/14.5% | 62.7/64.3/66.2%
Mail
Campus|| 0.0/1.9/6.8% | 62.8/63.9/65.7%
HTTPS
Campus|| 0.0/8.6/16.9% | 64.4/65.8/67.4%
DNS

Table 1: Collateral damage with the default parameters.
Positive and uninformed.

Victim Algorithm

server Mixed ] Negative
ISPMail |} 0.2/3.0/17.4% | 1.2/15.1/35.6%
ISPWeb || 9.3/17.5/29.0% | 4.6/12.6/22.9%
ISp 6.9/10.0/13.9% | 22.1/36.2/48.4%
DNS

Campus 02/6.0/254% | 3.7/16.3/36.8%
Mail

Campus 0.1/6.7/26.6% 23/72/23.8%
HTTPS

Campus 1.2/6.8/15.4% | 16.1/33.0/57.8%
DNS

Table 2: The collateral damage with mixed and negative
algorithms for default parameters.

For bins where the legitimate traffic is lower than
its peak, the collateral damage of uninformed filtering
is slightly below 66.7%. For other bins it is slightly
higher. The reason is that we rounded down the peak
traffic to the next megabyte when computing the link
capacity and attack size.

In summary, our most important conclusions are as
follows.

¢ SAPF is an order of magnitude more effective than
uninformed filtering.

e Some types of servers (SMTP) are significantly eas-
ier to protect than others (web, DNS).
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Figure 2: The effect of increased attack sizes and in-
creased overprovisioning for the ISP web server.

4.3 Intensity of attack and degree of over-
provisioning

The intensity of the attack and the size of the link con-
necting the server to the Internet influence how aggres-
sive the filtering has to be to keep the link uncongested.
Here we present experiments evaluating the effect of
those two factors on the collateral damage. Figures 2
and 3 show result for attacks against the ISP web server
and the Campus mail server. The first plot in each fig-
ure shows how the collateral damage increases as we
increase the attack size from 1 times the peak legitimate
traffic to 100 times, with a tightly provisioned link of
capacity equal to the peak traffic. In second plot in each
figure we increase the link capacity to up to 20 times
peak legitimate traffic with constant attack size of 100
times peak traffic. Collateral damage decreases as we
increase the linik capacity because we can afford to fil-
ter less aggressively. As in the previous section, the col-
lateral damage is consistently lower for the mail server

L n
1x 2x 5% 10x
Overprovisioning

Figure 3: The effect of increased attack sizes and in-
creased overprovisioning for the Campus mail server.

than for the web server. The advantage of SAPF over
uninformed filtering is even larger for the more chal-
lenging scenarios with large attacks against small links.
Whereas uninformed filtering would allow 1% of the le-
gitimate traffic through when the attack size is 100 times
the link capacity, SAPF allows 49.4% of the legitimate
traffic to pass for the mail server and 32.6% for the web
server.

The higher the ratio between flood size and link size,
the larger the collateral damage. But even when

we keep this ratio constant, the collateral damage de-
pends on the attack size. Table 3 has in its first column
the collateral damage of an attack 20 times larger than
the peak traffic against a link only 2 times the peak traf-
fic and in the second column an attack 100 times the
peak traffic against a link 10 times the peak traffic. For
all servers the collateral damage is significantly lower
for the second scenario. We conclude that SAPF could
be a good pre-filter in systems using multiple filtering



Collateral damage

Victim 5th percentile/avg./95th percentile
server

Flood 20x link 2x | Flood 100x, link 10x
ISP 2.6/12.1/29.9% 1.7/8.3/24.2%
Mail
ISP 18.6/29.8/41.3% | 10.3/18.5/28.7%
Web
ISP 27.3/30.6/341% | 14.8/17.0/20.1%
DNS
Campus| 4.6/14.0/29.0% 2.3/9.5/26.7%
Mail
Campus| 1.6/5.8/13.6% 1.4/4.2/9.0%
HTTPS
Campus| 22.0/34.7/46.2% | 14.7/25.8/36.3%
DNS

Table 3: Overprovisioning has a stronger effect than at-
tack size.

[ Port number (service name) | Distinct addresses |

445 (SMB) 339,047
135 (DCOM) 9,642
80 (Web) 4,333
6129 (Dameware) 2,318
1433 (Msft. SQL) 886

Table 4: Number of scanners.

methods against very large attacks.
In summary, our most important conclusions are as
follows.

e SAPF improves its advantage over uninformed fil-
tering for large attacks.

¢ Overprovisioning has a stronger effect on collateral
damage than the size of the attack.

4.4 Attack strategy

SAPF relies on finding differences between the distribu-
tion of source addresses of regular traffic and the
flood, so the strategy the attacker uses to set the source
addresses influences the effectiveness of filtering. We
first compare two strategies implemented by existing
tools: spoofing source addresses at random and using
the actual source addresses of the zombies. Next we
evaluate the effectiveness of trying to mimic the source
address distribution of the victim’s legitimate clients by
modeling attacks after other servers’ traffic. All attacks
have the same volume (5 times the peak traffic of the
victim). We do not model the effects of egress filtering
on attacks that spoof source addresses.

