A Moose and A Fox Can Aid Scientists
with Data Mangement Problems

Janet Wiener
Yannis E. Ioannidis

Technical Report #1182

November 1993

A Moose and a Fox
Can Aid Scientists
with Data Management Problems *

Janet L. Wiener
Yannis E. Ioannidis
Dept. of Computer Sciences, University of Wisconsin-Madison
1210 W. Dayton St., Madison, WI 53706 U.S.A.
{wiener,yannis}@cs.wisc.edu

Abstract

Fox (Finding Objects of eXperiments) is the declarative query language for Moose (Modeling Objects Of
Scientific Experiments), an object-oriented data model at the core of a scientific experiment management
system (EMS) being developed at Wisconsin. The goal of the EMS is to support scientists in managing
their experimental studies and the data that are generated from them.

Moose is unique among object-oriented data models in permitting sets to have relationships to classes
other than their elements’ class, in providing a construct for indexing collections by other collections,
such as time series, and in distinguishing structural relationships from non-structural ones.

Fox contains several new features necessary to manage experiments, such as support for associative
element retrieval from (indexed) sets and highly expressive path expressions. Fox path expressions can
traverse any relationship in the schema graph, including inheritance relationships, and in either direction
of the relationship, which makes many queries more concise. Fox also supports a new form of deep
equality based on structural information and a new, concise, description of periodic data, e.g., time
series. Finally, Fox offers the only object-oriented bulk-loading facility of which we are aware, for loading
data from a file.

1 Introduction

Scientific databases are expected to play an important role in enabling scientists from any discipline to study
complex phenomena and systems of interest. We are currently involved in the development of a desktop
Ezperiment Management System (EMS), whose primary goal is to support individual (or small teams of)
scientists in managing their experimental studies and the data that are generated from them [IL92, ILH*93].

As one of its components, the EMS under development includes an Object-Oriented Database Manage-
ment System (OO-DBMS). Due to the special needs of many experimental sciences, we have developed our
own data model, Moose (Modeling Objects Of Scientific Experiments), and declarative query language, Fox
(Finding Objects of eXperiments). In this paper, we briefly describe the salient features of Moose and then
focus on the most interesting aspects of Fox. More details on Moose and Fox are available elsewhere [WI93],
as are descriptions of earlier versions of Moose [IL89, IL92].

Several characteristics of the data expected to be found in scientific experiments and of the ways scientists
are expected to interact with an EMS led us to develop Moose and Fox. Specifically, a new data model was
desirable because of the following:

* A shorter version of this paper appears in the Proceedings of the 4th International Workshop on Database Programming
Languages, New York, NY, August 1993.

TThis work has been partially supported by the National Science Foundation under Grants IRI-9224741 and IRI-9147368
(PYI Award) and by grants from DEC, IBM, HP, and AT&T.

¢ In many experimental studies, object collections (e.g., sets or multisets) are reused several times during
the course of the study. In addition, they are often associated with other pieces of information, which
may or may not depend on the contents on the collection, e.g., the number of objects in the collection
or a name given to the collection. To serve these needs, Moose collections are individual objects that
may be directly associated with objects besides their elements.

¢ Distinguishing the structural components (parts) of a complex object from any other objects with which
it is associated is important to scientists. Such distinction captures the semantics of experiments, or
any other type of information, more naturally [MF91, WCHS87]. The additional semantics expressed
by this distinction can be used in several ways. First, the structural components of a complex object
may be seen as defining its scope, which determines certain properties of the object. For example,
object comparisons may be made based only on the objects’ structural components, and immutability
of an object’s relationships may be recursively propagated along structural components only. Second,
incompletely specified path expressions in the query language may be disambiguated based on the
differences in the two types of relationships [Las93].

¢ Scientists often need to represent collections that are indexed by other, arbitrary, collections, e.g.,
indexed by time series. Arrays (indexed by the set of consecutive integers {1,...,n}, for some n) are
the only special case of indexed collections supported by existing OO data models. Moose provides a
direct construct to support arbitrary indexing.

o A large portion of the data relevant to scientific experiments is derived from other data based on
some computation. In most current OO DBMSs, such computations are expressed as methods in the
programming language supported by the system. In Moose, rules written in Fox may be used to express
such computations, e.g., to specify aggregate computations over the members of collection objects. The
same mechanism can also be used to implicitly identify interesting subclasses of a given class of objects.

