Schema Intension Graphs:
A Formal Model for the Study
of Schema Equivalence

R. J. Miller

Y. E. Ioannidis

R. Ramakrishnan
Technical Report #1185

January 1994

EEEHWE.EEEﬁEEEEEEEWEEE@EEEEEVEEE@EE@@EﬁﬁEEWEWEWEEEEW@WEEMEEEEEEEEE@EWQEEEE

Technical Report 1185

Schema, Intension Graphs:
A Formal Model for the Study of Schema Equivalence

R. J. Miller* Y. E. Ioannidis' R. Ramakrishnan!

Department of Computer Sciences
University of Wisconsin-Madison
{rmiller, yannis, raghu}@cs.wisc.edu

Abstract

We develop a formal data model, the Schema Intension Graph (SIG) model, to aid in understanding_
the relative information capacity of schemas containing constraints. The basic building blocks of the SIG
model are sets that may be combined by the nested application of union and product constructors. The
model also permits the expression of binary relations on sets and simple integrity constraints on these
relations. We discuss the motivation used in designing the model and establish some fundamental results
on the model. We consider the problem of constraint implication in the SIG model and give a sound and
complete set of implication rules for a subclass of SIG schemas, called simple SIG schemas. The general
constraint implication problem is shown to be undecidable. Finally, we consider information capacity
preserving translations of a subclass of relational schemas with functional and inclusion dependencies
into simple SIG schemas. These translations assist in determining the relative information capacity of
relational schemas.

*R. J. Miller has been partially supported by the National Science Foundation (NSF) under Grant IRI-9157368.

1Y. Ioannidis has been partially supported by the NSF under Grants IRI-9113736, IRI-9224741, and IRI-9157368 (PYI
Award), and by grants from DEC, IBM, HP, AT&T, and Informix.

¥R. Ramakrishnan has been partially supported by a David and Lucile Packard Foundation Fellowship in Science and
Engineering, by the NSF under a PYT Award and under grant IRI-9011563, and by grants from DEC, Tandem, and Xerox.

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 1

1 Introduction

The problem of schema translation is to transform an existing schema in a given data model into an equivalent
schema, possibly in a different data model. A closely related problem is that of schema integration. At the
heart of schema integration lies the problem of detecting if two schemas or parts of schemas are equivalent.
Much of the existing work on schema translation and integration relies on an intuitive, rather than formal,
notion of correctness. As a result, solutions are motivated by the needs of specific classes of examples and
often do not generalize.

Our previous work has highlighted the need for a formal notion of equivalence [MIR93a]. Specifically,
we examined the notion of relative information capacity [Hul86] and identified anomalies that can arise
when using transformations that do not guarantee that information capacity is preserved. Some recent
work on schema translation has successfully used information capacity equivalence as a basis for judging the
correctness of translation algorithms [MS92, RR87]. However, there are only limited results on testing for
information capacity equivalence and dominance of arbitrary schemas. To be usable in a practical context,
a characterization of both information capacity equivalence and dominance of schemas is needed.

In this paper, we develop a formal data model, the Schema Intension Graph (SIG) model, that is designed
to aid in developing these formal results. We have defined a new data model for this purpose for two main
reasons. First, we need a model that allows us to compare schemas with respect to their information
capacity. Given two schemas, a typical question of interest is whether each instance of the first schema can
be represented as an instance of the second schema (in such a way that it is possible to ‘go back’ to the
first instance). In order to address questions such as this, we need a way to reason about possible schema
instances given a set of constraints over them. Other formal studies of information capacity have typically
used the relational model [Hul86] or models based on complex types [AH88, Hul87, HY84, OY82]. Instead of
extending complex types with constraints, we use a model in which constraints are expressed on collections
of entities of an instance rather than on the internal structure of a single entity. We explore this point
further in Section 3. Second, to simplify our task, we wish to include in the model only a minimum set of
constructs and constraints necessary to model a large class of commonly occurring schemas. Furthermore,
we require that any reasoning about schema equivalence be done in a form that is easily conveyed back to
a schema designer. To aid in this goal, we strive to meet requirements laid out by practitioners in this field
[RR93]. Specifically, the constraints we include in the model are local (that is, they are robust to schema
changes), comprehensible (easily understood and used by a database designer), and not based on unrealistic
assumptions about the set of valid instances of a schema. They also appear in some form in most common
data models, and are therefore widely recognized as being useful.

In Section 2, we define information capacity dominance and equivalence. In Section 3, we briefly explore
existing results on information capacity equivalence and the additional results we wish to obtain. We discuss
how this task motivates the design of the SIG data model. In Section 4, we define the SIG data model. In
Section 5, we present foundational results necessary to reason about the equivalence of SIG schemas. We
define SIG isomorphism, give a sound and complete set of annotation implication rules for a class of SIG
schemas and prove that annotation implication in general is undecidable. Finally, in Section 6, we briefly
illustrate the use of the SIG model by presenting an algorithm that translates an important class of relational
schemas into SIG schemas.

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 2

2 Information Capacity

The measure of corfectness for schema transformations that we use is based on the preservation of the
information capacity of schemas.! The information capacity of a schema S is measured by the set of all valid
instances of S. Let I(S) denote the set of all valid instances of schema S. A schema conveys information
about the universe it models. This information is essentially captured by I(S) which contains all the possible
states of the modeled universe.

An instance § € I(S) of a schema S uses some (finite) subset of symbols drawn from some universe of
symbols U. We denote this subset Sym(S). In addition to I(S), we consider Iy (S), the set of all instances
of S that contain only symbols in the set Y C U, Iy (S) = {S]| & € I(S) and Sym(T) C V).

Two schemas can be compared based on information capacity. Intuitively, a schema S2 has more infor-
mation capacity than a schema S1 if every instance of S1 can be mapped to an instance of 52 without loss
of information. Specifically, it must be possible to recover the original instance from its image under the
mapping. This notion is formalized using the existence of invertible (that is, injective) functions between
the sets of instances of two schemas.

Definition 2.1 An instance mapping from schema S1 to S2 is any total function f : Iy (S1) — Iy(52),
where Y C U. .

Definition 2.2 An information (capacity) preserving mapping between the instances of S1 and 52 is a total,
injective function f : Iy(S1) — Iy(S2). An eguivalence preserving mapping between the instances of two

schemas S1 and S2 is a bijection f: Iy (S1) — Iy (S52). .

Absolute equivalence gives a characterization of the minimum that is required to achieve information
capacity equivalence and provides a foundation on which more specialized definitions of information capacity
equivalence may be built.

Definition 2.3 The schema S2 dominates S1 absolutely, denoted S1=<,p552, if there is a finite Z C U
such that for each (finite} Y D Z there exists an information preserving mapping f : Iy (S1) — Iy(S2) (or
equivalently, |Iy(51)| < |I¥(52)]).2 .

Definition 2.4 Let S1 and S2 be schemas. Also, S1 and S2 are absolutely equivalent, denoted Sl~,;552,
if there is a finite Z C U such that for each Y O Z there exists an equivalence preserving mapping f :
Iy (S1) — Iy (82) (or equivalently |Iyv(S1)| = |Iy(52)]). .

LRelative information capacity was first studied by Hull [Hul86]. Information capacity has also been applied to a number of
translation and integration problems [AH88, HY84, MS92, OY82, RR87, and others].