We model the distribution of zombies after the IP ad-

dresses of computers scanning unused IP address space
because these computers are often infected by worms,
and thus likely to be turned into zombies. In practice
there are many networks of zombies (botnets) controlled
by different groups. We model different zombie net-
works by grouping scanners based on the port number
they scan on, because computers with different vulnera-
bilities are likely to be infected by different worms (and
subsequently controlled by the writers of those worms).
Table 4 gives the sizes of the 5 networks of zombies
used in this section. For all other experiments we used a
sample of 100,000 IP addresses from those scanning on
port 445,

Figure 4 shows a comparison of the collateral dam-
age inflicted by attacks using the IP addresses of the
5 zombie networks and uniformly spoofed source ad-
dresses on the 6 servers we consider. We draw a number
of surprising conclusions from these results. Contrary
to our expectation, spoofing source addresses uniformly
inflicts collateral damage similar to the most effective
zombie network distribution. We would have expected
that uniform spoofing will use more IP addresses from
ranges where none of the servers have legitimate clients
and thus be easier to filter with little collateral damage.
It was not surprising to see that the address distributions
of some zombie networks were able to inflict more dam-
age than others. But the amount of damage is not related
to the size of the zombie network. Ports 445 and 135 ex-
pose vulnerabilities in desktop clients and the zombies
and inflict similarly high collateral damage
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Figure 4: Attacks with different zombie networks us-
ing their own source addresses or spoofing uniformly at
random.

despite the fact that the number of distinct [P addresses
in the port 445 zombie network is one order of magni-
tude higher. The next most damaging zombie network
is that built by exploiting Microsoft SQL, an applica-
tion that typically runs on servers located close to the
clients. It is more damaging than the larger zombie net-



work based on exploiting web server vulnerabilities and
significantly more damaging than the zombie network
built by exploiting vulnerabilities in remote computer
management software which are closely clustered in a
few networks (566 distinct /16s for Microsoft SQL ver-
sus 649 /16s for Dameware).
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Figure 5: Attacks with source address distributions
modeled after the traffic of servers of the same type as
the victim can be very damaging.

Figure 5 shows the effects of attacks where the dis-
tribution of source addresses is modeled after the trafic
of another server. The top plot shows attacks against
the largest ISP web server and the bottom one attacks
against the largest Campus mail server. We also in-
cluded the results for attacks modeled after the victim’s
own traffic from an earlier week, and not surprisingly,
the collateral damage inflicted by SAPF matched the
damage of uninformed filtering. Other servers of the
same type often proved to be damaging models (typ-
ically less damaging if from the other organization).
Note that for attacks against the largest Campus mail
server, two servers from the same campus proved poor
models and the collateral damage of attacks modeled af-
ter them is similar to that of attacks not trying to mimic
the distribution of legitimate clients. The DNS servers
proved the most dangerous models other than servers of
the same type as the victim, with DNS servers from the

same organization slightly more damaging. A possible
explanation is that clients to all services go through the
DNS servers for address lookups, so the distribution of
clients for the DNS servers is a combination of the dis-
tribution of the clients of all other services (more exactly
their local DNS servers), but it does not give a good in-
dication of the amount of traffic each legitimate client
sends.

In summary, our most important conclusions from
comparing different strategies for attacks with identi-
cal amounts of traffic reaching the victim are as fol-
lows.

e Spoofing source addresses at random is as damaging
as using the actual addresses in the most damaging
of our simulated zombie networks.

e For all victims studied, the most damaging zombie
networks are those that result from exploiting vul-
nerabilities in desktop clients, or servers close to
them.

e The application exploited to build the zombie net-
work is more important than the number of zombies.

e The damage caused by using SAPF on attacks mod-
eled after other servers can be as high as the collat-
eral damage with uninformed filtering, but the effect
is highly dependent on the choice of model server.

4.5 Number of ACL rules allowed
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Figure 6: Typically collateral damage decreases as we
increase the number of rules.

The number of ACL rules affects how exact our fil-
tering of the traffic can be. With few rules we can do
only coarse filtering, with more rules the granularity im-
proves. Figure 6 plots the average collateral damage
for the 6 servers considered when using the mixed al-
gorithm to generate the filtering rules. For some servers
the decrease in collateral damage is more pronounced as
the number of rules increases. Surprisingly, for the ISP



web server the collateral damage increases after we in-
crease the number of rules above 50. By looking at the
actual ACL rules generated we found the explanation
of this apparent anomaly. With a larger budget for the
number of rules, the filtering algorithm generates many
ACL rules that deny individual IP addresses of legiti-
mate clients which do not appear in the baseline, but for
which there are other clients in the same /16 that do ap-
pear. Having only few ACL rules forces the algorithm
to make decisions about few large aggregates. These
larger aggregates do have traffic in the historic baseline,
and are consequently not filtered out. But when the de-
cision is made on individual IP addresses, the legitimate
client address that is not in the baseline seems to be an
attacker and it is filtered out. Improvements to the al-
gorithms generating the ACL rules could eliminate this
overfitting of the baseline data.

Pasitive Algorithm
T g

[ prev. hour

prev. day same hour
prev. 1day

I prev. 3days

7 prev. lweek

% Collaterat Damage
-1

|

Campus Wai

kil i il
i5P ONS Campus HFTPS Campus DNS

Mixed Algorithm
T ¥

prev. hour

prev. day same hour
prev. 1day

B prev. 3days

[ prev. 1week

% Collaterat Damage

Campus HITPS

Il

Campus Mt

157 Wb 15P DHS. Camgus ONS

ISP MR

Figure 7: The effect of different baselines for the posi-
tive and mixed algorithm.

4.6 Choice of baseline and filtering algo-
rithm

We experimented with using various portions of the traf-
fic log of the victim as baselines for the for the filtering
algorithms. For most servers and most algorithms for
generating ACL rules, the choice of the baseline period
had a small effect on the collateral damage. Figure 7
shows that the 3 days prior to the attack worked well
for all configurations. Using shorter baselines, closer to
the time of the attack (the hour before the attack) does
not capture the full diversity of legitimate clients. Using
older baselines (an earlier week) can miss shifts in the
client population yet in most instances these older base-
lines also work well. “Salting” the address space by low
intensity probes by attackers is unlikely to have much
impact on historic source distribution. If attackers man-
age to skew the source distribution with higer intensity
probes a higher than expected amount of collateral dam-
age might occur. Should this occur a switch to an older
baseline could remedy the situation.