Nowadays computation is part of many experimental studies, and most scientists (or at least their grad-
uate students!) feel comfortable using some programming language, usually Fortran. The ability to use
declarative queries for data retrieval and simple computations on the retrieved data is very appealing to
many of them. Fox is the declarative query language that we developed for Moose; we also plan to develop
an equivalent graphical query language, which we believe will be even more intuitive to use. Because Fox
is completely declarative, queries are simple to write and have much optimization potential. Fox supports
several interesting features that were motivated by the novel features of Moose and the needs of experimental
scientists for interacting with the database. These needs include the following:

o Scientists need to access experimental data in ad-hoc ways. Most current OO query languages impose
restrictions on how object relationships may be traversed in query path expressions, for instance, only
allowing traversal in one direction [BCG*87, CDV88, DGJ92, FBCT90, NO92]. This restriction is too
strict for queries in an EMS environment, because it forces scientists to start most queries with the root
of the schema graph. Fox allows arbitrary path expressions that may traverse all types of relationships
in both directions. As an important special case, path expressions in Fox may involve inheritance (is-a)
relationships. This allows the user to restrict the classes involved in the path expression to specific
subclasses. It also provides both explicit specification of inherited relationships and a mechanism for
dealing with multiple inheritence.

¢ To support Moose collections indexed by other, arbitrary collections, Fox provides an indexing mech-
anism intuitively derived from array indexing. Any (or all) element(s) of the indexing collection may
be used to access elements of the indexed collection.

o Many scientific experiments involve time series or spatial data. Most often, these sets are periodic in
all their dimensions, e.g., the time instances in a time series are equally spaced. In most other OO
query languages, such sets must be explicitly specified, which may be very cumbersome. Fox provides
support for concise descriptions of such sets of arbitrary dimensions.

e Much data generated by scientific computations are initially stored in flat files. Although connecting
the EMS directly to the computations is one of our goals, in many instances it is necessary for this
data to be explicitly loaded into the system after it has already been generated and written into a file.
Although all relational languages offer such a bulk-loading facility, we are aware of no OO language that
does. Fox provides such a facility to create new objects based on the contents of files. The new objects
may reference both other new objects specified in the file and pre-existing objects in the database.

In this paper, we describe the salient features of Moose and then focus on Fox. The Moose data model
is described in Section 2 and Section 3 briefly covers the Moose data definition language. Section 4 details
the Fox query language and Section 5 explains the data modification commands of Fox, including the bulk
loader. We conclude in Section 6.

2 The Moose Data Model

Moose is an OO data model that supports complex objects, object identity, classes, and (multiple) inheri-
tance. In Moose, real world entities are modeled by objects with unique object identifiers (OIDs) [KC86].
Objects are grouped together by uniquely named classes, which capture the objects’ common properties.
Every class maintains a class extent, stored in the database, to allow subobjects to exist independently of
top level objects. For example, in an experimental study of plant growth, objects representing new species of
plants may be stored even though they are not yet part of a top level experiment object. Binary relationships
describe the connections between objects in the schema classes.

o,

favorite_plant (P

Nl (€}

Experiment ———‘*—'*l Scientist | fav_humidity =<

T e

| =(c)

mp/syslcm ~._output y
~ouipe

o \\
" W T

= 1:N =
Weather l Plant_community]»" f Vegetation_temperatures |, I
vind_speed, \ wi irocti B
wi ~/Pi'/ — \Xyl\x?d_dlrcumn name T~ - /J‘uvg_lcmp
Cry () s - .)
— {)= 2 omogeneous_community |, —_
i
i
= has—part Plant Temperature
s setof num_feaves 7T R~y
- o~ ,/lypc AN T vvuluc
- 2= indexed-by (i) (f\ (\’/> (r) .
e association £ Wheight (~Lr)
-z~ inheritance (r,\)

Figure 1: A simple Moose schema showing a soil science experiment to measure plant temperatures under
various weather conditions.

Our convention is to represent the schema as a graph: each class is a node (rectangle or oval) and each
relationship is an edge in the graph. Each relationship has a label in each direction, which if unspecified,
is equal to the name of the target class of the relationship in that direction. For example, the default
label of the relationship from Experiment to Scientist is Scientist. A simple Moose schema is shown in
Figure 1, representing a (simplified) soil science study of how various weather characteristics affect the
temperatures of different types of plants. Each experiment is modeled as a complex object, with subobjects
representing the experimental system, Plant.community, the input parameters, Weather, and the output
results, Vegetation_temperatures for each plant. In addition, each experiment is associated with an object
from the Scientist class, representing the scientist who conducted the study. More details on the graph
representation of Moose will be given along with the descriptions of the corresponding features.

2.1 Object classes in Moose

FEach class has a kind, which describes the class’s basic structure. There are three kinds of classes in Moose:
primitive, tuple, and collection. The primitive classes are built into Moose and are currently Integer, Real,
Boolean, and Character String, in Figure 1, they are represented by ovals, as are their subclasses, and
abbreviated i, 7, b, and ¢, respectively. (The same primitive class is sometimes represented by multiple ovals
for ease of display.)