2Dominance is most interesting when the sets Iy (S1) and Iy(S52) are finite. For schemas in most common data models
(including the SIG model), the set Iy (Si) is finite if ¥ is finite,

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 3

3 Motivation for the SIG Model

Studies of absolute equivalence have focused on schemas without constraints. For the relational model
without dependencies, two schemas are equivalent iff they are identical (up to renaming of attributes and
relations) [Hul86]. Additional work has considered the relative information capacity of complex types formed
by the recursive application of product, set or union constructors on both infinite and finite base types.
For complex types containing only infinite base types, absolute equivalence can be characterized by a set
of natural restructuring operators [HY84]. The restructuring operators are used to define a normal form
for these schemas such that two schemas are absolutely equivalent if and only if their normal forms are
isomorphic. This result has been generalized to schemas that include finite as well as infinite base types
[AH88]. Again, a (decidable) characterization of absolute equivalence for the extended set of schemas is
given that is based on a set of restructuring operators. Characterizations of absolute dominance for complex
types are not known.

Schemas that arise in practice contain constraints that define which instances of a schema are meaningful
in a certain context. To make use of reasoning about information capacity in schema translation and
integration tools, we must therefore extend the above results to consider algorithms for deciding equivalence
of schemas with constraints. Our primary motivation in defining the SIG data model is to have a convenient
formalism in which we can develop such results. Given this goal we established two requirements for the SIG
model. First, the model must be data-centric rather than type-centric. Second, any reasoning about schema
equivalence must be accessible and done in a form that is easily conveyed back to a schema designer. These
requirements are discussed below. ‘

3.1 Data-centricity

By attaching a set of type definitions to an entity set, one can express constraints on the structure of
individual entities. For example, in many complex type (or object) models constraints are placed on the
internal structure of entities [Hul87]. Similarly, within the relational model, data dependencies express
constraints on the structure of individual entities (where the entities are subsets of n-way products of sets).
In such models, the interpretation of constraints are tied closely to the types or structures over which they
are expressed. However, our goal is to reason about constraints on collections of entities in an instance of
the entity set, rather than about the internal structure of a single entity. We therefore choose not to use
any of these existing models and instead defined a model that is inherently “data-centric” as opposed to
“type-centric”.

Instead of focusing on types and type level operations, we want to focus on instances and instance level
operations. To illustrate the difference between these approaches, consider a schema S1 containing sets of
professors and sets of students (denoted by Professors and Students) and a second schema 52 containing
the product of professors and students (denoted Professors x Students). The product constructor may
be viewed as a type constructor or a set constructor. Under a “type-centric” view, the product constructor
defines a new type; any professor-student pair is an element of this type, but the actual collection of pairs
in a given instance can range from the empty set to the full cross-product of all professors and students.

Under our “data-centric” view, the product constructor operates on instances rather than types. Given
instances of Professors and Students, an instance of Professors x Students is uniquely defined as the

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 4

product of these sets. In the SIG model, cross product and union constructors are not viewed as defining
new types (whose instances may lie in some range of permissible values). Rather, a constructor defines a
unique new set from the instances of the types on which it operates. The motivation, as noted earlier, is
to reason directly about the values in an (arbitrary) instance of the schema. For example, Schema S1 and
Schema S2 are equivalent in the following sense: an instance of the first schema uniquely defines an instance
of the second and vice versa. (This is clearly not true if x is viewed as a type constructor!) We have defined
schema equivalence using as a basis the existence of such one-to-one correspondences between instances of
schemas. QOur model allows the expression of such equivalence preserving transformations as constructing

the product or union of sets.

3.2 Accessibility

We wish to develop results (algorithms for testing information capacity equivalence and dominance) that are
directly usable in schema integration and translation tools. Achieving this goal will be easier if the formalism
in which the results are couched is accessible to schema designers. We therefore require that any reasoning
about schema equivalence be done in a form that is easily conveyed back to a schema designer. To aid
in this goal, we strive to meet requirements laid out by practitioners in this field [RR93]. Specifically, the
constraints we include in the model are local (that is, they are robust to schema changes), comprehensible
(easily understood and used by a database designer), and not based on unrealistic assumptions about the
set of valid instances of a schema. These practical requirements also led us to design a model that is not
subject to assumptions such as the relationship uniqueness assumption [AP82] that requires there be only
one relationship expressed between any two sets.

Additionally, to simplify our task, we include in the model only a minimum set of constructs and con-
straints necessary to model a large class of commonly occurring schemas. They also appear in some form in

most common data models, and are therefore widely recognized as being useful.

4 Model Definition

The basic building blocks of the SIG model are sets of data values (represented by the nodes of a graph).
These sets may be combined by nested applications of union and product constructors. The model also
permits the expression of binary relations between pairs of sets and simple constraints on these binary
relations. The binary relations are represented by edges of a graph and the constraints by annotations on
the edges. The constraints include totality and surjectivity, which express that every element of the first
or the second set must participate in an instance of the binary relation, respectively, and functionality and
injectivity, which express that an element of the first or the second set may appear at most once in an
instance of the binary relation, respectively. 3

3For those familiar with category theory, SIG schemas form a simple class of categories where the nodes are finite sets and
the arrows are binary relations on pairs of sets [BW90].

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 5

4.1 Schema Intension Graphs

Let A be an infinite set of symbols that will serve as labels for schema constructs. Let 7 be an infinite set of
simple abstract types. Let 7* be the closure of 7 under finite products and sums. Each simple type 7 € T
is an infinite set of symbols. All simple types are pairwise disjoint and disjoint from the set of labels A. The
universe U is the union of symbols in all types of 7.

A schema intension graph (SIG) is a graph, G = (N, E), defined by two finite sets N and E. The set N
contains a set of symbols M C A. The nodes in M are called simple nodes. Additionally, N may contain
constructed nodes that are the products and sums of other nodes, where

o if A,B € N then the node A x B may be in N; and

e if A,B € N then the node A + B may be in N.

Each simple node 4 € N, is assigned a type, 7(A) € T7*. The type of a constructed node is the cross-
product or union of the types of its constituent nodes. Multiple nodes may have the same type.

Each element e € E is a labeled edge between two nodes of N. An edge e is denoted e : A~ B, indicating
it is an edge from node A to node B. For each edge e € E, the inverse of e, denoted €°, is in E. The set
E may contain arbitrary edges between nodes as well as multiple edges between the same pair of nodes. If
7(A) = 7(B), then an edge e : A — B may optionally be designated as a selection edge and is denoted by
a label o%. If 7(A) = 7(B) x 7(C) for some node C, then e : A — B may optionally be designated as a
projection edge and is denoted by a label Hﬁ . (When no confusion can arise subscripts and/or superscripts
on projection and selection edges will be omitted.) An instance of a SIG is constrained to give all selection
and projection edges special interpretations.

4.1.1 Instances

In a SIG, the nodes represent typed domains and the edges represent abstract morphisms between domains.
An instance of a graph is an assignment of a specific set of elements of the appropriate type to each node
and specific binary relations to the edges of a graph. An instance corresponds to a specific database state.