We also compared our three algorithms “positive”,
“mixed” and “negative” (see Section 3.3 for a descrip-
tion of the algorithms) with many values for the param-
eters. For brevity we omit the detailed results. The
positive and mixed algorithms have similar results for
most configurations, but positive has a slight-overall ad-
vantage. The negative algorithm results in significantly
higher collateral damage than either of the other algo-
rithms and we do recommend against its use.

5 Conclusions

Distributed denial of service attacks are an on-going
concern for ISPs and companies with an online pres-
ence. Defending against flooding attacks is the sub-
ject of significant academic research efforts and there
are many commercial solutions implementing DDoS de-
fenses. A hard problem that all these defenses need to
solve is distinguishing the attack traffic which should
be filtered out from the legitimate traffic. In this paper
we investigate a light-weight approach to filtering attack
traffic based on the historic distribution of packet source
addresses arriving at a given IP address and service port.
We have shown that the distribution of source addresses
is relatively stable over periods of time sufficient to con-
struct ACL, rules which filter enough traffic to allow the
link to remain uncongested and allow a majority of the
legitimate traffic to pass. We have also demonstrated
a relative insensitivity to baseline choice. “Salting” the
address space by low intensity probes by attackers is un-
likely to have much impact on historic source distribu-
tion. If attackers manage to skew the source distribu-
tion with higer intensity probes a higher than expected
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amount of collateral damage might occur. Should this
happen a switch to an older baseline could remedy the
situation. We propose three algorithms that use a com-
parative analysis of the traffic of the server during nor-
mal operation and the traffic during the attack to gen-
erate a short list of ACL rules that reduce the traffic to
within the capacity of the bottleneck link. We use sim-
ulated attacks superimposed over traces of actual traf-
fic to study the amount of collateral damage inflicted
by source address prefix based filtering in various sce-
narios. This collateral damage is typically an order of
magnitude lower than the damage incurred through un-
informed filtering. The average damage is between 2%
and 10% when the traffic during the attack is 3 times
the link capacity, with damage typically lower for mail
servers than for DNS and web servers. For attacks us-
ing the actual addresses of the zombies, the effective-
ness of SAPF increases if the zombie network is not
built through a worm that exploits a desktop computer
vulnerability. If the attacker mimics the distribution of
the source address of legitimate clients of the victim by
modeling the source addresses used in the attack after
the clients of another server, the damage inflicted by
SAPF can be close to that of uninformed filtering. Some
servers, even some offering the same service as the vic-
tim, constitute a bad model for the attack and attacks
modeled after their client distribution do not inflict more
collateral damage than attacks with the actual source ad-
dresses of the zombies. The collateral damage inflicted
by filtering increases with the attack size, and decreases
as the capacity of the bottleneck link increases. Over-
provisioning has a stronger positive effect than the neg-
ative effect of attack size. From the experimental re-
sults we conclude that source address prefix based fil-
tering can improve DDoS defenses. We see two specific
settings in which it can be most useful: it can comple-
ment aproaches based on detecting packets with spoofed
source addresses because it is most effective against at-
tacks using the real addresses of the zombies, and it can
act as an in-network prefilter for very large attacks that
exceed the filtering capacity of available traffic scrub-
bing devices.

We consider this a light-weight solution because no
new hardware is required to implement the ACL rules,
the computational requirements to derive the ACL rules
are small, and a small number of rules, 20 to 50 in our
experiments, are required. We consider any solution
which requires little effort to implement, and allows a
server to continue to function, significantly “raising the
bar” against DDoS attacks. Trust issues are also mini-
mal. Properly configured ACL rules only reference the
destination address being protected therefore an ISP that
allowed an end user to set the ACL rules need only con-
firm that the destination address and port belongs to that
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end user. Alternatively an ISP could offer this as a ser-
vice. Filtering massive attacks is possible because the
ACL rules performing the filtering can be installed at
high speed routers.
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A Description of algorithms for
generating filtering rules

We describe three greedy algorithms for solving the fol-
lowing problem: given a set of flow records describing
the current traffic directed to the server under attack and
a set of flow records describing the historic “baseline”
legitimate traffic, generate ACL rules to filter out the
attack traffic. There are two important constraints on
the solution: the total traffic passing the proposed ACL
rules should not exceed the link capacity and the number
of ACL rules must be within a given budget. Note that
all filtering rules apply only to traffic sent to the victim,
other traffic sharing the bottleneck link with the victim
will not be affected. In practice, the “link capacity” ar-
gument we pass to the algorithms will not be the actual
capacity of the bottleneck link, but a smaller number to
accomodate other traffic and small variations in the traf-
fic to the victim. Our algorithms are oblivious to these
adjustments.

The filtering rules select traffic based on source pre-
fixes. We have three algorithms corresponding to three



different strategies. The first strategy is to drop traffic to
the victim by default, and use ACL rules to allow traffic
from certain source prefixes to pass through. The sec-
ond strategy is to allow all traffic by default, but have
ACL rules drop traffic from certain source prefixes. The
third strategy is to use traffic cluster analysis [8] to find
a set of prefixes with roughly the same current traffic
and generate a mixed set of accept and deny rules allow-
ing the prefixes with most legitimate traffic and reject-
ing those with most attack traffic. We call the algorithm
implementing the first strategy “positive algorithm”, the
one for the second strategy “negative algorithm”, and
the third “mixed algorithm”.