Tuple and collection classes are created by the user. Objects in tuple classes consist of a prespecified
number of other objects, called parts, usually from several different classes. Each part is identified by a
labeled relationship; labels are unique among relationships from a given class. A special case of tuple classes
is atomic classes, whose objects have no parts.

Objects in collection classes consist of an arbitrary number of other objects, all from a single class, called
the elements class. Moose has four specializations of collection classes: set, multiset (bag), sequenced-set
(list or array), and indezed-set. An indexed-set is a generalization of a sequenced-set. Whereas the members
of a sequenced-set are indexed by the set of consecutive integers {1,...,n}, for some n, the elements of an
indexed-set are indexed by (the elements of) an arbitrary collection object. This collection object is called
the keyset for the indexed-set, because its elements provide indexing keys into the indexed-set. (We also say
that the collection object’s class is the keyset for the indexed-set class.) Each element in the keyset uniquely
identifies an element in the indexed-set.! In Figure 1, Plant.community is a set class, and serves as the
keyset for Vegetation _temperatures, which is an indexed-set class.

2.2 Object relationships in Moose

Like many other semantic and OO data models [HK87, BCG*87, CDV88, Deud0, ISK*93, NO92, SKL88],
Moose provides two major categories of relationships between classes: connection relationships and inheri-
tance relationships.? A connection relationship between two classes implies a logical or physical relationship
between their object instances. It is very rare that an instantiation of such a relationship connects an object
to itself; in general, connection relationships are only meaningful between distinct objects. For example,
connection relationships can be used to describe a composite object: the relationships will connect the com-
posite object class (e.g., Experiment) to the classes of its parts (e.g., its input, output, and system). On the
other hand, an inheritance relationship between two classes identifies one of them as a specialization of the
other and implies a semantic correspondance between their object instances. Abstractly, an instantiation of
such a relationship always connects an object to itself, representing the fact that the object may play the
roles of both the general and the specialized class.

2.2.1 Connection relationships

Many data models only provide one form of connection relationship [Che76, Deu90, FBC*90]. A major con-
tribution of Moose is to provide different kinds of connection relationships, to reflect the different ways that
objects may be related and capture additional semantics implied by these ways. Moose also provides several
dimensions of flexibility for connection relationships, which are orthogonal to the kind of the relationship.
These dimensions are the various properties a connection relationship may have, i.e., mutability constraints,
a cardinality ratio, and the potential for null values, and they are detailed in Section 2.2.2. The rest of this
section describes the kinds of connection relationships.

Moose has four kinds of connection relationships: tuple-composition, collection-membership, collection-
indexing, and association. In general, each kind of a relationship may be interpreted in two different ways,
from the perspective of each of the two classes it connects. In each interpretation, one of the two related
classes plays the role of the source class and the other plays the target class, thus imposing a direction in
the interpreted relationship. Table 1 lists each of the four kinds of relationships, the edge types used in

1The analogy between sequenced-sets and indexed-sets is even clearer in the query language. An integer is used to retrieve
a sequenced-set element in typical array fashion, e.g., my.sset[5]. A keyset element is used in the same way to retrieve an
indexed-set element, ¢.g., my-iset{my key.elt].

2Connection relationships are related to aggregation relationships proposed in other semantic and OO data models [SS77,
SKL88]. Not all connection relationships, however, represent aggregations of simpler to more complex objects, hence the
different term.

Figure 1 to identify each relationship, and a brief description of their semantics. Table 2 shows their directed
interpretations and any constraints on the kinds of the corresponding source and target classes.

Relationship Kind I
tuple-composition

Edge Type | Description |

Connects a tuple class

to one of its part classes
Connects a collection class

to the class of its elements
Connects an indexed-set class
to its keyset collection class
Connects two classes that

are mutually associated

single directed

collection-membership || double directed

collection-indexing zigzag directed

association undirected

Table 1. Kinds of relationships in Moose.

Directed
Relationship Kind Interpretation Source Kind | Target Kind
tuple-composition has-part tuple

is-part-of tuple
collection-membership || is-set-of collection

is-element-of collection
collection-indexing is-indexed-by indexed-set | collection

indexes collection indexed-set
association is-associated-with

is-associated-with

Table 2. Constraints on relationships in Moose.

Note that associations have the exact same interpretation in both directions (they are isotropic), while
the remaining three kinds of relationships have a different interpretation in each direction (they are non-
isotropic). For example, in Figure 1, Experiment has-part Weather, but Weather is-part-of Experiment. For
the non-isotropic relationships, we believe that one of their directed interpretations is dominant, i.e., has-
part, (is-)set-of, and (is-)indexed-by are dominant for tuple-composition, collection-elements, and collection-
indexing relationships, respectively. Often, we will draw non-isotropic relationships as directed edges from
the source to the target class of their dominant directed interpretations, as we have done in Figure 1.

