EEHHEEEEHHIHHEEEHBEEEHIHEEEEﬁﬂﬂﬁﬂﬂﬂﬂElﬁﬂﬂmﬁﬁﬂﬂﬂﬁﬂﬂﬂmﬁﬂﬂﬂﬂHﬂﬂﬂﬁﬂﬂﬂ!ﬂﬂﬁﬂﬂﬂﬂ

Abstraction Refinement for 3-Valued-Logic
Analysis

Alexey Loginov
Thomas Reps

Mooly Sagiv

Technical Report #1504

May 2004

UNIVERSITY OF

WISCONSIN

M A DI S O N

Abstraction Refinement for 3-Valued-Logic Analysis

Alexey Loginov?, Thomas Reps?, and Mooly Sagiv?

! Comp. Sci. Dept., University of Wisconsin; {alexey,reps } @cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; msagiv@post.tau.ac.il

Abstract. This paper concerns the question of how to create abstractions that are useful for
program analysis. It presents a method that refines an abstraction automatically for analy-
sis problems in which the semantics of statements and the query of interest are expressed
using logical formulas. Refinement is carried out by introducing new instrumentation rela-
tions (defined via logical formulas over core relations, which capture the basic properties of
memory configurations). A tool that incorporates the algorithm has been implemented and
applied to several algorithms that manipulate linked lists and binary-search trees. In all but
a few cases, the tool is able to demonstrate (i) the partial correctness of the algorithms, and
(i1) that the algorithms possess additional properties—e.g., stability or antistability.

1 Introduction

This paper presents a technique for automatically creating abstractions for use in pro-
gram analysis. As in some previous work [12,19,5,13,16,8,9, 3,4, 11], the technique
involves the successive refinement of the abstraction in use. However, unlike previous
work, the work presented in this paper is aimed specifically at programs that manipulate
pointers and heap-allocated data structures.

The paper presents an abstraction-refinement method for use in static analyses based
on 3-valued logic [20], where the semantics of statements and the query of interest are
expressed using logical formulas. Refinement is performed by introducing new instru-
mentation relations (defined via logical formulas over core relations, which capture the
basic properties of memory configurations). The algorithm presented here analyzes the
sources of imprecision in the evaluation of the query, and chooses how to define new
instrumentation relations using subformulas of the query.

In this setting, two related logics come into play: an ordinary 2-valued logic, as well as
arelated 3-valued logic. A memory configuration, or store, is modeled by what logicians
call a logical structure; an individual of the structure’s universe either models a single
memory element or, in the case of a summary individual, it models a collection of
memory elements. A run of the analyzer carries out an abstract interpretation to collect
a set of structures at each program point. This involves finding the least fixed point of a
certain set of equations. When the fixed point is reached, the structures that have been
collected at program point P describe a superset of all the execution states that can occur
at P. To determine whether a query is always satisfied at P, one checks whether it holds
in all of the structures that were collected there. Instantiations of this framework are
capable of establishing nontrivial properties of programs that perform complex pointer-
based manipulations of a priori unbounded-size heap-allocated data structures. The
TVLA system (Three-Valued-Logic Analyzer) implements this approach [15,2].

Summary individuals play a crucial role. They are used to ensure that abstract de-
scriptors have an a priori bounded size, which guarantees that a fixed-point is always
reached. However, the constraint of working with limited-size descriptors implies a loss
of information about the store. Intuitively, certain properties of concrete individuals are
lost due to abstraction, which groups together multiple individuals into summary indi-
viduals: a property can be true for some concrete individuals of the group but false for
other individuals. It is for this reason that 3-valued logic is used; uncertainty about a
property’s value is captured by means of the third truth value, 1/2.

An advantage of using 2- and 3-valued logic as the basis for static analysis is that
the consistency of the 2-valued and 3-valued viewpoints is ensured by a basic theorem
that relates the two logics [20]. Unfortunately, unless some care is taken in the design
of an analysis, there is a danger that as abstract interpretation proceeds, the indefinite
value 1/2 will become pervasive. This can destroy the ability to recover interesting
information from the 3-valued structures collected (although soundness is maintained).

A key role in combating indefiniteness is played by instrumentation relations, which
record auxiliary information in a logical structure. They provide a mechanism to fine-
tune an abstraction: an instrumentation relation, which is defined by a logical formula
over the core relation symbols, captures a property that an individual memory cell may
or may not possess. In general, adding additional instrumentation relations refines the
abstraction, defining a more precise analysis that is prepared to track finer distinctions
among stores. This allows more properties of the program’s stores to be identified.

The choice of formulas to be used as definitions of instrumentation relations is crucial
to the precision, as well as the cost, of the analysis. Until now, TVLA users have been
faced with the task of identifying an instrumentation-relation set that gives them a defi-
nite answer to the query, but does not make the cost prohibitive. This was arguably the
key remaining challenge in the TVLA user-model.

The contributions of this work can be summarized as follows:

e Itis a step towards automatically generating useful abstractions for static analyses
based on 3-valued logic.

o Essentially all of the user-level obligations for which TVLA has been criticized
in the past have been eliminated. The input required to specify a program analysis
consists of

e aprogram (at present, in the form of a transition system)
e aquery (i.e., a formula that characterizes the acceptable outputs)
o a characterization of the program’s allowable inputs.

o The technique has been implemented as an extension of TVLA.

e We present experimental evidence that the use of this approach in an iterative
abstraction-refinement loop can yield precise answers to queries. We illustrate the
technique by testing sortedness, stability, and antistability queries on a collection
of programs that perform destructive list manipulation, as well as by testing partial
correctness of two binary-search-tree algorithms.

As a methodology for verifying properties of programs, the advantages of the approach
taken in the paper are:

¢ No loop invariants are required.

o No theorem provers are involved, and thus every refinement step must terminate.

o The method is based on abstract interpretation, and thus the entire process must
terminate.

e The method applies to static analyses based on 3-valued first-order logic, and
hence it applies to programs that manipulate pointers and heap-allocated data
structures, and eliminates the need for the user to write the usual proofs required
for abstract interpretation—i.e., to demonstrate that the abstract structures that the
analyzer manipulates correctly model the concrete heap-allocated data structures
that the program manipulates.

The remainder of the paper is organized as follows: §2 introduces terminology and
notation. Readers familiar with TVLA can skip to §3, which illustrates our goals on the
problem of verifying the partial correctness of a sorting routine. §4 describes a method

for iterative abstraction refinement and illustrates the method on the example of §3. §5
presents experimental results. §6 discusses related work.