A.1 Positive algorithm

The positive algorithm tries to produce a list of non-
overlapping prefixes that cover a large fraction of the
historical baseline (thus resulting in little collateral dam-
age), but not much of the current traffic (thus avoiding
congestion). To narrow down this exploration we first
cluster the historical traffic and pick a small number of
clusters to focus on (the number of clusters we use is al-
ways at least twice the number of ACL rules we want).
The next step starts with one rule allowing one IP ad-
dress from each cluster and it extends the rules greed-
ily until the link capacity is reached. The final step re-
duces greedily the number of rules (redistributing the
excess bandwidth resulting from the deleted rules) until
the number of ACL rules fits within the budget.

Input: Number of ACL rules allowed NumRules and link
capacity Capacity.
Output: A list of prefixes whose current traffic is within the
link capacity.
begin
Centroids « Clustering(NumRules * 2)
Room « Capacity — CrtTraffic(Centroids)
L — GenerateRules(Centroids, Roomn)
Room e Capacity — CrtTraffic(L)
return ReduceRules(L, NumRules, Room)
end

Algorithm I: The positive algorithm.

A.1.1 Clustering

We model historical traffic using Hierarchical Aglom-
erative Clustering(HAC)[12)]. construct baseline mod-
els that will be combined with 2 graph are defined on
prefixes and prefixes define a non-linear space. Since
we are filtering based on prefixes it is natural to use a
metric based on prefixes as the distance metric used in
clustering. We use the following method to compute the
distance between 2 prefixes: XOR the prefixes together,

keep the highest order bit set and set the lower bits to
0. The resulting binary number is the distance between
the prefixes. The distance metric multiplied by the sum
of the traffic of the two prefixes produces the clustering
metric that is applied in a single link HAC algorithm.
We take cuts in the resulting dendrograms by cluster-
ing until a pre-determined number N of clusters are pro-
duced. We then define centroids as the longest path from
the “top” of each sub dendrogram to the leaves. Ties in
path length are broken by choosing the leaf nodes that
were clustered first.

A.1.2  Creating the list of rules

The second step of the positive algorithm starts with a
list of the centroids (individual IP addresses each repre-
senting a cluster) for the historical traffic and it greedily
generalizes them reducing the prefix length until we ob-
tain a list of non-overlapping prefixes whose traffic is
barely below the link capacity. Emitting an allow ACL
rule for each node in the list does not overflow the link
capacity, but the number of rules might still be above
our budget.

Positive starts with the centroids. In the rare case
that the centroids allow too much traffic themselves we
remove the worse centroid (highest current to historical
ratio) until generating accept rules for all the remain-
ing centroids does not go over the link capacity. The
greedy rule for deciding which prefix to shorten is to
pick the move for which the ratio between the newly
covered historical traffic and the newly covered current
traffic is maximized. This prefix shortening can result in
reducing the number of rules as the shorter prefix might
include more than one of the prefixes in the list.

Input: A list of prefixes L and the amount of extra capacity
Room on the link.

Output: A list of non-overlapping, more general prefixes
that cover more historic traffic and whose current
traffic is within the link capacity.

begin

while B « GetBestMove(L, Room) do
L — RemPrefixes(L, B.newprefiz)
L — Append(L, B.newprefiz)
Room «— Room — B.DeltaC
L « CombineSiblings(L)

return L
end

Function GenerateRules (L,Room) shortens the
prefixes in L to allow more traffic through.



Input: A list of prefixes L and the amount of extra capacity
Room on the link.

Output: The prefix B that generalizes one of the prefixes in
L so that the extra addresses it covers have the
largest ratio between historic traffic and current
traffic.

begin

B« NIL
foreach N € L do

for M «— Parent(N) to 0.0.0.0/0 do

DeltaC « CrtTraf(M)

DeltaH « HistTraf(M)

foreach E € L do

if IsDescendant(M, E) then
DeltaC « DeltaC — CrtTraf(E)
DeltaH «—
DeltaH — HistTraf(E)

if DeltaC < Room and (B = NIL or
DeltaH/DeltaC > B.DeltaH /B .DeltaC)
then
Bnewprefix « M
l» B.DeltaC «— DeltaC
B.DeltaH « DeltaH

return B
end

Function GetBestMove (L,Room) makes a greedy
choice on which prefix from L to shorten.

A.1.3 Shortening the list of rules

The third step of the positive algorithm reduces the
length of the list of rules to within the ACL budget with-
out overflowing the link capacity. The greedy decision
criterion for removing a prefix is to pick the prefix with
the worst (largest) ratio between the current and histor-
ical traffic it covers. Removing this prefix frees up as
much link capacity as the amount of current traffic the
prefix allowed. To consume the extra room {and possi-
bly admit more good traffic, thereby decreasing collat-
eral damage) we greedily take the best move.

A.2 Negative algorithm

The negative algorithm is the converse of the positive
algorithm. The strategy is to allows all traffic by default
and generate rules that deny traffic for certain prefixes.
Thus the negative algorithm must find prefixes covering
much of the current traffic but not much of the historical
traffic. For the negative algorithm we perform the clus-
tering on the current traffic at the time of the attack. The
second step starts with a list of prefixes, each capturing
an entire cluster, and it greedily increases the length of
prefixes as long as the traffic captured by all rules is still
at least as large as the amount of traffic we must filter
out. In the last step the algorithm greedily combines

Input: A list of prefixes L and a prefix N.
Output: The list of prefixes in [, which are not more
specific than N.
begin
foreach M € L do
if IsDescendant (N, M) then
L L = rRemove(L, M)
return L
end

Function RemovePrefixes (L,N) Removes all

prefixes included in N from prefix list L

pairs of prefixes from this list until the number of rules
fits within the budget. Since at each step the combined
prefix filters out more traffic than the prefixes it replaces,
we also greedily increase the length of prefixes. The im-
plementation details of this algorithm are different from
those for the positive algorithm, but since their strategies
are similar we omit the details for brevity.