An instance of G is a function whose domain is the sets N of nodes and E of edges. The set of all
instances of G is denoted I{G). An instance & € I(G) is restricted as follows.

e For each simple node A € N, S[4] is a finite set of elements where S[A] C 7(A).

For each product node (A x B) € N, S[A x B] is the cross product of elements from ${A] and S(B],
3[4 x B] = $[A] X 9(B]. (Here X denotes ordinary cartesian product of sets.)

For each sum node (A + B) € N, $[A + B] is the union of elements from ${A4] and $([B], S[A + B] =
3[A] U S(B].

For each edge e : A — B € E, Sle] is a subset of the cross product of elements from ¥[A] and S(B],
Sle] € S{A4] X 9[B]. For the edge €°, (b,a) € Sle°] iff (a,b) € Sle].

For each selection edge 0% : A — B, S[o§] is a subset of the identity relation on S[A].

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 6

e For each projection edge I15 : A~ B, (where 7(4) = T(B) x 7(C) for some C), S[II§] is the projection
of $[B] components from $[A]. Namely, S[I15] = {((b,¢),b) | (b,¢) € S[4] and b € I[B]}.

4.1.2 Annotations

Each edge of a SIG is annotated with a (possibly empty) set of properties. Each property is a constraint
that restricts the set of valid binary relations that may be assigned to an edge by an instance. An instance
of a SIG is a walid instance of a set of annotations if the binary relation assigned to each edge satisfies all
annotations on the edge.

The following four properties are used to annotate edges of SIGs: totality, surjectivity, functionality and
injectivity. Let S4 and Sp be two sets. A binary relation r : S4 — Sp is total (denoted e : S4+— Sp) if it
is defined for all elements of S4; surjective (e : Sa—} Sp) if it is defined for all elements of Sp; functional
(e : S4—Sp) if an element of S4 determines at most one element of Sp; and injective (e : Sa——Sp) if
an element of Sp determines at most one element of S4. Also, a bijection is a total, surjective, injective
function. Note that all four properties are independent in that no subset of the properties expressed on a
relation between arbitrary sets S4 and Sp logically implies any property not in that subset.

An annotation of a SIG G = (N, E) is a function .4 whose domain is the set of edges E. For all e € £,
A(e) C {f,i,s,t}. For every edge e, f € Ale) iff i € A(e°) and s € A(e) iff t € A(e°). An instance T of
G is a valid instance (also called a model) of A, denoted S |= A, if for all e € E, if f € A(e) (respectively
i,8 or t € A(e)) then I[e] is a functional (respectively injective, surjective or total) binary relation. A SIG
schema Sis a pair S = (G, .A). In what follows, when discussing a SIG schema S%, it will be assumed that
Si = (Gi, Ai) and Gi = (Ni, Ei). For two annotation functions Al and A2 on a graph G, we say that
Al C A2 (respectively, Al = A2) if for every edge e of G, Al{e) C A2(e) (respectively, Al{e) = A2(e)).

The set of instances of § is the set of all instances of G that model A. That is, I{S) = {¥ | § € I(G)
and § = A}. The set of symbols of an instance, denoted Sym(S), is the set of elements of U that appear
in the range of &. For a subset of the universe, Y C U, I'y(S) denotes the set of instances of § that contain
only symbols in Y, Iy(S) = {S| & € I(S) and Sym(S) C Y}

The restriction of an edge to being a selection or projection edge can also be viewed as a constraint on the
set of valid instances of an edge. We use the term constraint to refer to any annotation, selection constraint
or projection constraint.

Edges, like binary relations, can be composed. If 7 : S4 — Sp is a binary relation then for a € 54, 7(a)
denotes the set of elements of Sp associated with the element @ in r. Additionally, if s: Sg — S¢ is a binary
relation then sor : S4 — S¢ denotes the composition where sor(a) = s(r(a)). Similarly, for compositions of
edges, e 0 e; means e; followed by e;. The composition of two functional (respectively injective, surjective
or total) binary relations is also functional (respectively injective, surjective or total). This motivates the
following definition.

Definition 4.1 Let G = (N, E) be a SIG and A an annotation function on G. A path, p: Ay — A, in G
is a (possibly empty) sequence of edges e; : A; — Ag, ea : Ay — As, ..., -1 : Ay—1 — A and is denoted
ek—10€k_0..0ej. A path is called functional (respectively injective, surjective or total) if every edge in

the path is functional (respectively injective, surjective or total). Similarly, a path is called a selection path

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 7

if every edge on the path is a selection. A path is called a projection path if every edge on the path is a
projection or selection and at least one edge is a projection. The trivial path is a path from a node to itself

containing no edges. The trivial path satisfies all constraints.* o

Paths are denoted by dashed lines in figures.

4.2 An Example SIG

Figure 1 depicts an example SIG schema. Selection edges can be used to model both specialization and
generalization. The nodes Student and Professor are subsets of Employee. There may be elements of
Employee that are not in Student or Professor, so Student and Professor are both specializations of
Employee. However, the node Student is the generalization (that is, the exact sum) of the nodes TA
and RA. The bijective selection edge between Student and TA + RA enforces the constraint that every
Student is either an RA or a TA. The edge teaches represents the fact that every course is taught by a
single professor. Furthermore, each course has a single title and text bock as represented by the attr edge.
Additionally, selection edges from the TA + RA node indicate that the set of all TAs and the set of all RAs
may be selected out of the constructed node. Similarly, the projection edges from Text x Title contain the
projection of Text and Title values.

Employee
AT (o)
Stuiéht F;foffssor
/ | teaches
T tr

TA + ‘_RA Course +—— Text X Title

P N |
TA RA Text Title

Figure 1: An example SIG schema.

5 Reasoning about SIGs

We consider how basic correspondences between SIG schemas may be established. Our ultimate goal is to
understand the relative information capacity of SIG schemas and so we present correspondences that are
sufficient conditions for absolute equivalence. Under information capacity equivalence, differences in schemas
due to naming of constructs are irrelevant. Hence, in any characterization of equivalence, it must be the
case that isomorphic schemas are equivalent. We therefore begin by considering isomorphism as the basis for
determining equivalence of schemas. We then consider logical implication of annotations on SIG schemas.

4 Alternatively, identity edges from each node to itself may have been included in the definition of SIGs. This latter choice
is more consistent with the view of SIGs as categories.

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 8

5.1 SIG Isomorphism

SIG isomorphism is a special case of graph isomorphism that is constrained to preserve the types of nodes
and all constraints placed on edges (recall that SIG constraints include annotations as well as projection
and selection constraints). Before presenting the definition of SIG isomorphism, we first give preliminary
definitions of node and edge maps. An edge map is any binary relation on the sets of edges of two schemas
that respects inverses.

Definition 5.1 A edge map between two schemas S1 and 52 is a binary relation, § : E1 — E2, such that if
(e,€e') € 0 then (e°,€'°) € 6. N

A node map is a binary relation on the sets of nodes of two schemas that respects the product and sum
operators on nodes. Constructed nodes may be associated via a node map if and only if their respective
component nodes are associated. Such maps are fully defined by the association between simple nodes of

two schemas.