2 Modeling and Abstracting the Heap with Logical Structures

Relation | Intended Meaning

eg(vi,v2) | Do v1 and vz denote the same memory cell?

g(v) Does pointer variable ¢ point to memory cell v?

n{v1,vz) | Does the n field of v; point to v2?

dle(vy, v2) | Is the data field of v) less than or equal to that of v2?
(@ (b)

Table 1. (a) Declaration of a linked-list datatype in C. (b) Core relations used for representing the

stores manipulated by programs that use type List.

typedef struct node {
struct node *n;
int data;

} *List;

This section summarizes the shape-analysis n n ,
framework described in [20]. In this ap- oLt = [l

proach, concrete memory configurations or Fig. 1. A possible store for a linked list.
stores are encoded as logical structures (as-

sociated with a vocabulary of relation symbols with given arities) in terms of a fixed
collection of core relations, C. Core relations are part of the underlying semantics of
the language to be analyzed; they record atomic properties of stores. For instance, Tab. 1
gives the definition of a C linked-list datatype, and lists the relations that would be used
to represent the stores manipulated by programs that use type List, such as the store
in Fig. 1. 2-valued logical structures then represent memory configurations: the individ-
uals are the set of memory cells; a nullary relation represents a Boolean variable of the
program; a unary relation represents either a pointer variable or a Boolean-valued field
of a record; and a binary relation represents a pointer field of a record. Numeric-valued
variables and numeric-valued fields (such as data) can be modeled by introducing
other relations, such as the binary relation dle (which stands for “data less-than-or-
equal-to”) listed in Tab. 1; dle captures the relative order of two nodes’ data values.
Alternatively, numeric-valued entities can be handled by combining abstractions of log-
ical structures with previously known techniques for creating numeric abstractions [10].
Fig. 2 shows 2-valued structure Sz, which represents the store of Fig. 1 (relations [n],
r[n, z], and ¢[n] are explained in §2.2).

Often only a restricted class of
g die structures is used to encode stores;
to exclude structures that can-
not represent admissible stores, in-
tegrity constraints can be imposed.
For instance, in program-analysis
applications, a relation like z(v)
of Tab. 1 captures whether pointer

z[rn, z]le[n]][n [ullullu2){t]n][ulluIfu?][dle[ullul]ul)
u(lJtl) % g ufllg (1) (13 u(1> (1) % i u(li (1) i (1) variable x points to memory cell
U U [U . : :
e o A | e e | e e e ot e e v; = would be given the attribute

“unique”, which imposes the in-
tegrity constraint that x can hold for
at most one individual in any struc-
ture.

Let R = {eq,p1,...,Pn} bea fi-
nite vocabulary of relation symbols, where Ry denotes the set of relation symbols of
arity k (and eg € Rs). The set of 2-valued structures is denoted by S3[R]. The syn-

Fig. 2. A logical structure Sy that represents the
store shown in Fig. 1 in graphical and tabular rep-
resentations.

tax of first-order formulas with equality and reflexive transitive closure is defined as
follows:

Definition 1. A formula over the vocabulary R = {eq,p1,...,Pn} is defined by

pERk :Oillp(’vl’
¢ € Formulas | (1) | (1 A <P2) | (p1Vpa) | (Fuin) | (Vo 1)
v € Variables | (RTC v, vh: ©1)(v1,v2)

The set of free variables of a formula is defined as usual. “RTC” stands for reflexive
transitive closure. In ¢ = (RTC v}, v4: ¢1)(v1,va), if ¢1’s free-variable set is V, we
require vy, vy & V. The free variables of ¢ are (V ~ {v{,v3}) U {v1,v2}.

We use several shorthand notations: (v1 =v3) = eq(v1,v2); (v17v2) & —eg(vy, va);
(1 = p2) = (1 V 902) (p1 < ©2) = (=1 V 2) A (—p2 V 1); and for a bi-
nary relation p, p* (v1, v3) = (RTC v}, v}: p(vy,v3)) (v1,v2). The order of precedence
among the connectives, from highest to lowest, is as follows: =, A, V, ¥, and 3.

Definition 2. A 2-valued interpretation over R i is @ 2-valued logical structure S =
(US,15), where US is a set of individuals and «% maps each relation symbol p of
arity k to a truth-valued function: .5 (p): (US)* — {0, 1}. In addition, (i) for all u €
US, 15(eq)(u,u) = 1, and (ii) for all uj,us € US such that u; and uy are distinct
1nd1v1duals 1% (eq)(uy,uz) = 0. An assignment Z is a function that maps variables to
individuals (i.e., it has the functionality Z: {v1,v2,...} — U?%).

The (2-valued) meaning of a formula ¢, denoted by [¢]5(2), yields a truth value in
{0,1}; it is defined inductively as shown in Fig. 3.

Mz() = [e1 /\902]]2 (2) = m(l[‘ﬂl]]z(z) |I‘P2]]2 Z)N
[115(2) = o1 Val3(2) = [[901112 (2),1e2)3 (2))
(1, .,)3 (2) = LS(P)((01),-, Z(w)) [Bv:e]3(2) = maxl[%]]z (Zlv v)
[~0:]5(2) = 1-[@]5(2) Vu: ¢1]3(2) = rmn [[Lpl]}g (Zvy — u))
[(RTC v1, v 1) (v1,02)]5(2)
1 1fZ(1)1) = Z('Ug)
_ nmza)i rin__'_;{xl[cpl]f(Z[vi — 1, v5 — Ui41]) otherwise
w1, . . tnel €U,
Z(v1) = uy,

Z(vz) = tn41

Fig. 3. The (2-valued) meaning of a formula .

S and Z satisfy ¢ if [¢]5 (Z) = 1. The set of 2-valued structures is denoted by Sz[R].

2.1 Program Analysis Via 3-Valued Logic

In 3-valued logic, formulas are identical to the ones used in 2-valued logic. At the
semantic level, a third truth value—~1/2—is introduced to denote uncertainty.

Definition 3. The truth values O and 1 are definite values; 1/2 is an indefinite value.
For 1,15 € {0,1/2, 1}, the information order is defined as follows: i1 T lo iff I =1
orly = 1/2. The symbol LI denotes the least-upper-bound operation with respect to C.

Definition 4. A 3- valued interpretation over R i is a 3-valued logical structure S =
(US,.5), where US is a set of individuals and ¥ maps each relation symbol p of

arity k to a truth-valued function: .%(p): (U%)* — {0,1/2,1}. In addition, (i) for all
u € U5, 5(eq)(u,u) 2 1, and (ii) for all uy,us € US such that u; and us are distinct
individuals, + (eq)(uy, ug) = 0.

For an assignment Z, the (3-valued) meaning of a formula ¢, denoted by [¢]5 (2),
yields a truth value in {0,1/2,1}. The meaning of ¢ is defined exactly as in Defn. 2,
but interpreted over {0,1/2,1}. S and Z potentially satisfy ¢ if [¢]5(Z) 3 1. The set
of 3-valued structures is denoted by S3[R].