A3

The mixed algorithm uses traffic clustering [8] to
generate a list of overlapping source prefixes. Let
MatchingTraf(N) be the amount of current traffic for
which prefix N is the most specific matching prefix. The
traffic clustering algorithm takes a single parameter, a
threshold 7', and it has the property that for all prefixes
in its result, MatchingTraf(N) is above a T" but be-
low 2T (except if we have individual IP addresses with
traffic larger than 27" which will be in the result). Thus
if the ACL rules are ordered such that the more specific
prefixes come first, each prefix controls a roughly equal
share of the current traffic. The second step of the mixed
algorithm decides which prefixes to deny and which to
allow. We simply sort the list of prefixes by the ratio
between the current and historic traffic they match in as-
cending order. We set prefixes from the head of the list
to allow until we fill the link capacity and the rest of the
prefixes we set to deny. The third step does not change
the filtering at all but it attempts to reduce the number of
rules used to express the filtering decision. This reduc-
tion step relies on two observations: if two prefixes are
siblings (they differ only in the last bit) and they have
the same action, they can be replaced by their parent
performing the same action; and if a prefix has the same
action as the most specific ancestor that includes it, the
prefix can be removed from the list. The threshold T’
controls the number of clusters to some extent, but it is
hard to predict how much the number of rules is reduced
in the last step. We repeat a few runs of the mixed algo-
rithm with progressively lower thresholds until we get a
a number of rules close to our budget of rules.

Mixed algorithm
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B Detailed experimental results

This appendix presents more detailed measurement results for experiments discussed in section 4.

Model for source Victim Server

addresses in flood Campus Mail ] Campus HTTPS [ Campus DNS
Campus Victim Mail 35.6/57.0/76.1% 0.6/3.5/8.7% 20.9/32.9/46.9%
Campus Mail2 2.4/8.8/22.4% 0.2/3.2/9.8% 7.5/17.5/26.5%
Campus Mail3 1.8/8.6/21.4% 0.1/2.0/8.0% 10.4/18.8/28.9%
Campus Maild 25.8/43.9/68.2% | 0.8/4.4/13.3% | 16.0/27.9/43.1%
Campus Webl 1.8/7.8/21.4% 0.5/4.2/12.3% | 13.3/21.2/33.4%
Campus Web2 3.8/13.3/29.2% | 5.7/12.3/26.9% | 9.1721.1/35.1%
Campus Web3 3.0/11.9/29.0% 0.9/4.2/12.9% | 13.7/23.3/33.2%
Campus Web4 6.5/20.3/39.4% 2.8/9.2/20.1% | 10.3/21.1/32.2%
Campus Victim HTTPS 0.1/4.7/19.7% | 22.8/36.9/58.0% | 0.0/6.2/12.9%
Campus HTTPS2 0.1/2.8/8.9% 11.8/23.2/37.4% 0.0/4.4/9.7%
Campus HTTPS3 0.1/4.9/17.8% | 16.6/31.2/52.4% | 0.0/6.4/14.7%
Campus HTTPS4 0.2/5.0/17.8% | 19.6/30.4/53.2% | 0.0/5.6/11.7%
Campus Victim DNS 10.9/26.7/55.0% | 0.7/3.8/10.4% | 47.1/60.8/72.2%
Campus DNS2 10.8/25.2/50.8% | 0.5/3.7/10.4% | 37.0/51.5/65.2%
Campus DNS3 11.5/25.5/52.0% | 0.7/3.9/11.9% | 37.1/52.1/66.6%
Campus DNS4 11.8/27.1/50.6% | 0.7/3.9/10.6% | 39.8/51.7/65.0%
ISP Maill 18.6/37.8/58.7% 0.1/2.8/5.4% 16.4/28.9/40.5%
ISP Mail2 17.9/31.2/51.7% 0.1/2.0/4.9% 15.0/26.6/38.8%
ISP Mail3 20.2/34.5/54.0% 0.2/2.3/4.7% 18.9/30.6/45.6%
ISP Mail4 12.3/25.9/45.0% 0.0/1.7/4.6% 12.4/23.2/36.2%
ISP Web1 5.3/19.5/39.6% 1.3/4.5/11.1% | 15.8/25.1/35.5%
ISP Web2 2.4/11.6/34.4% 0.2/3.3/9.8% 6.6/14.7/25.1%
ISP Web3 6.8/20.1/44.3% 1.2/4.5/10.2% | 11.7/22.1/31.3%
ISP Web4 8.5/21.4/41.2% 1.3/5.0/15.4% | 13.6/25.2/35.8%
ISP DNSI 12.2/25.7/50.4% | 0.3/3.5/12.0% | 27.5/41.8/56.0%
ISP DNS2 12.0/28.0/51.4% | 0.3/3.5/10.6% | 27.1/41.9/53.6%
ISP DNS3 9.8/23.8/45.8% 0.1/2.6/7.2% 28.7/40.2/53.3%
ISP DNS4 0.0/0.3/1.5% 0.0/0.1/0.5% 0.0/0.6/2.7%