Definition 5.2 A node map between two schemas S1 and S2 is a’binary relation, ¥ : N1 — N2, such that:

o for all (4,A") € ¢, 7(4) = 7(A");

e for all nodes A; x As... x A, € N1and A] x A5...x A, € N2, ((A1 xA2...x Ap), (Al x A5...x A})) € ¢
iff (A;,A}) ey forl <i<n;and

e for all nodes A; + As...+ A4, € N1 and 4} +A’2...+A; € N2, (A1 +As...+ An), (A1 + A5 .+ AL)) €
iff (A;,A)epforl<i<nm. .

Definition 5.3 Two SIG schemas are isomorphic, denoted S1 & 52, if there exist a bijective node map

¥ : N1~ N2 and a bijective edge map 4 : E1 — E2 satisfying the following:

e ife: A~ B then 8(e) : Y(A) — ¥(B) and

e A2(6(e)) = Al(e) and 6(e) is a selection (projection) iff e is a selection (projection). .

Certainly, if S1 = S2 then S1~,;,52. Furthermore, we can compute when S§1 = S2 using a standard
graph isomorphism algorithm that is modified to take into account construction and types of nodes.

In what follows, we assume that constructed nodes are represented in a normal form that is essentially
disjunctive normal form (where x is “and” and + is “or”). For example, a node A x (B+C) is represented as
the node A x B+ A x C. Furthermore, we assume that differences due to the commutativity and associativity
of x and + are ignored. For example, A x B+ A x C is the same node as C x A+ A x B. By doing so, we are
incorporating the natural equivalence preserving transformations for + and x constructors. For example,
these transformations allow each instance of the node A x (B +C) to be transformed into a unique instance of
the node C x A+ A x B and vice versa. These transformations are essentially the transformations discussed
elsewhere for hierarchical types (without the use of the set constructor) [HY84].

The SIG formalism may be extended to permit types to be assigned to edges as well as nodes. The
definition of SIG isomorphism may be modified to reflect this addition by simply restricting the acceptable

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 9

edge maps to only those maps that preserve edge types.

5.2 Annotation Implication

Consider a graph G and two SIG schemas S1 = (G, Al) and S2 = (G, A2). From the definition of valid
instances, it is easily verified that if A1 C 42, then any valid instance of S2 is necessarily a valid instance of
S1, that is, I(S2) C I{S1). Furthermore, a set of annotations may imply additional annotations. Hence, it
may be the case that for distinct A1 and 42, I(S1) = I(S52). We say that A1 logically implies A2 (denoted
Al = A2) if every valid instance of S1 is a valid instance of 52 (that is, I(S51) C I(52)). Logical implication
is certainly a sufficient condition for absolute dominance. We would therefore like to make all possible
inferences before computing whether two SIG schemas are isomorphic. This would permit the detection of
absolute equivalence for a larger class of schemas. To understand implication in SIG schemas, we note that
annotations allow the expression of various cardinality constraints between sets.

Lemma 5.1 Let S4 and Sp be two finite sets. There exists a surjective function from S to Sp iff |[S4| >

|Sal. o

Proof (=) Let f: S4 — Sp be a surjective function. Under f, all elements of Sg are paired with some
element of S4 and no element of 54 is paired with more than one element of Sg. Hence, there must be at

least as many elements in 54 as in Sp.

(<) Let S4 be a subset of S4 such that |S4/| = |Sp|. Any two finite sets of equal size can be put into
bijective correspondence. Let f: Sar — Sp be any such bijection. Then, f is a surjective function from S4
to Spg. (]

Corollary 5.2 Let S = (G, A) be a SIG schema where G = (N,E). Lete: A— B ¢ E. If A(e) 2 {f,s}
then for all & € I(S), |S[A]] > |S[B]]. If Ale) 2 {%,t} then for all & € I(S), [S][A]] < |S[B]l. °

Proof The corollary is an immediate consequence of Lemma 5.1 and the definition of SIG instances. O

Using cardinality arguments, we can derive inference rules on annotations. The next lemma states that
if there exists a surjective functional path from a node to itself then every edge on the path is a bijection.

Theorem 5.3 Let S1 = (G, .Al) and S2 = (G, A2) be two SIG schemas where G = (N, E). Let p: 4; — 4
be a path from a node to itself where e; : A; — Ao, 6‘2 :As — Az, .. ,ep: Ar—Arand p=egoeg_10..0€;.
Let Al(e;) 2 {f,s} foralli, 1 <14 < k (or Al(e;) 2 {s,t} for alli, 1 < i < k). Let A2(e;) = {f,1,s,t} for
all4,1 <7<k and A2(e) = 0 for all e not in p. Then, Al | A2. o

Proof Let Al(e;) 2 {f,s} foralli, 1 <i < k. Let & € I(S1) be any instance of S1. By Corollary 5.2,
|S[A1]} < [S[42]] € ... < |D[A4k]] < [S[A1]]- Therefore, |S[A1]] = |[4z2]] = ... = [S[Ak]|. Any surjective
function between two sets of the same size is necessarily a bijection. Hence, Sfe;] is a bijection for each ¢,
1 <4< k. Similarly, if Al(e;) 2 {¢,t} for alli, 1 < i < k then Ye;] is a bijection for each 4, 1 <7 < k.

Therefore, for any § € I(S1), § is also an instance of 52 and so Al = A2. a

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 10

To be useful in a practical setting, we need a decision procedure for determining when Al | A2. In
particular, we would like an algorithm for computing an annotation function containing all annotations
logically implied by a given annotation function. Such an annotation function is called the closure.

Definition 5.4 Let § = (G, A) be a SIG schema. The closure of A is an annotation function A* on G such
that for all annotation functions B, if A* k= B then B C A*. °

5.3 Decidability of Annotation Implication for Simple SIG Schemas

Before considering the general problem of annotation implication in SIG schemas, we consider implication
in a subclass called simple SIG schemas.

Definition 5.5 A simple SIG schema is a SIG schema S = (G, A) where G = (N, E) and N contains only

simple nodes (that is, no cross product or sum nodes). .

Below, we give a sound and complete set of axioms for annotation implication in simple schemas. By
sound, we mean that if an annotation is implied by the rules, then the annotation is in fact in A*. By
complete, we mean that using the implication rules we can infer all annotations in A4*.

Theorem 5.3 gives one inference rule. To show that no other (nontrivial) inference rules exist, we will
construct an instance of a SIG schema that satisfies the annotations implied by this theorem and no other
annotations. The construction uses the following lemma that proves the existence of binary relations that
satisfy specified subsets of annotations and violate all other annotations.3

Lemma 5.4 Let S4 and Sp be finite sets where |S4| > 2 and |Sg] > 2 and r : S4 ~ S5 a binary relation
defined on them. Let a C {f,14,s,t}, and let @ = {f,1,s,t} — a.

1. If [S4| < |Sp| then VY & 2 {f,s}, 3 r that satisfies o and does not satisfy &.
2. If |Sa|l > |SB| then V a 2 {¢,t}, 3 7 that satisfies @ and does not satisfy a.

3. If |Sa|l = | S| then V o where o 2 {f,s} and o 2 {3,t}, I r that satisfies @ and does not satisfy a.

Proof The proof is by a straightforward case analysis. m]

Theorem 5.5 The following set of inference rules is sound and complete for implication of annotations in

simple SIG schemas.
R1 Trivial Inference: For all annotations A, A implies A.