Non-isotropic relationships are structural: they define the structure of their dominant source class. There
are constraints on the kinds and number of structural relationships that a class may have, as indicated in
Table 1. Specifically, the structure of (objects in) a tuple class is defined by some arbitrary number of
has-part relationships, which should be the only structural relationships of the tuple class. The structure
of a collection class is defined by a single set-of relationship, with the exception that indexed-set classes are
defined by a single set-of and a single indexed-by relationship. No other structural relationships should exist
for a collection class. In addition to the above constraints on the relationships of individual classes, there
is a global constraint on structural relationships. When only the dominant interpretations of the structural
relationships are considered, all the structural relationships should form an acyclic directed subgraph of the
Moose schema graph. (For example, objects of a class cannot have objects of the same class as parts).

Association relationships are not structural and therefore are not constrained. Associations connect
objects in two arbitrary classes (including collection classes). For example, the average temperature of a set
of temperatures may most naturally be associated with the corresponding collection class, as in Figure 1. In

other data models, collection objects cannot be associated with other objects. To capture the above examples,
one would have to create artificial tuple classes containing both the sets and the associated attributes.

2.2.2 Properties of connection relationships

Each relationship has several properties, which may take different values for each of its two directed interpre-
tations (directions, for short). Like in many other data models, the properties supported in Moose include
mutability constraints, a cardinality ratio, and the potential for null values.

Mutability constraints One property of a relationship in a given direction is whether or not an object
in the source class must always be related to the same object in the target class, over the lifetime of the
database. If changing the target object is always permitted, the relationship is mutable in that direction. If
changing the target object is never permitted, it is émmutable. Finally, if changing the target object is only
permitted until the scientist explicitly freezes it, the relationship is step-immutable in that direction. When
an object is frozen, immutability propagates recursively to all its step-immutable structural relationships.
Mutability was introduced by SDM [HM81] and exists in Jasmine [ISK*93]; Moose is the first model to
introduce step-immutability as an option.

Immutable relationships are important because they can prevent the accidental deletion of data. For
example, making the relationship from experiment to scientist immutable prevents any user from modifying
that information, ensuring that the scientist in charge of an experiment remains accountable for it. Step-
immutability is used to allow experiments to be designed in steps. It is desirable to prevent any changes to
an experiment’s input once it has been conducted, so that it can always be used to interpret the obtained
results. However, step-immutability allows the scientist to modify the input until then (and only until then),
exploring various options. Similarly, the output of an experiment cannot be determined until the experiment
is run, but should not be modified afterwards.

We note that mutability is not automatically propagated in composite objects. For example, although
Plant.community may have an immutable set-of relationship to Plant, Plant may have mutable has-part
relationships, such as to its height. Removing or replacing a plant may imply changing a community, but
growing a plant does not imply creating a new plant.

Cardinality ratios In Moose, connection relationships have cardinality ratios, as in the Entity-Relation-
ship model [Che76]. The ratios are separated into a cardinality for each direction of the relationship. Set-of
relationships are multi-valued and indexed-by relationships are single-valued, while all other directions of
relationships may be single-valued or multi-valued. The ability to share target objects is captured by a multi-
valued relationship in the reverse direction; a single-valued relationship in the reverse direction means the
relationship to the target object is exclusive. For example, the 1-N relationship from Scientist to Experiment
in the schema of Figure 1 is a multi-valued, exclusive relationship.

Multi-valued cardinalities are actually a shorthand notation when used for has-part and association
relationships. There is an implicit multiset class in the schema, whose instances contain the “many” objects
of the relationship. For example, the multi-valued association relationship from Scientist to Experiment of
Figure 1 is equivalent to the schema fragment of Figure 2, which places an explicit multiset class between
the two.

e

favorite_plant

) N:I Iy A)
Experiment (= - ExptMset Scientist | fav_humidity ,>‘-<)
Ty

=(c)

Qe

e name

Figure 2: An equivalent schema showing the implicit multiset class.

6

Null objects The above cardinalities describe a relationship’s maximum cardinality in each direction. Its
minimum cardinality is also of interest. If a relationship must always have a target object in a direction,
then the relationship is required in that direction. Otherwise, a null target object is allowed. This is a generic
object that is potentially a member of all classes. Such an object in Moose corresponds to the “does not
exist” null defined in GEM [Zan83], meaning that for a given source object the relationship currently has
no target object in that direction. Null target objects may support the creation of subobjects before their
parent objects by allowing the subobject to have a null parent. For example, plant objects representing a new
species may be created before the plants are used in an experiment. Null target objects also allow complex
objects to be created before all their subobjects are specified. For example, an Experiment object may
be created with a null target object for output, indicating that no output object currently exists, perhaps
because the experiment has not yet been completed. After completing the experiment, the null may be
replaced with an object.