An individual for which ¢5(eq)(u,u) = 1/2 is called a summary individual. In the
program-analysis context, a summary individual abstracts one or more fragments of a
data structure, and can represent more than one concrete memory cell.

A concrete operational semantics is defined by specifying a structure transformer for
each kind of edge e that can appear in a CFG. A structure transformer is specified by
providing a collection of relation-update formulas, c(v1,...,vk) = Tee(V1,...,k),
one for each core relation ¢. These formulas define how the core relations of a logical
structure S that arises at the source of e are transformed by e to create a logical structure
S’ at the target of e; typically, they define the value of relation ¢ in S’ as a function of
c’s value in S. Edge e may optionally have a precondition formula, which filters out
structures that should not follow the transition along e. The postcondition operator post
for edge e is defined by lifting e’s structure transformer to sets of structures.

The collecting semantics of a program corresponds to a postcondition operator of type
©(S2) — ©(S2). However, p(Sz) is not suitable as an abstract domain; for instance,
when the programming language being modeled supports allocation from the heap, the
set of individuals that may appear in a structure is unbounded (or so large that it is the
same from a practical point of view), and thus there is no a priori upper bound on the
cardinality of elements of p(Sz).

One can sidestep this problem by abstracting sets of 2-valued structures using 3-valued
structures equipped with a suitable order [20]. A set of stores is then represented by a
(finite) set of 3-valued logical structures.

Definition 5. Let S = (US,:5) and S’ = (US',.5") be two structures, and let f: US —
US bea surjective function. We say that f embeds S in S’ (denoted by S cf §)yif
for every relation symbol p € Ry, and for all ug,...,ux € US, 5(p)(ur, ..., ux) E
S (D) (F(ur),. .., f(ur)). We say that S can be embedded in S' (denoted by S C S')
if there exists a function f such that S Cf &,

The meaning of a formula is preserved by embedding in the following sense: if S Cf
S’, then every piece of information extracted from S’ via a formula ¢ is a conservative
approximation of the information extracted from S via ¢. To formalize this, we extend

mappings on individuals to operate on assignments: if f: US — U¥' is a function and

Z: Var — U? is an assignment, f o Z denotes the assignment fo Z: Var — Us'
such that (f o Z)(v) = f(Z(v)).

Theorem 1. (Embedding Theorem [20, Theorem 4.9]). Let S = (US,:5) and S’ =

(US', LS,) be two structures, and let f: US — US bea function such that S Tf §'.
Then, for every formula ¢ and assigiment Z that is defined on all free variables of ©,

[el5 (Z) T[] (f o Z).

To obtain a computable abstract domain, we need a way to ensure that the 3-valued
structures used to represent memory configurations are always of finite size. We do this

by defining an equivalence relation between individuals, and considering the (finite)
quotient structure with respect to this equivalence relation; in particular, each individual
of a 2-valued logical structure (representing a concrete memory cell) is mapped to an
individual of a 3-valued logical structure according to the vector of values that the
concrete individual has for a user-chosen collection of unary abstraction relations:

Definition 6 (Canonical Abstraction). Let S = (U,) € 83, and let A C P; be some
chosen subset of the unary relation symbols. The relations in A are called abstraction
relations; they define the following equivalence relation =~ 4 on U:

uy 4 ug <= forallp € A, u(p){u1) = t(p)(uz),

and the surjective function f4 : U — U/ 24, such that f4(u) = [u]~ ,, which maps
an individual to its equivalence class.
The canonical abstraction of S with respect to A is the structure f4(5).

If all unary relations are abstraction re-
lations (A4 = R;), the canonical abstrac- dlexlnl mila].die
tion of 2-valued logical structure Sy is S4, - ST
shown in Fig. 4, with fa(ug) = wuo and
fa(uy) = fa(ug) = u. Sy represents all

lists with two or more elements, in which e -

the first element’s data value is lower than zlr(n, 2] Cl;l 0 ub L H[nf[ul] u]{dleful] v
the data values in the rest of the list. CuH N UL i;; AR 1}2 e 1}2
The following graphical notation is used for

depicting 3-valued logical structures: Fig. 4. A 3-valued structure Sy that is the

e Individuals are represented by circles canonical abstraction of structure Sa.
containing their names and values for

unary relations (0 values are usually omitted).
o A summary individual is represented by a double circle.

o A unary relation p corresponding to a pointer program variable is represented
by a solid arrow from p to the individual u for which «(p)(u) = 1, and by the
absence of a p-arrow to each node ' for which «(p)(u’) = 0. (If (p) = 0 for all
individuals, the relation name p is not shown.)

e A binary relation g is represented by a solid arrow labeled g between each pair of
individuals u; and u; for which ¢(g)(us, u;) = 1, and by the absence of a g-arrow
between pairs u; and w} for which «(q)(uj, u}) =0

¢ Binary relations with value 1/2 are represented by dotted arrows.

Canonical abstraction ensures that each 3-valued structure is no larger than some
fixed size, known a priori. Moreover, a given formula is interpreted consistently in
both the concrete domain (namely, p(S;)) and the abstract domain (p(S3)). Thanks
to the Embedding Theorem, the meaning of the two interpretations is consistent with
respect to the abstraction, although the value of a formula on an abstract structure a(S)
may be less precise than its value on the concrete structure S. Consequently, for each
kind of statement in the programming language, the structure transformers for the ab-
stract semantics—and hence the abstract postcondition operator—can again be defined
via a collection of formulas; in fact, the abstract transformers are defined by the same
relation-update formulas that define the concrete semantics.

Abstract interpretation collects a set of 3-valued structures at each program point. It
can be implemented as an iterative procedure that finds the least fixed point of a certain
collection of equations on variables that take their values in p(S3) [20].

2.2 Instrumentation Relations

The abstraction function on which an analysis is based, and hence the precision of
the analysis defined, can be tuned by (i) choosing to equip structures with additional in-
strumentation relations to record derived properties, and (i) varying which of the unary
core and unary instrumentation relations are used as the set of abstraction relations. The
set of instrumentation relations is denoted by Z. Each relation symbol p € Z C Ry is
defined by an instrumentation-relation definition formula ¥(v1, ..., vy). Instrumen-
tation relation symbols may appear in the defining formulas of other instrumentation
relations as long as there are no circular dependences.

P IntendedMeaning ¥p

t[n)(v1,v2){Is vz reachable from v; along n fields?|n” (v1, v2)

r[n,z](v) |Is v reachable from pointer variable x |3 v1: z(v1) A t[n](vi,v)
along n fields?
c[nj(v) Is v on a directed cycle of n fields? |3 vy : n{vi, v) At[n](v, v1)

Table 2. Defining formulas of some commonly used instrumentation relations. There is a sep-
arate relation r[n, z] for every program variable x. (Recall that n*(v1,vz) is a shorthand for
(RTC w1, v2: (v, v3))(v1,v2).)