R2 Bijective Inference: Let S1 = (G, Al) and S2 = (G, A2) be two SIG schemas and let G = (N, E).
Let p: A; — A; be a path from a node to itself where el : A) — Ay, 2 : Ao — As, ..., ek : Ay — A, and

5We take some liberties with our notation for convenience. A binary relation is said to satisfy an annotation f (respectively,
1,8, or t) if it is functional (respectively, injective, surjective or total).

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 11

pP=egoex.10..0e;. Let Al(e;) 2 {f,s} foralli, 1 <i <k (or Al(e;) 2 {i,t} for alli, 1 <7 < k). Let
A2(e;) = {f,1,s,t} for all 4, 1 <7 < k and A2(e) = @ for all e not in p. Then, Al implies A2. °

Proof Rule Rl is clearly sound and the soundness of rule R2 over all SIG schemas was proven in Theorem

5.3. We now prove completeness.

Let S = (G, A) be a simple SIG where G = (N, E). Let § = (G, Al) where Al contains all annotations that

can be inferred from 4 using the stated inference rules. Finally, let A2 D Al.
We claim that A1 & A2. To show this, we will construct an instance & of G such that & = Al and § (£ A2.

We can partition the nodes of S1 into disjoint subsets of nodes, called bijectively connected components
(BCCs), where A and B are in the same BCC if and only if there is a bijective path from A to B (in S1).
We define a partial order on the set of all BCCs, <pg, where) <p (2 if and only if §; = B2 or there exist
nodes A € B; and B € (2 and a total injective path from A to B (or equivalently, a surjective functional

path from B to A.) By Inference Rule R2, <p is a partial order.

Now & can be constructed as follows:

e Nodes: The assignment of sets to nodes may be made in any way subject to the following constraints.

~ If B is a BCC, then for all A € 3, let {${A4]] = n(B) where n{8) is an integer greater than 2.
— If 1 <p B2 and Bi # [z, then n(B1) < n(B2).

Such an assignment is possible since <p is a partial order.
e FEdges: For each edge e : A — B, Sle] is any relation constructed as follows.

— An edge between nodes in the same BCC. Let A and B be in the same BCC so |S[A]] = |S[B]]
and there is some bijective path p from B to A. If Al(e) 2 {f, s} then poe: A— Ais a surjective
functional path from A to itself. Hence, by inference rule R2, Al(e) = {f,4,s,t}. Similarly, if
Al(e) D {i,t} then p° o e® : B — B is a surjective functional path from B to itself. So, again by
inference rule R2, Al(e) = {f,1,s,t}. If Al(e) = {f,4,s,t} then let Je] be any bijection between
3[A] and S[B]. Otherwise, Al(e) 2 {s, f} and Al(e) 2 {,t} so by Lemma 5.4-3, there exists a
binary relation that satisfies exactly the annotations of 41(e). Let §(e) be such a binary relation.

— An edge between comparable nodes. Let A € 8y and B € 3 where (5 # [s.

If 81 <p B2 then S[A] < ¥(B] and by the definition of <p there is some total injective path
p: A~ Bin S1. If Al(e) D {f,s} then p° oe : A — A is a surjective functional path from the
node A to itself, so by the inference rule R2, Al{e) = {f,1,s,t}. However, this contradicts the
assumption that A and B are in different BCCs. Hence, Al(e) 2 {f, s}, so by Lemma 5.4-1, there
is a binary relation on the sets S[A] and (B] that satisfies exactly the annotations on e. Let

$(e) be such a binary relation.

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 12

If B2 <p B then I[A4] > [B] and by the definition of <p there is some total injective path
p:B— A If Al(e) D {i,t} then e® o p® : A ~ A is a surjective functional path from the node A4 to
itself, so by the inference rule R2, Al(e) = {f,%,s,t}. However, this contradicts the assumption
that A and B are in different BCCs. Hence, Al(e) 2 {i,t}, so by Lemma 5.4-2, there is a binary

that satisfies exactly the annotations on e. Let $(e) be such a binary relation.

— An edge between incommensurate BCC. Let A € 1 and B € B2 where 8; # B2, 81 £5 B2 and
B2 £B Bi. Since By £5 B2, Al(e) 2 {f,s}. Similarly, since 8, £5 B1, Al(e) 2 {i,t}. Hence, by

Lemma 5.4, (and regardless of the respective sizes of $(A4) and $(B)), there is a binary relation

that satisfies exactly the annotations on e. Let $(e) be such a binary relation.

By the construction of &, & = Al. Furthermore, & models exactly those annotations in Al, so § j= A42.
Since this is true for any .A2 containing strictly more annotations than A1, A1 contains all annotations
logically implied by .4. Hence, the closure A* contains exactly the annotations implied by Rules R1 and R2.
0

We briefly sketch how the closure can be efficiently computed. We can construct a graph H from a
schema S where the nodes of H are the nodes of S and the edges of H are the total injective edges of S.
We can partition the nodes of H into strongly connected components such that two nodes, A and B, are in
the same component if and only if there is at least one path from A to B and from B to A. Every surjective
functional (or total injective) edge between nodes within a strongly connected component corresponds to a
bijective edge in A*. Furthermore, there are no other annotations in A* that are not in 4. The strongly
connected components of a graph can be computed in time linear in the size of the graph [Tar72]. Using a
simple modification to this result, the closure under annotation implication of a simple SIG schema can be
computed in time linear in the size of the schema.

5.4 Undecidability of Annotation Implication for SIG schemas

We now consider the implication problem for the class of all SIG schemas. We will show that this problem
is undecidable. Our undecidability result is a reduction from the problem of Diophantine equations. Let
O(%) and ®(£) be two polynomials with natural number coefficients over n variables ranging over the natural

numbers (represented by #). The equation ©(Z) = ®(Z) is referred to as a Diophantine equation and the
problem of determining whether there exists a solution in the natural numbers is undecidable [Dav73].

The next lemma states that Diophantine equations without constant terms may be “encoded” by a SIG
schema. Specifically, given a Diophantine equation ©(Z) = ®(Z), we construct a schema S such that every
valid instance of S corresponds to a solution to the Diophantine equation and vice versa. Qur reduction will
then consider an arbitrary Diophantine equation (possibly with constant terms) ©(%) = ®(Z) and construct
a SIG schema corresponding to the equation O(Z)w = &(F)w.

Lemma 5.6 Let ©O(Z) and ®(F) be two polynomials in n variables with no constant terms and with co-
efficients in A, the natural numbers. Then, there exists a SIG schema S, called a Diophantine encod-

ing of ©(ZF) = ®(Z), containing nodes Xy, X, ..., X, such that the equation ©(Z) = &(&) has a solution

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 13

m = (my, Mg, ...,My), m; € N iff there exists a valid instance § for S where [S[X;]|=m;, 1 <i < n. °

Proof Let T = (zy,22,...,2n) and
3 E RN | t i i
- “\ cy Ch c! o d! d di
@(.’L‘) = } ajxllxz'mffnn ‘I’(IL') = E bj:c,_‘:vf...xn"
Jj=1 g=1

Forallj, 1<j<sandforallk, 1<k<m,a; € Nandc, eN.
Forallj, 1<j<tandforallk, 1<k<n,bj€N and d] € N.