Complex object existence dependencies An object A is eristence-dependent on another object B if
it cannot exist without B, i.e., if A is automatically deleted when B is deleted. In Moose, an existence
dependency can occur in either direction of any connection relationship. This is in contrast to other models
that support such constraints, e.g., Orion [BCG*87], Extra/Excess [CDV88], and Jasmine [ISKT93], where
existence dependency semantics are only attached to (specified) structural relationships, and only in the
dominant direction. Existence dependencies among objects are not expressed as separate properties in
Moose; they are determined by the properties of mutability and null permissions. If a relationship in a given
direction is immutable or single-valued and does not allow a null object then the source is existence-dependent
on the target.

2.2.3 Derived connection relationships

Independently of the dimensions of structure, mutability, cardinality ratio, and null object permissions, each
relationship may optionally be derived in one direction. In that case, given an object of the source class,
the corresponding target object is specified by a rule (often a query). When a query is not sufficient to
express a rule, an arbitrarily complex procedure in a programming language, e.g., C++, may be used. Most
aggregate characteristics of collections (e.g., sum, max, min, avg, count) will be derived. For example, the
average temperature for a set of temperatures may be a derived relationship from the set of temperatures
to a real number. Since scientists are often interested in the statistical properties of some phenomenon, it is
extremely useful to be able to implicitly compute aggregates and other analytic results. Derived relationships
may also be used in more general ways; for example, the output of the experiment in Figure 1 is dependent
on the experiment input and system and is essentially derived by running the experiment. For a simulation
experiment, a derivation rule for the output relationship could actually compute the output from the input
by invoking the simulator.

2.2.4 Inheritance relationships

Suppose that the schema in Figure 1 is enhanced so that a scientist may be classified as a Staff member,
Student, or Project Assistant (PA). The relevant subschema is shown in Figure 3, using dashed directed
edges to capture the inheritance relationships. An inheritance relationship is a directed relationship between
two classes, called the superclass and the subclass. Moose defines inheritance in terms of inclusion inheritance
and specialization inheritance. Inclusion inheritance means that all objects in the subclass are also instances
of the superclass. In Figure 3, the instances of Staff_member, Student, and PA are all instances of Scientist,
and will be retrieved when iterating through the instances of Scientist. Several languages [BKK88, BNPS92]
provide optional iteration over the entire class hierarchy, with the default being iteration over objects that
are not instances of a subclass. We chose the opposite, because we believe that requests on all members of
a class, including those of its subclasses, are most common in an experimental environment. Specialization
inheritance means that the subclass inherits all of the relationships of the superclass. In Figure 3, the
subclass Student inherits the relationships labeled favorite-plant, fav.humidity, and name from Scientist,
and additionally has relationships labeled gpa and dept, which are applicable to Student objects but not

favorite_plant /L\

Scientist | fav_humidity >
A s e | (>\r/‘>
K . ‘ .\,(’ p)

—
{ ¢) dept dcpl C
‘»«{) salary t Staff_member Student Capa /
Sm— - 4
Ci<I6K 20| pA
R

Figure 3: An inheritance hierarchy.

to Scientist objects. Staff.member also has a relationship labeled dept which is different from the dept
relationship of Student, and PA inherits both dep? relationships.

Relationships inherited from a superclass may be refined by the subclass, i.e., a new target class may
be specified, which will be a subclass of the original target class. When this happens, the new relationship
overrides the old relationship. In Figure 3, Staff_member has a relationship salary which is an integer, and
PA refines the inherited salary relationship to a subclass of integer, integer<16K. Derived relationships may
additionally be refined by specifying a new derivation rule for the subclass, without changing the target
class. A subclass may also create a relationship having the same label as a superclass relationship that is
not intended to override the latter. In this case, the subclass can access either relationship by using the
appropriate Fox path expression.> Moose supports multiple inheritance and resolves name conflicts between
inherited relationships by making both relationships available via their inheritance path. Inheritance is
important for scientific experiments because it allows the scientist to gradually refine a highly complex
experimental schema over the course of a study. This flexibility permits the scientist to retain a core schema,
although the specific details for each study may vary.

2.2.5 Derived subclasses

Moose supports derived subclasses, which are defined using constraint inheritance [ABD"89]. The class
extent of a subclass is computed intensionally from the extent of the superclass using a rule. The extents of
derived subclasses are automatically maintained by the system. Derived subclasses are particularly useful
when the scientist discovers that certain experiments with interesting characteristics have special behaviors.
For example, in the experiments represented by Figure 1, it may turn out that plant communities whose
plants all have the same type exhibit certain temperature patterns. The user could then create a derived
subclass of Plant.community, Homogeneous_community (also shown in Figure 1), to keep closer track of
those communities and the experiments that use them. Encore [SZ89] supports derived subclasses whose
rule is a predicate.