The introduction of unary instrumentation relations that are then used as abstraction
relations provides a way to control which concrete individuals are merged together
into an abstract individual, and thereby control the amount of information lost by ab-
straction. Instrumentation relations that involve reachability properties, which can be
defined using RTC (transitive closure), often play a crucial role in the definitions of ab-
stractions. For instance, in program-analysis applications, reachability properties from
specific pointer variables have the effect of keeping disjoint sublists summarized sepa-
rately. This is particularly important when analyzing a program in which two pointers
are advanced along disjoint sublists. Tab. 2 lists some instrumentation relations that are
important for the analysis of programs that use type List.

We are sometimes interested in making assertions that compare the state of a store at
the end of a procedure with its state at the start. For instance, we may be interested in
checking that all list elements reachable from variable x at the start of a procedure are
guaranteed to be reachable from x at the end. To allow the user to make such assertions,
we double the vocabulary: for each relation p, we extend the program-analysis speci-
fication with a history relation, po, which serves as an indelible record of the state of
the store at the entry point. We will use the term history relations to refer to the latter
kind of relations, and the term active relations to refer to the relations from the original
vocabulary. We can now express the property mentioned above:

Yo i ro[n, z](v) < rn, z](v). (1)

If it evaluates to 1, then the elements reachable from x after the procedure executes are
exactly the same as those reachable at the beginning of the procedure, and consequently
the procedure performs a permutation of list x.

In addition to history relations, we introduce a collection of nullary instrumentation
relations that track whether active relations have changed from their initial values. For
each active relation p(v1,...,vx), the relation same[p() is defined by Ysamep] =
Yug, ... vk @ p(v1,...,vk) + po(vi,...,vk). We can now use same[rn,z]]() in
place of Formula (1) when asserting the permutation property.

From the standpoint of the concrete semantics, instrumentation relations represent
cached information that could always be recomputed by reevaluating the instrumenta-
tion relation’s defining formula in the local state. From the standpoint of the abstract
semantics, however, reevaluating a formula in the local (3-valued) state can lead to a
drastic loss of precision. To gain maximum benefit from instrumentation relations, an
abstract-interpretation algorithm should obtain their values in some other way; in par-
ticular, after a transition from structure S to S’ via transformer 7, the new value for an
instrumentation relation p should be computed incrementally from the known value of
pin S. An algorithm that uses 7 and p’s defining formula ¥p(v1,...,vk) to generate an
appropriate incremental relation-maintenance formula pip 7 is given in [18].

3 Example: Specifying and Verifying Sortedness

Given the static-analysis algorithm defined in the
preceding section, to demonstrate the partial cor- [1] void InsertSort(List x) {
rectness of a procedure, the user must supply the ~[21 [ist @ pr. ¥n 1oopli

. P . (3] r=x;
following program-specific information: [4] pr = NULL;
e The procedure’s control-flow graph. [5]1 while (r t= NULL) {
o A set of 3-valued structures that characterize %3% i,n::x;_m;
the acceptable inputs. [8] pl = NULL;
e A query;i.e., a formula that characterizes the %i(])] w:‘f“"’(l(_i d‘;;’) {r_> data) {
intended outputs. [11] pr->n = rn;

The initial 3-valued structures are supplied to the [12] r->n = 1;

analysis algorithm as the abstract value for the pro- HZ% if;s e< ppll = N=UL:.) X = 1;
cedure’s entry point; the analysis algorithm is then (15 r = pr: '

run; finally, the query is evaluated on the structures [16] break ;

that are generated at the exit point. (7}

Consider the problem of establishing that the ver- 1151 1.7 L

= ->n;

sion of InsertSort shown in Fig. 5 is partially (201 } o
correct. Fig. 6 shows the three structures that char- [21] pr = =3
acterize the set of stores in which program variable %;ﬁ }r =
x points to an acyclic linked list. After running the (247}
analysis of InsertSort, we would check to see
whether, for all of the structures that arise at the Fig, 5. Stable version of insertion sort.
procedure’s exit node, the following formula eval-
uates to 1:

Yoy :rn,z)(v1) = (Ve : n(vy,v2) — dle(vi,v2)). 2

If the formula evaluates to 1, then the nodes reachable from x must be in non-decreasing
order.

An astute reader will notice that a “sorting” procedure that always returns NULL will
satisfy Formula (2) at the exit point! Thus, Formula (2) is only part of the specification
of the post-condition of a correct sorting procedure. A second property required of a
correct sorting procedure (as well as of many other procedures that manipulate sorted
linked lists) is that the output list must be a permutation of the input list. This can be
established by using Formula (1) (see §2).

Fig. 2 shows 2-valued structure S, in which the middle list node has a larger data-
value than the other two nodes (one of the stores that this structure represents is shown
in Fig. 1). Note that our (correct) implementation of insertion sort cannot produce the
store of Fig. 1, and so Sy is not an accurate representation of the stores that can arise at
line [24] of Fig. 5. Given the structures shown in Fig. 6 as the abstract input structures,
abstract interpretation collects 3-valued structure Sy shown in Fig. 4 at line [24]. Note

that Formula (2) evaluates to 1/2 on Sy. While the first list element is guaranteed to
be in correct order with respect to the remaining elements — note the definite dle edge
between the first node and the summary node — there is no guarantee that all list nodes
represented by the summary node are in correct order. In particular, because Sy repre-
sents So, it admits the store of Fig. 1 as a possible output. Thus, the abstraction that we
used was insufficiently fine-grained to establish partial correctness of InsertSort.
In fact, the abstraction is insufficiently fine-grained to separate the set of sorted lists
from the set of lists not in sorted order.

In[14],Lev-Amiet al. used TVLA to establish the partial correctness of InsertSort.
The key step was the introduction of instrumentation relation inOrder[dle, n)(v), which
holds for nodes whose data-components are less than or equal to those of their n-
successor; inOrder|dle, n](v) was defined by:

inOrder(dle, n)(v) = Vv, : n(v,v;) — dle(v,v;). 3)
The sortedness property was then stated as follows (cf. Formula (2)):
Vv : r[n, z](v) — inOrder|dle, n](v). 4)

After the introduction of relation inOrder|dle, n),

the 3-valued S‘tI'UCUlI'SS t.hat are COHeCth empty|l-element list |lists with 2 or more elements
by abstract interpretation at the end st deey o S
of InsertSort describe all possible : \

stores in which variable x points to an [x] @
acyclic, sorted linked list. In all of these
3-valued structures, Formulas (4) and (1)
both evaluate to 1 (assuming, in the case
of Formula (1), that instrumentation rela-
tion ro[n, z] was added to the analysis).
Consequently, InsertSort is guaranteed to work correctly on all acceptable inputs.

Fig. 6. The structures that describe possible
inputs to InsertSort.