We define a SIG schema S = (G, A), where G = (IV, E), as follows.

c] ¢

For each z;,1 < i < m, let X; € N. For each term, ¢; = a;z,'z, ...mff‘, of the polynomial ©, (1 < j < s), let
Y; be the following constructed node in N:

¢l times c} times ¢l times
A

Vi=XixXix.oxX i xXoxXox ..o xXox.xXpxXpx..xX,

Since © contains no constant terms, some ¢, # 0, so Y; is always a valid node in N. For k = 1 to a;, let
Y;-k € N,let €5 : Y; - YF € E and let A(ef) = {f,1,s,t}. Hence, in any valid instance for .4 there will be a;
separate simple nodes that must contain sets of the same size. Let the type of each Yj’c be distinct. Let ¥

and Y be the constructed nodes in N defined below. The polynomial ©(Z) is encoded by the node Y.

a.j K3
Y= }: vk Y = Z Y;
k=1 j=1

Similarly, the polynomial ®(Z) is encoded by a node Z, constructed from the terms of @ in the same manner

as the node Y. Let the edges in this latter construction be label d;?, for 1 <k <.
The one additional edge e : Y — Z € F with A(e) = {f,1, s,t} encodes the equality ©(Z) = ®(Z).

Let 1M = (my,ms, ...,m,) where each m; € . We now prove the following: 77 is a solution to the equation

O(F) = &(Z) iff there exists a valid instance & for S such that |S[X;}| =m;, 1 <i < n.

(=) Suppose ©(1) = ®(m). We construct a valid instance & of S as follows. Let [X;] be any set of
size m;, for all i, 1 < i < n. Hence, by the definition of SIG instances, for all j, 1 < j < s, |Q[Y;]| =
(IS * (191Xl % .. # (S[Xal) = mimi?...miF. Also, for all , 1 < 5 < ¢, [$(Z5]] = (S[Xa]l) »

(STXIDE # .. # (S[Xn])% = mBmE . mh.

Forallj,1<j<s,andk, 1 <k < aj, let S[YF] be a set of size |S([Y;]|. Let [ef] be any bijection between
sets §[¥;] and S[VF]. Clearly, this is a valid instance of the edge ef.
Similarly, for all j, 1 £ j <t,and k, 1 < k < by, let E‘y[ZJ’“] be a set of size |¥[Z;]| and let C&{df] be any

bijection between the sets ${Z;] and ${Z¥].

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 14

Since the types of the nodes Y} are distinct, the sets S[Y}*] are disjoint so |$[Y]| = ©(rA). Similarly,
[$]Z]| = @(m). By supposition, ©(r) = ®(m) so there exists a bijection between the sets S[Y] and $(Z].
We let If(e] be any such bijection.

From the definition of ¥, it can be seen that & = A and so is a valid instance of S.

(<) Conversely, suppose < is a valid instance for S. Let m; = |S[X]|.

Since for all.j, l < j, < s,and k, 1 < k £ aj, each %[ef] is a bijection, by Corollary 5.2,]%[Yj’“}l =
S]] = m'f‘m;%...mff'. Also, since the types of the nodes Y are distinct, the sets S[YF] are disjoint and
so |S[Y]] = O().

Similarly, for all j, 1 < j <t,and k, 1 < k < by, [S[Z}]] = [S(Z;]] and |S(Z]| = B(R).

By Corollary 5.2, since e : Y — Z is a bijection, [S{Y]| = |$¥[Z]]. Therefore, ©(m) = ®(m) so 7l is a valid
solution to O(%) = ®(%). O

Solutions to the logical implication problem for annotations over SIG schemas together with the above
encoding can be used to determine when a Diophantine equation has a solution in the natural numbers.
From this, we can conclude that implication in SIG schemas is undecidable.

Theorem 5.7 The annotation implication problem for SIG schemas is undecidable. .

Proof We will construct a graph G and annotation functions B1 and B2 for which the logical implication

problem is undecidable and conclude that the implication problem for arbitrary SIG schemas is undecidable.

Let O(F) and ®(Z) be two arbitrary polynomials (which may contain constant terms) and let w be a new
variable. Let § = (G, A) (where G = (N, E)) be the Diophantine encoding of the equation &(&)w = ®(Hw

and let the node W correspond to the variable w in the encoding.

Let d: W — W be a new edge not in E. Let G' = (N',E’) where N' = N and E' = EU {d}. Let Al be
an annotation function on G' where Al(e) = A(e) for all e € E and A1(d) = 0. Let A2 be the annotation
function on G’ where A2(e) = A(e) for all e € E and A2(d) = {t}. Let S1 and S2 be the two SIG schemas
(@', Al) and (G', A2) respectively. ‘

By the definition of instances, every instance of 52 is an instance of S1, so I(52) C I(S1). Also, by the
definition of implication, Al |= A2 iff I(S1) C I(S52).

Any valid instance & of S can be extended to a valid instance of S’ of S1 by populating the edge d with
any relation on the set 3{W] and that &' is a valid instance of S2 iff Q’[d] is a total relation. Similarly, any

valid instance & of §1 or S2 restricted to the nodes and edge of S is a valid instance of S.
We now prove that Al |= A2 iff ©(Z) = ®(Z) has no solution.

(=) Suppose Al = A2, so I(S1) C I(S2). Suppose O(Z) = ®(Z) has a solution 7. Then, O(F)w = &(Z)w
has solutions for which w # 0. By Lemma 5.6, there are therefore instances of S with |S{W]| > 0. Let < be

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 15

such an instance of §. Let ' be an instance of S1 formed by extending & with $'[d] = §. Hence, $' is a
valid instance of S1 but not a valid instance of 52 (since d is not total on S[W]). Therefore I(S1) € 1(52)
which contradicts the assumption that Al = A2. So the equation ©(Z) = ®(&) has no solutions.

(«=) Now suppose Al [~ A2. Then, there exists some instance § such that & € I(S1) and S ¢ 1(52). The
instance § must populate the edge d with a nontotal relation. If |S[W]| = 0 then there is no nontotal relation
on S{W]. Therefore, |$[W]| > 0. The instance S restricted to the nodes and edges of S is a valid instance
of S and so by Lemma 5.6, O(£)w = ®(Z)w has a solution for which w # 0. Therefore, ©(F) = ®(F) has a
solution. So, if ©(Z) = ®(£) has no solution then Al | A2.

Since the problem of determining whether (&) = ®(Z) has a solution is undecidable, annotation implication
of SIG schemas is also undecidable. O

6 Equivalence Preserving Translations

We turn to the question of equivalence preserving translations of relational schemas into SIG schemas. Such
translations will allow us to use results on the relative information capacity of SIG schemas to understand
the relative information capacity of relational schemas.

6.1 Relational Schemas

We first present a formal definition of relational schemas.
Let A be a set of attributes and 7 a set of type. For each A; € A, 7(A4;) =T; € T is the type of A,.

A relational table R is a list of attributes and their associated types, R = [4A; : T1, A : To, ..., An : Tn].
(When convenient, the types may be omitted and R may be denoted as a list of attributes.)

For an instance S[R] of a relational table R, S[R] C Ty x Tz X ... X Ty,. An element (aq,...,a,) € S[R]
is called a tuple. If § = [A;,, ..., A;,] where for all j, 1 < j < s, A;; is an attribute of R. Then, (5] is the
projection of S[R] onto the attributes of S: (5] = {(ai,,...ai,) | I some (a1, az,...,a,) € S[R]}.