Table 5: Attacks against Campus victim servers are modeled after the distributions of top 4 servers of each service

in Campus and ISP.
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Model for source Victim Server

addresses in flood ISP Mail ] ISP Web ] ISP DNS
Campus Maill 13.6/30.5/52.1% | 14.9/25.8/38.5% | 33.6/38.3/41.8%
Campus Mail2 1.6/6.3/20.5% 7.3/16.9/27.9% | 15.0/17.8/21.6%
Campus Mail3 0.8/4.4/15.0% 5.4/12.4/23.2% | 15.4/18.6/22.3%
Campus Mail4 11.7/29.6/49.2% | 15.3/24.8/38.3% | 30.7/34.5/38.6%
Campus Webl 1.0/7.1/25.6% | 14.5/24.5/36.6% | 15.0/18.2/21.5%
Campus Web2 1.9/9.2/26.9% | 23.5/35.1/48.4% | 21.1/25.0/29.2%
Campus Web3 1.1/7.324.5% | 20.4/30.9/40.9% | 19.8/23.4/27.9%
Campus Web4 3.7/14.1/34.9% | 31.4/40.9/50.7% | 22.8/26.9/30.5%
Campus HTTPS1 0.3/3.8/13.5% 6.0/12.9/20.2% 7.0/9.9/13.4%
Campus HTTPS2 0.2/3.1/11.8% 2.1/6.6/13.4% 3.1/4.7/6.9%
Campus HTTPS3 0.3/4.0/13.9% 7.2/13.8/24.4% | 8.1/11.0/14.6%
Campus HTTPS4 0.3/4.1/15.9% 5.4/12.3/21.4% 5.1/8.0/11.2%
Campus DNS1 7.5/20.1/39.6% | 18.4/27.9/36.5% | 40.3/44.5/48.8%
Campus DNS2 6.6/19.2/40.2% | 18.0/27.3/38.1% | 38.7/42.9/46.8%
Campus DNS3 5.7/18.6/37.4% | 17.2/28.0/38.0% | 37.2/41.6/45.4%
Campus DNS4 6.0/18.4/37.4% | 18.2/28.2/39.0% | 43.1/47.1/51.1%
ISP Victim Mail 39.4/56.8/75.4% | 22.8/31.4/41.9% | 36.8/40.5/44.7%
ISP Mail2 16.9/38.2/62.6% | 15.1/24.9/34.7% | 34.9/39.7/45.8%
ISP Mail3 22.3/43.9/69.7% | 17.8/28.0/37.9% | 35.3/39.2/42.5%
ISP Mail4 16.2/30.9/49.3% | 15.1/24.9/37.0% | 26.7/31.2/34.9%
ISP Victim Web 5.2/18.2/42.1% | 54.1/66.5/79.4% | 27.8/31.5/35.4%
ISP Web2 2.0/11.4/30.7% | 27.6/38.7/50.1% | 20.3/24.3/27.9%
ISP Web3 4.0/16.8/40.7% | 41.9/53.5/65.2% | 28.1/31.9/36.2%
ISP Web4 7.0/19.4/42.8% | 45.3/55.9/67.3% | 30.9/34.8/38.5%
ISP DNS1 8.7/22.5/45.0% | 20.4/30.0/41.4% | 56.6/60.5/64.3%
ISP Victim DNS 9.2/23.9/46.6% | 20.6/31.8/42.0% | 61.9/66.1/69.5%
ISP DNS3 8.0/20.1/39.0% | 18.8/28.1/36.4% | 49.8/53.2/56.7%
ISP DNS4 0.0/0.4/1.5% 0.0/0.7/3.0% 0.5/1.0/1.8%

Table 6: Attacks against ISP victim servers are modeled after the distributions of top 4 servers of each service in

Campus and ISP.

Victim Algorithm

server Positive | Mixed | Negative

ISP Mail 04/26/12.8% | 02/3.0/17.4% 1.2/15.1/35.6%
ISP Web 24/83/17.0% | 93/175/29.0% | 4.6/12.6/22.9%
ISP DNS 7.0/9.6/12.8% | 6.9/10.0/13.9% | 22.1/36.2/48.4%
Campus Mail 09/4.1/145% | 02/6.0/254% | 3.7/16.3/36.8%
Campus HTTPS || 0.0/1.9/6.8% | 0.1/6.7/26.6% 2.3/7.2/23.8%

Campus DNS 0.0/86/169% | 1.2/6.8/154% | 16.1/33.0/57.8%

Table 7: The collateral damage with positive, mixed, and negative algorithm for default parameters.
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Victim | Attack Overprovisioning
server Sizes Ix 2x [ 5x 10x
ISP 5x 1.6/8.0/22.8% 04/26/12.8% 0.0/0.0/0.1% 0.0/0.0/0.0%
Mail 20x 13.5/31.7/51.6% | 2.6/12.1/29.8% 0.6/3.0/13.1% 02/09/1.5%
100x 32.4/54.4/76.1% | 20.9/43.3/602% | 9.8/23.8/42.7% 1.7/8.3/24.2%
ISP 5% 19.2/31.8/469% | 2.4/83/17.0% 0.0/04/29% 0.0/0.0/0.0%
Web 20x 43.1/52.47/62.6% | 18.77/29.8/41.3% | 2.5/7.2/13.0% 0.0/1.8/52%
100x 55.2/67.4/77.5% | 45.0/55.3/64.8% | 24.4/35.3/47.0% | 10.3/18.5/28.7%
ISP 5x 29.5/35.8/40.9% | 7.1/9.6/12.8% 0.0/0.1/0.3% 0.0/0.0/0.0%
DNS 20x 45.5/49.7/54.6% | 27.3/30.6/34.1% 5.6/7.0/83% 0.7/1.1/1.6%
100x 60.1/64.5/67.5% | 47.5/51.2/553% | 27.4/31.1/35.2% | 14.8/17.1/20.1%
Campus | 5x 2.5/12.1/34.5% 0.9/4.1/145% 0.0/0.0/03% 0.0/0.0/0.0%
Mail 20x 14.5/32.4/56.9% | 4.6/14.0/29.0% 1.0/4.0/11.2% 0.1/1.2/3.8%
100x 30.3/50.6/70.6% | 21.2/40.1/59.4% | 83/21.3/38.5% 2.3/9.6/26.7%
Campus | 5x 1.2/56/18.1% 0.0/1.9/6.8% 0.0/0.0/0.0% 0.0/0.0/0.0%
HTTPS | 20x 2.8/8.5/18.1% 1.6/58/13.5% 0.1/2.2/54% 0.0/0.4/1.4%
100x 47/11.2/21.2% 32/93/18.7% 2.1/59/13.9% 1.4/4279.0%
Campus | 5x 153/26.3/38.0% | 0.0/8.6/16.9% 0.0/0.2/0.0% 0.0/0.0/0.0%
DNS 20x 349/49.0/63.5% | 22.0/34.7/463% | 2.6/9.0/16.9% 0.0/2.1/8.5%
100x 55.0/69.2/78.6% | 43.4/593/73.4% | 29.7/39.7/51.5% | 14.7/25.8/36.3%

Table 8: The effect of attack size and overprovisioning on the collateral damage of SAPF.