4 TIterative Abstraction Refinement

In [14], instrumentation relation inOrder|dle, n] was defined explicitly (by the TVLA
user). Heretofore, there have really been two burdens placed on the TVLA user:

(i) he must have insight into the behavior of the program, and

(ii) he must translate that insight into logical notation by formulating appropriate

instrumentation-relation definition formulas (e.g., Formula (3)).

The goal of the present paper is to automate the introduction of instrumentation re-
lations, such as inOrder|dle,n]. In the case of InsertSort, the goal is to obtain
definite answers when evaluating Formula (2) on the structures collected by abstract in-
terpretation at line [24] of Fig. 5. Fig. 7 gives pseudo-code for our technique, the steps
of which can be explained as follows:

o (Line [1]; §4.3) Use a data-structure constructor to compute the abstract input
structures that represent all valid inputs to the program.

o Perform an abstract interpretation to collect a set of structures at each program
point and evaluate the query on the structures at exit. If a definite answer is ob-
tained on all structures, terminate. Otherwise, perform abstraction refinement:

e (Line [6]; §4.1) Identify subformulas of the query that are responsible for
the imprecision, and use them to define new instrumentation relations.

e (Line [7]; §4.2) Replace all occurrences of these subformulas in the query
and in the definitions of other instrumentation relations with the use of the
corresponding new instrumentation relation symbols, and apply finite differ-
encing to obtain relation-maintenance formulas for the newly introduced in-
strumentation relations, as well as for those instrumentation relations whose

definitions have been changed.

e (Line [8]; §4.3) Obtain the most precise possible values for the newly in-
troduced instrumentation relations in abstract structures that define the valid
inputs to the program. This is achieved by “reconstructing” the valid inputs
by performing abstract interpretation of the data-structure constructor.

Because a query has finitely

many subformulas, the number ~ Input: the program's transition relation,
of abstraction-refinement steps a data-structure constructor,

is finite. Because, additionally,

a query ¢ (a closed formula)
[1] Construct abstract input

each run of the analysis ex- [3] do
plores a bounded number of (3] Perform abstract interpretation
3-valued structures, the algo- [4} Let 51,...,5: be the set of
rithm is guaranteed to termi- 3-valued structures at exit
nate. [5] if for all S:i, [¢]a'([]) # 1/2 break
(6] Find formulas ¥p,,...,¥p, for new

4.1 Instrumentation instrumentation relations pi,...,px
Relation Generation [71] Refine the actions that define

. the program’s transition relation
A first attempt at abstraction [81 Refine the abstract input
refinement could be the intro- [9] while(true)

duction of the query itself as

a new instrumentation relation. Fig. 7. Pseudo-code for iterative abstraction refinement.

However, this usually does not
lead to a definite answer to the

query. For instance, with InsertSort, introducing the query as a new instrumenta-
tion relation is ineffective because no statement of the program has the effect of chang-
ing the value of such an instrumentation relation from 1/2 to 1.

However, as we saw in §3, the introduction of unary in-
strumentation relation inOrder|dle, n] allows the sort-
edness query to be established. When inOrder|dle,n)
is present, there are several statements of the program
where abstract interpretation results in new definite en-
tries for inOrder|dle,n]. For instance, in lines [12]-[14]
of Fig. 5, the insertion of the node pointed to by r (say u)
before the node pointed to by 1, results in a new definite
entry inOrder|dle, n](u).

An algorithm to generate new instrumentation rela-
tions should take into account the sources of imprecision.
When evaluating the query, the algorithm can identify the
subformulas that are responsible for the indefinite answer.
These subformulas are good candidates to define new in-

172
4

S
172 0

@ ®)

Fig.8. (a) Recursive-descent
function instrum finds the
subformulas of ¢ that can
cause the 1/2 answer. (b) Ex-
ample: V formula.

strumentation relations. Fig. 9 presents function instrum, a recursive-descent proce-
dure to generate defining formulas for new instrumentation relations. The arguments
to the function are formula ¢, logical structure S € S3[R], and an assignment Z that is
defined on all free variables of ¢. In the top-level invocation, ¢ is the (nullary) query,
Z is empty, and S is a structure collected at the exit node by the last run of abstract

interpretation for which [¢]5(Z) = 1/2.

10

) [return value of instrum(yp, S, Z) other actions

0,1 ERROR
1/2]

Uy = U2 0

(v, ..., vk) |(p €C)70: instrum(iyy, S, Z)

if (k=1Ap¢ A)
A= AU{p}

z instrum(p1, S, Z)
(pg&{vplpel})?{p}:0

P1 Vs

U ([e:]5 (2) = 1/2) ? instrum(p1, S, Z) : 0
1P U ({[2]}%(2) =1/2) ?instrum((p;,s, Z): 0
(& {dolp €))7 {p}: 0
Ju: 1 U U (1] (Z[v = u]) = 1/2
Vv 1 v€5 7 instrum(ps, S, Zv = u)
2)

(p&{dplpel})?{p}:0

U U o3 v - u)) = 1/2)
ul,ub €8, ? instrum(p1, S, Z[v] — uj, vy = ub))
ujFuy

Fig. 9. Function instrum, which looks for formulas to be used as definitions of new instrumen-
tation relations.

RTC vi,v5: 01

A precondition of instrum is that [p]5(Z) = 1/2. Starting with this assumption,
instrum attempts to find subformulas of ¢ that, if sharpened, would sharpen the value
of the whole formula (see Figs. 8 (a) and (b)). If such subformulas are found, they will
be used to define new instrumentation relations. Below are explanations of a few cases:

instrum(1,...) This violates the precondition of instrum.

instrum{1/2,...) Nothing can be done in this case.

instrum(p € C,...) If pis unary and is not in the set of abstraction relations, add it to
the set of abstraction relations.

instrum(p € Z,...) Try to sharpen the definition of p, i.e., 1. Also, if p is unary and
is not in the set of abstraction relations, add it to the set of abstraction relations.

instrum(py V @a,...) If ¢ (@1 V) does not define an instrumentation relation, it
will be used as the definition of a new instrumentation relation. Also, inspect ¢;
and ¢ to find subformulas that can cause ¢ to evaluate to 1/2.

instrum(3v : 1,5, 2Z) If ¢ (v : 1) does not define an instrumentation relation,
it will be used as the definition of a new instrumentation relation. Also, inspect
1 under different bindings v + u to find subformulas of ¢, that can cause ¢ to
evaluate to 1/2.