3 The Data Definition Language of Moose

A Moose schema is composed of classes and relationships between classes. The data definition language
provides statements to create and destroy both classes and relationships, and to relabel existing relationships
between classes. FEach class is created in a separate statement. Relationships may be created independently
or as part of a class create statement, for ease when defining a large schema at once. Independent creation
of relationships allows a user, for example, to create the schema of a complex object top-down, specifying the
most important classes before worrying about (or creating) the classes for related subparts. It also permits a
user to modify the schema easily, or to build on an existing schema. Iris also allows both forms of relationship

31We expect many scientific schemas to contain hundreds of classes. It is quite easy to forget what names have already been
used for relationships.

creation [Bee88]. Each class create statement must specify the kind of the class. Each relationship create
statement may specify the properties of the relationship in each direction. If left unspecified, the properites
obtain default values of association, N-1, mutable, and with null objects permitted. The following statements
create a portion of the schema in Figures 1 and 3.

create tuple class Experiment;

create tuple class Weather with
haspart wind_speed to Real
haspart humidity to Real,
haspart wind_direction to Real;

create tuple class Plant;

create set class Plant_community with
assoc name to String,
immutable required setof to Plant;

create immutable haspart input from Experiment to Weather;

create immutable required haspart plants from Experiment to Plant_community;

Note that the relationship from Plant.community to Plant uses the default label Plant. The keyword
required, borrowed from Iris [Bee88], indicates that null values are not allowed. The next statement changes
the label from Experiment to Plant.community to be system (to match Figure 1).

relabel plants from Experiment to Plant_community with system;

Inheritance is specified as part of the class create statement, before listing the new class’s relationships.
The following statements create the class Staff_member as a subclass of Scientist.

create tuple class Scientist;

create tuple class Staff member inherits from Scientist with
assoc dept to String,
assoc salary to Integer;

Relationships may be refined by a subclass, so that the subclass’s relationship overrides that of the
superclass. The next example creates PA as a subclass of Staff_member and refines the (integer) salary
relationship inherited from Staff_member to a subclass of integer, i<16K.

create class i<16K inherits from integer;

create tuple class PA inherits from Staff_member with
assoc salary to i<16K refines PA@Staff member.salary;*

The class destroy statement removes the class from the schema. It also removes all relationships
connected to the class, since they can only exist to connect two classes. Relationships may also be removed
separately, using the relationship destroy statement. If there is more than one relationship between two
classes, the relationship label is used to indicate which relationship to remove. The first statement below
removes Plant_community from the schema, including its relationships to Plant and Experiment. The second
statement removes the relationship from Weather to Real labeled wind_direction.

destroy class Plant.community;

destroy wind_direction from Weather to Real;

4PA@Staff_member.salary is a path expression describing which inherited relationship is being refined. Path expressions are
described in Section 4.1.2.

The entire process of defining a schema may take a long time, especially in scientific experiments that
involve hundreds of input parameters and generate hundreds of output results. In addition, the schema may
be very complex and a user may iterate over the schema several times, making adjustments. While a user
is creating or adjusting the schema, the schema may be incorrect, e.g., a collection class might be missing
a set-of relationship. In order to allow intermediate incorrect schemas, the statements defining a Moose
schema must be placed between a begin schema and an end schema statement. The schema is checked
for correctness after the end schema statement.

Often, scientists run several experiments before they realize what the critical parameters are, and some-
times want to change a parameter that was initially constant and left out of the “input” specification.
Schema. evolution is the process of changing the schema. While supporting schema evolution on an unpop-
ulated schema is fairly straightforward (we allow any changes), schema evolution after the schema has been
populated with objects raises some questions. For example, when a new relationship is added to an existing
source object, what target object should be associated with it? We currently plan to adopt the schema
evolution semantics outlined for Orion [BCGT87] and possibly adapt it to an specialized needs that may
arise in scientific applications.

4 Fox: the query language for Moose

Fox (Finding Objects of eXperiments) is the declarative query and data modification language for Moose.
In addition to the novel features mentioned in the introduction, Fox has the following useful characteristics.
It allows arbitrary object construction; it provides closure [ASL89)], so that query results can be used in later
queries; it provides optional persistence of query results, so that query results can be stored when needed
later, but need not clutter the database; and it supports queries based on both named objects and class
extents.