Victim Algorithm

server Positive | Mixed ] Negative

ISP Mail 04/2.6/128% | 02/3.0/174% | 1.2/15.1/35.6%
ISP Web 24/83/17.0% | 93/17.5/29.0% | 4.6/12.6/22.9%
ISP DNS 7.0/9.6/12.8% | 6.9/10.0/13.9% | 22.1/36.2/48.4%
Campus Mail 09/4.1/145% | 02/6.0/254% | 3.7/16.3/36.8%
Campus HTTPS || 0.0/1.9/6.8% | 0.1/6.7/26.6% 2.3/7.2/23.8%

Campus DNS 0.0/8.6/169% | 1.2/6.8/154% | 16.1/33.0/57.8%

Table 9: The collateral damage with positive, mixed, and negative algorithm for default parameters.
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Figure 8: The effect of different baselines for the positive and mixed algorithm.

Victim | Attack Overprovisioning
server Sizes 1x 2x [ 5% 10x
ISP 5% 1.6/8.0/22.8% 0.4/2.6/12.8% 0.0/0.0/0.1% 0.0/0.0/0.0%
Mail 20x 13.5/31.7/51.6% | 2.6/12.1/29.8% 0.6/3.0/13.1% 0.2/09/15%
100x 32.4/54.4/76.1% | 20.9/43.3/60.2% | 9.8/23.8/42.7% 1.7/83/24.2%
ISP 5x 19.2/31.8/469% | 2.4/83/17.0% 0.0/04/29% 0.0/0.0/0.0%
Web 20x 43.1/52.4/62.6% | 18.7/29.8/413% | 2.5/7.2/13.0% 0.0/18/52%
100x 55.2/67.4/77.5% | 45.0/553/64.8% | 24.4/353/47.0% | 10.3/18.5/28.7%
ISP 5% 29.5/358/409% | 7.1/9.6/12.8% 0.0/0.1/0.3% 0.0/0.0/0.0%
DNS 20x 45.5/49.7/54.6% | 27.3/30.6/34.1% 5.6/7.0/83% 0.7/1.1/1.6%
100x 60.1/64.5/67.5% | 47.5/51.2/553% | 27.4/31.1/352% | 14.8/17.1/20.1%
Campus | 5x 2.5/12.1/34.5% 0.9/4.1/14.5% 0.0/0.0/0.3% 0.0/0.0/0.0%
Mail 20x 14.5/32.4/56.9% | 4.6/14.0/29.0% 1.0/4.0/11.2% 0.1/1.2/3.8%
100x 30.3/50.6/70.6% | 21.2/40.1/594% | 8.3/21.3/38.5% 2.3/9.6/26.7%
Campus | 5x 1.2/5.6/18.1% 0.0/1.9/6.8% 0.0/0.0/0.0% 0.0/0.0/0.0%
HTTPS | 20x 2.8/8.5/18.1% 1.6/58/13.5% 0.1/22/54% 0.0/04/1.4%
100x 4.7/11.2/21.2% 3.2/93/18.7% 2.1/59/13.9% 1.4/4.2/9.0%
Campus | 5x 153/263/38.0% | 0.0/8.6/16.9% 0.0/0.2/0.0% 0.0/0.0/0.0%
DNS 20x 349/49.0/63.5% | 22.0/34.7/463% | 2.6/9.0/16.9% 0.0/2.1/85%
100x 35.0/69.2/78.6% | 43.4/59.3/73.4% | 29.7/39.7/51.5% | 14.7/25.8736.3%

Table 10: The effect of attack size and overprovisioning on collateral damage.
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Model for source

Victim Server

addresses in flood Campus Mail | Campus HTTPS | Campus DNS

Campus Victim Mail 35.6/57.0/76.1% 0.6/3.5/8.7% 20.9/32.9/46.9%
Campus Mail2 2.4/8.8/22.4% 0.2/3.2/9.8% 7.5/17.5/26.5%
Campus Mail3 1.8/8.6/21.4% 0.1/2.0/8.0% 10.4/18.8/28.9%
Campus Mail4 25.8/43.9/68.2% | 0.8/4.4/13.3% 16.0/27.9/43.1%
Campus Webl 1.8/7.8/21.4% 0.5/4.2/12.3% 13.3/21.2/33.4%
Campus Web2 3.8/13.3/29.2% | 5.7/12.3/26.9% | 9.1/21.1/35.1%
Campus Web3 3.0/11.9/29.0% 0.9/4.2/12.9% 13.7/23.3/33.2%
Campus Web4 6.5/20.3/39.4% 2.8/9.2/20.1% 10.3/21.1/32.2%
Campus Victim HTTPS 0.1/4.7719.7% | 22.8/36.9/58.0% | 0.0/6.2/12.9%