We consider two types of constraints on the set of valid instances of relational tables.

e Functional Dependencies. Let X and Y be lists of attributes of B. The functional dependency
X — Y holds on an instance S{R] if all tuples of S[R] that agree on each of the attributes in X also
agree on the attributesin Y. If X - RandfornoY ¢ X,Y — R, then X is called a key and X — R
is a key dependency: A key is simple if it contains a single attribute.

e Inclusion Dependencies. Let X be a list of attributes of R and Y be a list of attributes of §
of the same size as X. The inclusion dependency R[X] C S[Y] holds on instances S[R] and (5] if
S[X] € S{Y]. An inclusion dependency is unary if X (and therefore Y) contains a single attribute.
A pair of inclusion dependencies R[X] C S[Y] and S[Y] € R[X] is called a bidirectional inclusion
dependency and denoted R[X] = S[Y].

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 16

A relational schema R is a set of relational tables (each with distinct attributes) and a set of dependencies.
An instance of a schema R is a set of instances of the relational tables in R that collectively satisfy all
dependencies in R. The set of all instances of R is denoted I(R).

A relational table is in third normal form (3NF) if whenever X — A holds in R and A is not in X, then
either X is a key or A is a member of a key for R. If a relational table is in 3NF and has only simple keys,
then in all functional dependencies X — Y where Y € X, the attributes X include a key attribute. Hence,
the functional dependencies in these tables are fully characterized by the key dependencies. Date and Fagin
showed that such relational schemas have a number of desirable properties [DF92].® They recommend the
use of this class of relational schemas as a simple, easily understood way to ensure that a schema is free of
commonly occurring anomalies.

6.2 Representing Relational Schemas in 3NF with Simple Keys

In this section, we consider the class of relational schemas where each relational table is in 3NF with only
simple keys but which may be further constrained by bidirectional unary inclusion dependencies that force
two attributes to contain the same set of values in any valid instance.” We call such schemas simple relational

schemas.

Algorithm 6.1 translates a simple relational schema into a simple SIG schema with equivalent information
capacity. Let R be a simple relational schema containing relation schemas R;, Rs,...R,.. We treat all
attributes equated by inclusion dependencies as a single attribute (and perform the appropriate renaming).
Let a; be the number of attributes in R;. The SIG translation of R, denoted Sr, is constructed as follows.
A node is created for each attribute. Since all keys are unary, every relation must have at least one attribute
that is a key. We select one key attribute and call it A;. For each additional attribute A;, we place an
edge from A; to A;. If A; is also a key then the edge is bijective. Otherwise, the edge is a total, surjective,
function. Formally, Sr = (Gr, Ar) is defined by the following algorithm.

Algorithm 6.1 Input: a simple relational schema R.

Qutput: an equivalent simple SIG schema Sx.

Fori=1tor
Let R; = {A%, A}, ..., AL} where A} is a key.

Forj=1toa;
Let N} € Nr be a node corresponding to A} and let 7(N}) = 7(A%).
Forj=2toa;

Let e} : Nf — N} € Ex.
If A’ is a key then let Ar(e}) = {f,4,s,t}. Otherwise, let Ar(e}) = {f,s,t}.

Theorem 6.1 If R is a simple relational schema then the SIG translation S created by Algorithm 6.1 has

equivalent information capacity (R~gapsSR)- .

SFor example, such schemas are necessarily in projection-join (fifth) normal form.
"We only consider bidirectional inclusion dependencies to simplify the translation algorithm we present. The algorithm is
easily extended to handle all unary inclusion dependencies.

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 17

Proof We show equivalence by constructing an equivalence preserving mapping f : I(R) — I(Sr). Let
& € I(R). The instance I assigns a set of data values to each attribute of each relational table. The function
f creates an instance f(S) € I(Sg) that assigns that same set of data values to each node corresponding to
an attribute of R. Then, for each tuple (a1, as,...,a,,) of a table R;, the pair (a;,a;) is placed in f(S)[e;]

for 2 < j < a;. Formally, f is defined as follows.

Fori=1tor
Let R; = {Al, A}, ..., AL, } where Al is a key.
Forj=1toa;
Let f(S)[N}] = S[4L].
For a = 2 to a;

Let f(S)[e; : Vi — Ng] = S[{A], AL }].

The key dependencies on R; guarantee that each edge will satisfy its annotations so f(<) is a valid instance

of Sg. Hence, f is a well defined total function from I{R) to I(Sr).

We now show that f is injective. Suppose §1 and 2 are two distinct instances of I(R). Without loss of
generality, assume S1[R;] contains a tuple (af,a},...a%.) that is not in S2[R;]. If ai ¢ $2[A!] then clearly
f(S1) # F(32). Suppose ai € $2[A}], so there is a tuple (ai, b}, ...,b%,) € S2[R;]. Since (al,a}, ...al,) is not
in $2, there is some j # 1 such that b} # a}. By the definition of f, (a},a}) € f(S1)[e}] and for no a # d}
is (ai,a) € f(S1)[e}]. Similarly, (a},b%) € f(S2)[ei] and for no b # b% is (ai,b) € F(S2)[ei]. Therefore
f(S1) # f(S2). Hence, f is injective.

To see that f is surjective, let $2 be any instance of Sg. We can construct and instance 1 of R as follows.
For each a} € S2[N{], where (ai,a}) € $2[el], let (a},a}, ..., ai,) € F1[R;]. Clearly, 31 is a valid instance of
R, and f(S1) = 32. Hence, f is surjective.

The bijection f: I(R) —» I(Sr) is an equivalence preserving mapping, s0 R~ups5% -]

6.3 An Example Translation

We now turn to an example illustrating the translation discussed above. It is known that the relational
model, without dependencies, permits no data relativism in that two relational schemas are equivalent if
and only if they are identical (up to renaming of attributes and relations) [Hul86]. We use an example that
shows this is not the case for the class of relational schemas considered in Section 6.2.

In Schema R1 of Figure 2, each of the three attributes is a key. Schema R2 is a decomposition of R1
representing similar information. Despite the fact that R2 is a dependency preserving decomposition of
R1 with the lossless join property, it has strictly greater information capacity than R1. This can be seen
by examining the equivalent SIG schemas S1 and §2 that are depicted in Figure 3. The closure of S1 is
S1 and the closure of S2 is depicted in Figure 3. The set of valid instances of 52 and S2* are identical so
S§2m~4p052*. The schema S2 absolutely dominates S1 (via an information capacity preserving mapping f that

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 18

R1 R2
pe,so,-l, SSNo EmpNo Name S’SSNoxEmpNo gEmpNo Name p Name SSNo

1 i | L i j | | i | -

S.85No = N.SSNo
E.EmpNo = §.EmpNo
N.Name = E.Name

Figure 2: Two example relational schemas in 3NF. Keys are depicted in bold.

carries instances of the three nodes and edges e; and ep in S1 to instances of the corresponding constructs
in S2 and populates e3 with any bijection, for example ez o). However, 52 has strictly more information
capacity than S1. In S1, only a single binary relation between EmpNo and Name can be represented (via
the composition of the edges e; and e;). This reflects the fact that a single table in the relational model
can only represent a single relationship between any subset of the attributes. However, in S2 (and R2), two
different binary relations between EmpNos and Names are represented.