There are several other declarative query languages that have been proposed for OO data models, namely
O2query [BCD89], Extra/Excess [CDV88], CQL-++ [DGJ92], COQL [NO92], OQL [ASL89], IQL [AKS9),
XSQL [KKS92], Ontos’s OSQL [Ont92], and the Orion query language [Kim89], as well as the Equal query
algebra [SZ89]. Fox differs from them in several aspects. The two most prominent ones are its ability to
use complex path expressions to navigate any path in the schema graph in any direction, even through
inheritance relationships, and its ability to associatively retrieve individual elements of an indexed-set given
the corresponding elements of its keyset. The power of Fox in these two aspects is discussed in more detail
in the appropriate subsections below. We compare Fox to other languages directly in Section 4.3, primarily
to O2query.

4.1 Structure of a query

The basic structure of a Fox query is derived directly from SQL. A Fox query has the form

for <range-binding-list>
select <projection-list>
where <qualification>
as <name>;

The following subsections explain the various clauses. First, we describe object naming, because names
for objects play central roles in the other clauses.

4.1.1 Object naming

Any Moose object may be named. A name acts as a surrogate object identifier for the object, one that
is user-generated and likely to be mnemonic (in contrast to system OIDs, which are system-generated and
would have no particular meaning to a user). Named objects serve two important purposes: they allow users
t0 access and reuse query results easily, and they provide users with a quick handle to special or frequently
used objects.

10

Each (sub)query has an optional naming clause, “as <name>", which attaches <name> to the query
result object. These names must be unique throughout the database, and may subsequently be used to
identify the object. Class extents are essentially special cases of named objects: the name of the class is
automatically attached to the class extent when the class is created.

The set of all persistent names of objects is maintained as a special (“set of string”) object, named names.
(It belongs to a set of string class defined by the system for this purpose.) It is therefore easy to see which
names are currently attached to objects, using a query on names, and to free names for reuse, using a delete
statement to remove the desired name from names (without affecting the named object).

Both Iris [FBC*90] and CQL++ [DGJ92] provide names called instance variables and object variables,
respectively. However, their names cannot be persistently stored in the database, which means they cannot
be used to identify frequently used objects. Although O2query uses named objects, it does not allow names
to be attached to query results [BCD89]. The only way to persistently attach a name to an object is to
embed the query in a programming language, and assign the query result to a persistent program variable.
Fox allows the names to be created in the query language, as well as to be accessible from it. COQL [NO92]
provides a similar feature.

4.1.2 Object variables and path expressions

In the for clause of Fox, object variables may be bound to the members of class extents or collection objects
described by path expressions. At any point, the object variable represents a single member of the collection
and can be used as if it were a name for the object. More than one object variable may be bound in the
for clause, and the object variables may be dependent on each other. The scope of the object variable
bindings includes all subqueries that do not rebind the variable, as well the select and where clauses. Fox’s
object variables are similar to tuple variables in SQL [DW89], iteration variables in Orion [BKK88], reference
variables in Daplex [Shi81], and range variables in CQL++ [DGJ92]. The names of all named objects used
in the query must also appear in the for clause. The following is an example for clause that binds three
object variables and indicates the use of a named (Scientist) object Jo.

for e in Experiment, p in e.system.Plant, s in Scientist, Jo

Path expressions are the primary mechanism of specifying what information to retrieve. A path expression
corresponds to a path in the schema graph. A path expression starts with the name of an object or an object
variable, called the path expression root, and continues by traversing relationships. Fox path expressions are
more expressive than those of other languages because they can traverse both connection and inheritance
relationships in both directions. OQL “contexts” [ASL89] are similar to Fox path expressions and can indicate
paths through any relationships. However, OQL contexts are only used to restrict the results (which are
sub-databases) and do not directly evaluate to objects. In some OO models, such as ObjectStore [LLOWI1],
Versant [Ver91], and Objectivity [Obj91], it is possible to define an inverse relationship, which can then
be used to traverse the relationship “in reverse.” However, these inverse relationships must be explicitly
declared.

The syntax of a path expression begins with the path expression root object, which is specified either by
an object variable or by a named object. Then, for each relationship traversed, the path expression contains
a symbol corresponding to the type of relationship and the relationship label. Inheritance relationships use
the symbol ‘@’ (pronounced “as”). Connection relationships use the symbol ‘.’ (pronounced “dot”). Some
sample path expressions are: s.Ezperiment.input.humidity, e.system@Homogeneous_community. Plant, and
p. Plant_community. Ezperiment.input. The first path expression indicates the humidity of the input of some
experiment run by the scientists. The second expression traverses an inheritance indicates all plant objects
that are members of a homogeneous community that is the system for some experiment e. The third
expression, which traverses some relationships in their non-dominant direction, indicates the input of all
experiments run using a plant community containing the plant p.