Campus HTTPS2 0.1/2.8/8.9% 11.8/23.2/37.4% 0.0/4.4/9.7%

Campus HTTPS3 0.1/4.9/17.8% 16.6/31.2/52.4% | 0.0/6.4/14.7%

Campus HTTPS4 0.2/5.0/17.8% 19.6/30.4/53.2% | 0.0/5.6/11.7%

Campus Victim DNS 10.9/26.7/55.0% | 0.7/3.8/10.4% | 47.1/60.8/72.2%
Campus DNS2 10.8/25.2/50.8% | 0.5/3.7/10.4% | 37.0/51.5/65.2%
Campus DNS3 11.5/25.5/52.0% | 0.7/3.9/11.9% | 37.1/52.1/66.6%
Campus DNS4 11.8/27.1/50.6% | 0.7/3.9/10.6% | 39.8/51.7/65.0%
ISP Maill 18.6/37.8/58.7% 0.1/2.8/5.4% 16.4/28.9/40.5%
ISP Mail2 17.9/31.2/51.7% 0.1/2.0/4.9% 15.0/26.6/38.8%
ISP Mail3 20.2/34.5/54.0% 0.2/2.3/4.7% 18.9/30.6/45.6%
ISP Mail4 12.3/25.9/45.0% 0.0/1.7/4.6% 12.4/23.2/36.2%
ISP Webl 5.3/19.5/39.6% 1.3/4.5/11.1% 15.8/25.1/35.5%
ISP Web2 2.4/11.6/34.4% 0.2/3.3/9.8% 6.6/14.7/25.1%
ISP Web3 6.8/20.1/44.3% 1.2/4.5/10.2% 11.7/22.1/31.3%
ISP Web4 8.5/21.4/41.2% 1.3/5.0/15.4% 13.6/25.2/35.8%
ISP DNSI 12.2/25.7/50.4% | 0.3/3.5/12.0% | 27.5/41.8/56.0%
ISP DNS2 12.0/28.0/51.4% | 0.3/3.5/10.6% | 27.1/41.9/53.6%
ISP DNS3 9.8/23.8/45.8% 0.1/2.6/7.2% 28.7/40.2/53.3%
ISP DNS4 0.0/0.3/1.5% 0.0/0.1/0.5% 0.0/0.6/2.7%

Table 11: Attacks against Campus victim servers are modeled after the distributions of top 4 servers of each service

in Campus and ISP.




Model for source

Victim Server

addresses in flood ISP Mail | ISP Web | ISP DNS
Campus Maill 13.6/30.5/52.1% | 14.9/25.8/38.5% | 33.6/38.3/41.8%
Campus Mail2 1.6/6.3/20.5% 7.3/16.9/27.9% | 15.0/17.8/21.6%
Campus Mail3 0.8/4.4/15.0% 5.4/12.4/23.2% | 15.4/18.6/22.3%
Campus Mail4 11.7/29.6/49.2% | 15.3/24.8/38.3% | 30.7/34.5/38.6%
Campus Webl 1.0/7.1/25.6% 14.5/24.5/36.6% | 15.0/18.2/21.5%
Campus Web2 1.9/9.2/26.9% 23.5/35.1/48.4% | 21.1/25.0/29.2%
Campus Web3 1.1/7.3/24.5% 20.4/30.9/40.9% | 19.8/23.4/27.9%
Campus Web4 3.7/14.1/34.9% | 31.4/40.9/50.7% | 22.8/26.9/30.5%
Campus HTTPS1 0.3/3.8/13.5% 6.0/12.9/20.2% 7.0/9.9/13.4%
Campus HTTPS2 0.2/3.1/11.8% 2.1/6.6/13.4% 3.1/4.7/16.9%
Campus HTTPS3 0.3/4.0/13.9% 7.2/13.8/24.4% 8.1/11.0/14.6%
Campus HTTPS4 0.3/4.1/15.9% 5.4/12.3/21.4% 5.1/8.0/11.2%
Campus DNSI 7.5/20.1/39.6% | 18.4/27.9/36.5% | 40.3/44.5/48.8%
Campus DNS2 6.6/19.2/40.2% | 18.0/27.3/38.1% | 38.7/42.9/46.8%
Campus DNS3 5.7/18.6/37.4% | 17.2/28.0/38.0% | 37.2/41.6/45.4%
Campus DNS4 6.0/18.4/37.4% | 18.2/28.2/39.0% | 43.1/47.1/51.1%
ISP Victim Mail 39.4/56.8/75.4% | 22.8/31.4/41.9% | 36.8/40.5/44.7%
ISP Mail2 16.9/38.2/62.6% | 15.1/24.9/34.7% | 34.9/39.7/45.8%
ISP Mail3 22.3/43.9/69.7% | 17.8/28.0/37.9% | 35.3/39.2/42.5%
ISP Mail4 16.2/30.9/49.3% | 15.1/24.9/37.0% | 26.7/31.2/34.9%
ISP Victim Web 5.2/18.2/42.1% | 54.1/66.5/79.4% | 27.8/31.5/35.4%
ISP Web2 2.0/11.4/30.7% | 27.6/38.7/50.1% | 20.3/24.3/27.9%
ISP Web3 4.0/16.8/40.7% | 41.9/53.5/65.2% | 28.1/31.9/36.2%
ISP Web4 7.0/19.4/42.8% | 45.3/55.9/67.3% | 30.9/34.8/38.5%
ISP DNS1 8.7/22.5/45.0% | 20.4/30.0/41.4% | 56.6/60.5/64.3%
ISP Victim DNS 9.2/23.9/46.6% | 20.6/31.8/42.0% | 61.9/66.1/69.5%
ISP DNS3 8.0/20.1/39.0% | 18.8/28.1/36.4% | 49.8/53.2/56.7%
ISP DNS4 0.0/0.4/1.5% 0.0/0.7/3.0% 0.5/1.0/1.8%

Table 12: Attacks against ISP victim servers are modeled after the distributions of top 4 servers of each service in

Campus and ISP.
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