Each formula ¢ returned
by instrum is given a |2 = 3” DO ; = :
name (sa and used sorted; vy rin, zj(v) — (Ve 1 n{vi,ve) — dle(vy, v2

th (3] ﬁq)'t. £ sorteda(vi) |r[n, z]{vi) — (Vuz : nlvy, v2) — dle(vi, v2))
as . ¢ aennt IOp oI a sorteds(vi) |Vus : nlvg,v2) — dle{vs, v2)
new instrumentation rela- sorteds(vi, v2) n(vhvz) — dle(vy, v2)
tion g(v1,...,vx), where X i
vy v, are the free Table 3. Instrumentation relations created after the call to

e .

instrum.

variables of ¢ (in order of
their appearance in the for-
mula). All new unary instrumentation relations are added as non-abstraction relations.
However, they may be added to the set of abstraction relations .4 on a subsequent iter-
ation (see column three of entry p{vy, ..., vx) in Fig. 9, which handles core and instru-
mentation relations).

11

Example. As we saw in §3, abstract interpretation collects 3-valued structure Sy of
Fig. 4 at the exit node of InsertSort 3 The sortedness query (Formula (2)) evaluates
to 1/2 on Sy, triggering a call to instrum with Formula (2), structure S, and empty
assignment Z, as arguments.

Tab. 3 shows the instrumentation relations that were created as a result of the call to
instrum on the first iteration of abstraction refinement. Note that sorteds is defined
exactly as inOrder|dle, n], which was the key insight for the results of [14]. Note
also that instrum returned no subformulas of the definition of r[n, . This is because
r[n, z}(v) evaluates to a definite value (1) for both v — u and v — ug (see Fig. 4).

4.2 Refinement of the Actions that Define the Program’s Transition Relation

The actions that define the program’s transi-
tion relation need to be modified to gain pre- |12 Yp
cision improvements from storing and main- [[2ortedi0) Vv, : sorteds(v1)
taining the new instrumentation relations. To sortedy(v) _ Jrfn, a](v1) — sorteda(vi)

. - . sorteds(vy) |V v : sorteds(vi, v2)
this end, for each new instrumentation rela- |orted, (v;, v2)|n(vr, vz) — dle(vr, vs)
tion p(v1,. .., Vk), the query and all other in-
strumentation relations’ defining formulas are Table 4. Final version of instrumentation
scanned for occurrences of ,. Every occur- relations introduced by abstraction refine-
rence of Yp{w1/v1, .., Wk/Vk}, i-e., Pp With ment.

w; substituted for free variable v;, is replaced
with p(wy, . . . ,wy), thus enabling the use of stored value p(wy, ..., ws) in place of the
evaluation of .

To complete transition-relation refinement, finite differencing creates relation-
maintenance formulas for the new instrumentation relations, as well as for those instru-
mentation relations whose definitions have been changed. This improves the precision
with which relations’ stored values are maintained during abstract interpretation [18].

Example. During transition-relation refinement of InsertsSort, the use of For-
mula (2) in the query is replaced with the use of the stored value sorted;().
Then the definitions of all instrumentation relations are scanned for occurrences of
Wsortedy s - - - » Wsorted, (in that order). These occurrences are replaced with names of
the four relations. In this case, only the new relations’ definitions are changed, yielding
the definitions of Tab. 4.

4.3 Refinement of the Abstract Input

Before performing abstract interpretation of the refined program, we need to update
the abstract structures that characterize the acceptable inputs to the procedure with val-
ues for the new instrumentation relations. To gain maximum benefit from maintaining
p(vi,. . .,vk), abstract interpretation needs to start with the most precise possible values
for p in abstract input structures. While simply evaluating 1, on abstract input struc-
tures for all assignments to free variables v1, . . ., vy results in safe values, these values
are likely to be imprecise.

We illustrate the issue on the stability property. This property usually arises in the con-
text of sorting procedures, but actually applies to list-manipulating programs in general:
the stability query (Formula (5)) asserts that the relative order of elements with equal
data-components remains the same.

Yy, vy : (dle(vy, v2) Adle(ve,v1) Ato[n](vr,v2)) — t[n](v1,v2) (3)

3 In our implementation, a given round of abstract interpretation is stopped as soon as impreci-
sion is detected.

12

The first run of abstract interpretation on procedure InsertSort does not result in
a definite answer to the stability query. The first round of abstraction refinement then
introduces the following subformula of Formula (5) as a new instrumentation relation:

stablea(vy,v2) = (dle(vy, va) Adle(vz, v1) Ato[n)(v1, v2)) — t[n](vr,v2) (6)

Consider the rightmost structure of Fig. 6, which includes one concrete and one
summary individual; call them u. and ug, respectively. If we simply evaluate For-
mula (6) on the structure, we obtain the definite value 1 for tuples (uc,uc), (Ue, Us),
and (us,u.). However, the evaluation yields value 1/2 for tuple (us,us) because
dle(us,us), to[n](us, us), and t[n}(us, us) all equal 1/2.

Our methodology for obtain-

: . while(?) { Empty List
ing values for abstract input int sz = sizeof (Node): It
structures is to perform an ab- Abstraction Node *el = Nondet
stract interpretation on a loop of possible (Node) malloc(sz); SLL
that constructs the family of SIth §l~(>in = ?ead; ct;nstru(cbt;)r
id i ead = el; Tom
all valid inputs to the program } Frogom
(we call such a loop a Data- @ (b) ©)

Structure Constructor, or DSC). . . e .
This allows the values of instru- Fig- 10. Hustration of input specifications in TVLA for

programs that manipulate singly-linked lists. (a) Tradi-
: . tional input specification in TVLA. (b) A fragment of code
tained (as input structures are that nondeterministically constructs all possible singly-

manufactured from the emp?y linked lists. (c) The use of loop (b) to specify a set of in-
store) rather than computed; in pyeg.

general, this results in more pre-
cise values for the instrumentation relations. Fig. 10 illustrates the idea.

The abstract interpretation of the DSC is performed using an extended vocabulary that
contains the new instrumentation relation symbols. The 3-valued structures collected at
the exit node of the DSC become the abstract input to the original procedure for the
subsequent abstract interpretation of the procedure.

Note that history relations (such as 7o[n, z](v) from §2) are intended to record the state
of the store at the entry point to the procedure or, equivalently, at the exit from the DSC.
To make sure that these relations have appropriate values, they are maintained in tandem
with their active counterparts during abstract interpretation of the DSC. When abstract
input refinement is completed, values of history relations are frozen in preparation for
the abstract interpretation that is about to be performed on the procedure proper.

The stable, instrumentation relation of Formula (6) exemplifies the benefits of the
DSC methodology. The maintenance of stables, t[n], to[n), and other instrumentation
relations starting from the empty store, allows us to conclude that stable; has value 1
for every tuple of every abstract input structure to procedure InsertSort (and so the
stability property holds initially).

A DSC is also used to automatically construct the abstract input structures before the
first abstract interpretation (see line [1] in Fig. 7). This allows the user to specify the
program’s inputs in the form of a program, which frees the user from having to know
the details of the initial abstraction in use.

mentation relations to be main-

4 In that structure, all history relations, such as to[n], have the same values as their active coun-
terparts, but have been omitted from the figure for clarity.