S1 S2 sS2*
1 1, 1,
SSNo < EmpNo SSNo—"= EmpNo SSNo <——I= EmpNo
\i\fj‘ . ' - ke » ., {
e2 e2 e o2 e3
: \\ : ; \ ’,
Name Name Name

Figure 3: The SIG translations of R1 and R2.

Consider the addition to R1 of another relational table T with two attributes, EmpNo and Name, where
EmpNo is a key and the inclusion dependencies T[EmpNo] = Person[EmpNo] and Person[Name] =
T[Name] hold. The closure of the SIG translation of this augmented schema is isomorphic to 52* and
therefore absolutely equivalent to R2. Hence, the augmented R1 and original R2 have equivalent information
capacity. This fact is not at all obvious from the original relational schemas themselves. By developing
algorithms to determine the absolute dominance or equivalence of SIG schemas, we can reason about the
dominance or equivalence of schemas in the relational or other data models.

The specific example we chose for this section also illustrates an important point about schema de-
composition. R2 is a dependency preserving decomposition of R1 with the lossless join property. Such
decompositions are considered benign and even desirable in database design to avoid, among other things.
redundancy in data and update anomalies.® However, the question of when a decomposed schema has
equivalent information capacity to the original schema is typically overlooked.

8Granted that Rl is already in projection-join normal form so decomposition would likely not be applied in this example

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 19

6.4 Limitation of the SIG model

As we have just demonstrated, the constraints included in the SIG model are sufficient to capture large subsets
of the relational model. However, SIG schemas cannot model the complete class of relational schemas with
functional dependencies. To illustrate this, consider the schema R shown in Figure 4.

Relational Schema R SIG S1 SiIG 82
Cit State i .
[y | | Zip I City x State City x State
‘ el el - oon
Functional dependencies: . P
fd1: City, State —> Zip Zib-—i .. State Zip+—t= State
fd2: Zip —> State P e e

Figure 4: A relational schema that cannot be captured by an equivalent SIG.

As noted above, a single relation in the relational model (or a set of relations to which the universal
relation assumption is applied) can only model a single relationship between a given set of attributes. This
property has been called the relationship uniqueness assumption or RUA [AP82]. Hence, the two functional
dependencies expressed on the relational schema of Figure 4 are not independent. A pair of city-state values
(cl,81) functionally determines a single zip code value z1. This zip code in turn functionally determines a
single state value. This value, however, is constrained by the RUA to be the value sl.

The RUA is not made in the SIG model and, in fact, cannot be expressed with the limited constraints
included in the model. Figure 4 depicts the simplest and most intuitive SIG schemas that dominate the
relational schema. The first captures as simple edges the two functional dependencies of the relational schema.
However, there is no constraint that for any city-state value pair, (cl, s1), the equality es o e;(cl,sl) = sl
holds. There is an implicit total surjective function between city-state pairs and state values representing
the projection of state values. However, even if this function is made explicit by including the projection
edge 7 (as in Schema S2), there is still no constraint that the composition of e; followed by e, must equal
7. Hence, these SIG schemas have strictly greater information capacity than the relational schema R.°

In fact, we can argue informally that any SIG schema that dominates R must include a functional path
from a node containing city and state values to a node for zip codes. There must also be a functional path
from the zip code node to the state node. Since there is no way to constrain the composition of the two
functional paths to equal the projection of state values, no SIG schema that dominates R can be dominated
by it.10 '

This example points out that cardinality and existence constraints alone do not capture the more elaborate
constraints such as constraints on the equality of relationships. Such constraints are implicit within the
relational and other models.

8 A formal proof can be constructed by examining the relative sizes of I{R) and I(S1).
10 At least through the intuitive mappings we are considering in this informal discussion.

TR 1185 - Dept. of Computer Sciences, Univ. of Wisconsin-Madison 20

7 Future Directions

This work is only one component of our efforts to develop formal but practical solutions to schema translation
and integration problems. A central theme of our work is the development of efficient algorithms to test for
the information capacity dominance and equivalence of SIG schemas [MIR94]. Additionally, we will develop
equivalence preserving translations from existing data models into the SIG model and use our dominance
and equivalence testing algorithms to understand the relative information capacity of schemas expressed in
different data models [MIR93a, MIR93b]. Finally, the ultimate goal of our research is to develop a useful
tool based on formal principles that aids in schema translation and integration.

References

[AH88] S. Abiteboul and R. Hull. Restructuring Hierarchical Database Objects. Theoretical Computer
Science, 62:3-38, 1988.

[AP82] P. Atzeni and D. S. Parker. Assumptions in Relational Database Theory. In Proc. of the ACM
Sym. on Principles of Database Systems, pages 1-9, Los Angeles, CA, March 1982.

[BW90] M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, New York, NY,
1990.

[Dav73] M. Davis. Hilbert’s Tenth Problem is Unsolvable. American Mathematical Monthly, 8(3):233-269,
March 1973.

[DF92] C. J. Date and R. Fagin. Simple Conditions for Guaranteeing Higher Normal Forms in Relational
Databases. ACM Transactions on Database Systems, 17(3):465-476, September 1992.

[Hul86] R. Hull. Relative Information Capacity of Simple Relational Database Schemata. SIAM Journal
of Computing, 15(3):856-886, August 1986.

[Hul87] R. Hull. A Survey of Theoretical Research on Typed Complex Database Objects. In J. Paredaens,
editor, Databases, chapter 5, pages 193-256. Academic Press, London, U.K., 1987.

[HY84] R. Hull and C. K. Yap. The Format Model: A Theory of Database Organization. Journal of the
ACM, 31(3):518-537, 1984.

[MIR93a] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The Use of Information Capacity in Schema
Integration and Translation. In Proc. of the Int’l Conf. on Very Large Data Bases, pages 120-133,
Dublin, Ireland, August 1993.

[MIR93b] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Understanding Schemas. In Proceedings on
Research Issues on Data Engineering: Interoperability in Multidatabase Systems, pages 170-173,
Vienna, Austria, April 1993.

[MIR94] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema Equivalence in Heterogeneous Sys-
tems: Bridging Theory and Practice. Information Systems, 19(1):3-31, 1994.

[MS92] V. M. Markowitz and A. Shoshani. Representing Extended Entity-Relationship Structures in
Relational Databases: A Modular Approach. ACM Transactions on Database Systemns, 17(3):423~
464, September 1992.

[0Y82] C.O’Dinlaing and C. K. Yap. Generic Transformation of Data Structures. In Sym. on Foundations
of Computer Science, pages 186-195, Chicago, IL, November 1982.

[RR87] A. Rosenthal and D. Reiner. Theoretically Sound Transformations for Practical Database De-
sign. In Proc. of the Int’l Conf. on Entity-Relationship Approach, pages 115-131, New York, NY,
November 1987.

[RR93] A. Rosenthal and D. Reiner. Tools and Transformations - Rigorous and Otherwise - For Practical
Database Design. Technical report, MITRE Corp., February 1993.

{Tér72} R. E. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal of Computing,
1(2):146-160, 1972.