13

4.4 Success of Refinement for InsertSort

In all of the structures collected at the exit node of InsertSort by the second run
of abstract interpretation, sorted; () = 1. The permutation property also holds on all of
the structures. These two facts establish the partial correctness of InsertSort. This
process required one iteration of abstraction refinement, used a vanilla version of the
specification, and needed no user intervention.

5 Experimental Evaluation

To evaluate the techniques presented in this paper, we extended TVLA to perform iter-
ative abstraction refinement, and applied it to three types of queries and five programs
(see Fig. 11). Besides InsertSort, the test programs included sorting procedures
BubbleSort and InsertSort_AS,’ list-merging procedure Merge and in-situ list-
reversal procedure Reverse.

The antistability query (Formula (7)) asserts that the order of elements with equal
data-components is reversed. As before, this is only part of the specification of the
desired property. It remains to assert that the produced list is a permutation of the input,
which is accomplished using Formula (1).

Yy, vy : (dle(vr, va) A dle(va, v1) Atoln](vi, v2)) — t[n](v2, v1). @)

The DSCs that we used in our tests are programs to generate unsorted lists of arbitrary
length, in the case of all programs but Merge. For Merge, the DSC is a program to
generate pairs of unsorted lists.

Fig. 11 shows that iter-

Test Program , sorted \| sorted A || atjve abstraction refinement
sorted|stable|antistable| stable |antistable .

— - =5 - = was able to generate the right

ubblesort L / / instrumentation relations for
TasertSort T 7I27 1/2 172 12 TVLA blist 1
TnsertSortAS|| 1| 1/2 T 172 i to establish severa
Merge 2 1 173 /2 172 useful facts. For example,
Reverse 12 112 i 1/2 172 TVLA succeeds in demon-

strating that all three sort-
ing routines produce sorted
lists, that BubbleSort and

Fig. 11. Results from applying iterative abstraction refine-
ment to the verification of properties of programs that ma-
nipulate linked lists. Columns 2, 3, and 4 correspond to the M tabl f
queries stated in Formulas (2), (5), and (7), respectively. erge are stable routines,
sorted A stable and sorted A antistable are shorthands for and that InsertSox.‘ £.AS
conjunctions of Formulas (2) with (5) and (2) with (7), respec- and Reverse are antistable
tively. The two entries in bold are discussed in §5.1 and §5.2. routines.

Indefinite answers are indi-

cated by 1/2 entries. It is important to understand that most of the occurrences of1/2
in Fig. 11 are the most precise correct answers. For instance, the result of applying
Reverse to an unsorted list is usually an unsorted list; however, in the case that the
input list happens to be in non-increasing order, Reverse produces a sorted list. Con-
sequently, the most precise answer to the query is 1/2, not 0.

However, the two 1/2 entries shown in bold in Fig. 11 are not the desired answers:
these are the stable and the sorted A stable entries of InsertSort. These cases
illustrate two reasons why our verification method is sometimes unable to obtain the
most precise answer to the query, and are discussed below.

5 InsertSort.AS isidentical to InsertSort except that it uses > instead of > in line [10]
of Fig. 5 (i.e., when looking for the correct place to insert the current node). This implementa-
tion of insertion sort is antistable.

14

5.1 Shortcomings of a Subformula-Based Refinement Strategy

Procedure InsertSort consists of two nested loops (see Fig. 5). The outer loop
traverses the list, setting pointer variable r to point to list nodes. For each iteration of
the outer loop, the inner loop finds the correct place to insert r’s target, by traversing
the list from the start using pointer variable 1; x’s target is inserted before 1’s target
when 1->data > r->data. Because InsertSort satisfies the invariant that all
list nodes that appear in the list before r’s target are already in the correct order, the
data-component of r’s target is less than the data-component of all nodes ahead of
which r’s target is moved. Thus, InsertSort preserves the original order of elements
with equal data-components, and InsertSort is a stable routine.

Any approach must be incapable of establishing that some true properties hold for
certain programs. This example demonstrates where our present techniques fall short.
Our current abstraction-refinement strategy only considers subformulas of the query
when it introduces new instrumentation relations. Thus, when verifying the stability
of InsertSort, only subformulas of Formula (5) are considered. As a result, the
sortedness invariant stated above can never be observed, and (when attempting to verify
stable alone) TVLA is unable to establish that InsertSort is stable.

At present, in such cases, it is possible to let the user suggest additional formulas
to be used as the source for new instrumentation relations. Looking to the future, our
tool provides a framework in which different strategies for generating instrumentation
relations for abstraction refinement can be explored. Our next step in this direction
will be to use the weakest-precondition transformation as a method to generate new
instrumentation relations.

It is instructive to contrast this example with the verification of antistability of
InsertSort.AS. When looking for a place to insert r’s target, this routine stops
when 1->data >= r->data and inserts r’s target before 1’s target. The analysis
need not establish anything about sortedness properties to observe that every list node
is inserted before any other node with the same data-value. Once the appropriate in-
strumentation relations are introduced based on subformulas of the antistability query,
TVLA is able to establish antistability of InsertSort. AS, even in the absence of the
sortedness query.

5.2 Imprecision in Abstract Interpretation

When verifying the conjunction of the stability and sortedness queries on InsertSort,
we allow iterative abstraction refinement to introduce subformulas of both Formulas (2)
and (5). As a result, after some iterations, the analysis has established the invariant that
nodes appearing in the list before r’s target are in correctly sorted order.

Just prior to the insertion of r’s target before 1’s target, this invariant should allow
the analysis to establish that the data-component of 1’s target is less than or equal
to the data-component of all nodes between it and r’s target. In addition, because
l1->data > r~->data, the data-componentof x’s target is not equal to the data-
component of those nodes, and the insertion preserves stability. However, the analysis
is only able to conclude that the data-component of 1°s target is possibly less than
or equal to the data-component of all nodes between it and r’s target. With manual
intervention—accomplished in TVLA via the addition of a focus formula or a constraint
[20]—it is possible to overcome the imprecision, allowing TVLA to verify the stability
of InsertSort.

The real source of the problem is that the abstract transformers created by TVLA
are only an approximation of the best abstract transformer [7]. Some on-going work is
exploring ways to incorporate best transformers into TVLA [22].

15

5.3 Performance

Fig. 12 gives execution times that were col-
lected on a 3Ghz Linux PC with 4Gb of RAM. "%
The longest-running analysis, which verifies
that BubbleSort is partially correct, i.e.,
produces a sorted list, and is stable takes under
6 minutes, The majority of the analyses take
less than a minute. These numbers are very
close to how long it takes to verify the sort-
edness query® when the user carefully chooses
the right instrumentation relations [14]. The
maximum amount of memory used by TVLA
to perform the analyses varied from just under ~Fig.12. Execution times in seconds on a
2 megabytes to 17.5 megabytes.’ log scale.

5.4 Additional Experiments

We performed three additional experiments to test the applicability of our technique to
other queries and data structures. The first experiment successfully verified that the in-
situ list-reversal procedure Reverse indeed produces a list that is the reversal of the
input list. The query that expresses this property is Vv1,v2 : n(v1,v2) < no(v1, v2).
This experiment took only 5 seconds and used less than 2 megabytes of memory.

The second and third experiments involved two programs that manipulate binary-
search trees. InsertBST inserts a new node into a binary-search tree, and DeleteBST
deletes a node from a binary-search tree. For both programs our technique successfully
verified the query that the nodes of the tree pointed to by variable t remain in sorted
order at the end of the programs:

Yoy : rlt)(v1) — (Yvz : (left(vr, va) — dle(vz,v1)) A(right(vi, v2) — dle(vy, v2))).

3
The initial specification for the analyses included only three standard instrumentation
relations, similar to those listed in Tab. 2. Relation rt](v;) from Formula (8), for ex-
ample, distinguishes nodes in the (sub)tree pointed to by t. The DSC used for the
analyses non-deterministically constructed a binary-search tree by allocating one new
node at a time and inserting it into the tree while maintaining the order property stated
in Formula (8). The InsertBST experiment took 30 seconds and used less than 3
megabytes of memory, while the DeleteBST experiment took approximately 10 min-
utes and used 37 megabytes of memory.

6 Related Work

The work reported here is most similar in spirit to counterexample-guided abstraction
refinement [12, 19,5, 13,16, 8,9, 3,4, 11]. If a counterexample to the query being veri-
fied is found by an analysis equipped with such a technique, the analysis tests whether
the counterexample is spurious. If so, new relations that guarantee the elimination of
the counterexample are introduced. The analysis is then repeated.

Counterexamples are finite traces through the state graph. The SLAM toolkit [1] im-
plementation uses symbolic execution of the path via the strongest postcondition mech-
anism to determine whether a counterexample is spurious. If it is, symbolic execution

M sorted & antistable

BubbleSort [
insertSort

insertSort_AS

6 Sortedness is the only query in our set to which TVLA has been applied before this work.
7 TVLA is written in Java. Here we report the maximum of total memory minus free memory,
as returned by Runtime.

16

can also be used to identify a new abstraction relation that can eliminate the counterex-
ample. In hardware verification (e.g., [5]), the unabstracted system is finite-state, so the
counterexample trace can be tested for spuriousness on the actual system. A spurious
counterexample can then be used to minimally refine the system to avoid encountering
the same counterexample on a subsequent iteration.

A key difference between our setting and that explored in prior work is the abstrac-
tion domain. All abstraction-refinement work to date has used abstract domains that are
fixed, finite, Cartesian products of Boolean values. (The use of such domains is known
as predicate abstraction.) In predicate abstraction, the only relations introduced are
nullary relations. Designing an abstraction-refinement technique in which the abstract
states are described by 3-valued logical structures, rather than Boolean vectors, calls for
a different approach. Our work lifts the predicate-abstraction approach to a more gen-
eral setting; in particular, the abstraction-refinement algorithm described in this paper
will introduce unary, binary, ternary, etc. relations, in addition to nullary relations. This
capability is needed for the refinement algorithm to gain the full benefits of the richer
class of abstractions that TVLA supports.

In [17], weakest preconditions are used to generate nullary instrumentation relations,
which are then generalized manually. The abstract-interpretation technique presented
there produces precise results if it terminates, but is not guaranteed to terminate for all
cases. In contrast, our method is guaranteed to terminate, and automatically generates
interesting non-nullary relations, such as the unary relation inOrder|dle, n](v), which
is crucial for showing sortedness and stability.

The concept of a data-structure constructor, which non-deterministically constructs
all valid inputs to the program, can be thought of as a mechanism for closing open
programs, and hence is related to such work as [6] and [21].

References

1. SLAM toolkit. Available at “http://research.microsoft.com/slam/”.
2. TVLA system. Available at “http://www.math.tau.ac.il/~rumster/TVLA/".
3. T. Ball and S. Rajamani. Generating abstract explanations of spurious counterexamples in C
programs. Technical Report MSR-TR-2002-09, Microsoft Research, January 2002.
4. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software com-
ponents in C. In Int. Conf. on Softw. Eng., pages 385-395, May 2003,
5. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Proc, Computer-Aided Verif., pages 154169, July 2000.
6. C. Colby, P. Godefroid, and L. Jagadeesan. Automatically closing open reactive programs.
In Conf. on Prog. Lang. Design and Impl., pages 345-357, New York, NY, 1998. ACM Press.
7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Symp. on
Princ. of Prog. Lang., pages 269-282, New York, NY, 1979. ACM Press.
8. S. Das and D. Dill. Successive approximation of abstract transition relations. In Symp. on
Logic in Comp. Sci., 2001.
9. S. Das and D. Dill. Counter-example based predicate discovery in predicate abstraction. In
Formal Methods in Computer-Aided Design. Springer, 2002,
10. D. Gopan, E DiMaio, N.Dor, T. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In Tools and Algs. for the Construct. and Analysis of Syst., 2004.
11. T Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstraction refinement.
In Proc. Computer-Aided Verif., Lec. Notes in Comp. Sci., pages 262-274. Springer, 2003.
12. R. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton University
Press, 1994.
13. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by abstraction.
In Tools and Algs. for the Construct. and Analysis of Syst., Lec. Notes in Comp. Sci., pages
98-112. Springer, 2001.

17

14.

15.

16.

17.

18.

19.

20.
21

22.

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verifica-
tion: A case study. In ISSTA 2000: Proc. of the Int. Symp. on Software Testing and Analysis,
pages 26--38, 2000.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In Staric
Analysis Symp., pages 280-301, 2000.

C. Pasareanu, M. Dwyer, and W. Visser. Finding feasible counter-examples when model
checking Java programs. In Tools and Algs. for the Construct. and Analysis of Syst., Lec.
Notes in Comp. Sci. Springer, 2001.

G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. Deriving specialized
program analyses for certifying component-client conformance. In Conf. on Prog. Lang.
Design and Impl., pages 83-94, New York, NY, 2002. ACM Press.

T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static analysis.
In European Symp. On Programming, 2003.

V. Rusu and E. Singerman. On proving safety properties by integrating static analysis, the-
orem proving and abstraction. In Tools and Algs. for the Construct. and Analysis of Syst.,
Lec. Notes in Comp. Sci., pages 178-192. Springer, 1999.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst., 24(3):217-298, 2002.

O. Tkachuk, M. Dwyer, and C. Pasareanu. Automated environment generation for software
model checking. In Proc. ASE. Springer, 2003.

G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations
for shape analysis. In In Proc. TACAS. Springer, 2004.

18