The result of evaluating a path expression is all objects reachable from the path expression root. If all
relationships traversed are single-valued, the result is a single object. If any relationship is multi-valued (e.g.,
a set-of relationship), then the result is potentially many objects and these objects must become the elements
of a collection, specified implicitly or explicitly by the query. If the path expression traverses multiple set-of

11

relationships, then the effect is that of unioning the innermost collection elements [BNPS92, KIXS92, HMS81].
If two path expressions begin with the same prefix, then they are implicitly joined by their common prefix
when they are evaluated.

A complete path expression to an inherited relationship (such as the name relationship of the Student
class) always traverses the inheritance relationships involved. This solves any name conflict problems, in-
cluding those caused by multiple inheritance. The PA class in Figure 3 has two relationships labeled dept,
but their path expressions are different: PA@Student.dept and PA@Staff-member.dept. A path through an
inheritance relationship toward a subclass restricts the class of the result object, by requiring that it be an
instance of the subclass.

Path compression techniques may be used to permit the specification of incomplete paths. That is,
PA.salary may be expanded by the system to PA@Staff-member.salary. We are investigating ways of ef-
ficiently determining the correct complete path, since there may be more than one possible completion
[Las93].

4.1.3 Object retrieval (select clause)

Fox supports query results that include arbitrary projections on objects and arbitrary joins between objects,
which frequently lead to new objects being created by the query. While projections and joins are a fun-
damental part of relational DBMSs, many OO systems have chosen to allow only the retrieval of existing
objects from their declarative query languages, not the creation of new ones. (In order to create new objects
in these systems, the programming language must be invoked.) For example, Orion’s query language only
returns the OIDs of existing objects [BKK88], Ontos’s OSQL returns relations [Ont92], and O2query results
are values (not objects) [BCD89].

Fox allows the user to explicitly specify the structure of the result of a query. The select clause specifies
not only what to retrieve, but also exactly what the resulting objects should look like. For each binding
specified in the for clause, an object is produced. The object has a connection relationship to the objects
produced by evaluating each component (path expression or subquery) in the select clause, and the object’s
kind is given by one of the keywords tuple, set, multiset, sequencedset, and indexedset. If the new
object would have only one relationship, the user may instead directly project that component by omitting
the kind keyword. The final result is a single object, which is a multiset containing all the objects produced.

When a query creates new objects of a given structure, it also creates a corresponding class, outside the
persistent class hierarchy, to which the new objects belong. The query below returns a multiset of new tuple
objects, each having a humidity and fav_humidity. The query also implicitly creates the new multiset and
tuple classes.

for e in experiment
select tuple e.input.humidity, e.scientist.fav_humidity;

The type of a connection relationship optionally may be given, preceding the path expression or subquery.
The keywords haspart, assoc or association, setof and indexedby are used. A connection relationship
is exclusive, immutable, and allows null values in both directions by default. The cardinality ratio property
is determined by evaluating the component. In the example query below, each object in the result is a set
object which is associated with the name of the plant community and whose elements are plant types.

for p in Plant_community
select set p.name, setof p.plant.type;

A new label may also be given to some or all of the new object’s relationships, which otherwise acquire
the label of the last relationship in the path expression. The following example relabels two relationships
that were originally both labeled name.

for e in Experiment -
select tuple sname = e.scientist.name,
comm_name = e.system.name;

12

To choose just one object from the multiset that represents the result, one of the keywords the and any
should follow select. The the keyword expects the multiset to contain only one element, and returns an
error otherwise. The any keyword chooses an element at random. We expect the to be used most often when
the for clause indicates iteration, and hence a multiset result, but the where clause qualification restricts
the multiset to a single element. Similar constructs include the in Daplex [Shi81] (from which we adopted
the keyword), the element function in O2query [BCD89)], and the member message in COQL [NO92]. Fox
introduces any. We expect any to be used frequently when more than one object may satisfy the where
clause qualification, but any such object is acceptable. For example, a user creating a new experiment may
want to use any existing system whose plants are all above a certain height. In the following example, all
the plants in a homogeneous community have the same type, and so it is only necessary to retrieve the type
of one plant.

for h in Homogenous_community, p in h.plant
select any p.type;

If a multiset is produced by a query, the keyword unique following select specifies that the multiset
should be converted to a set. Uniqueness is conceptually evaluated before the new objects are created, based
on the components for the new objects. Uniqueness of components is determined by object identity. The
following query retrieves only unique temperatures that appear in an experiment’s output.

for e in Experiment, t in e.output.temperature
select unique t.value;

Individual elements may be retrieved from a sequenced-set or indexed-set according to their position or
indexing element. Sequenced-set element retrieval looks just like list element retrieval in O2query [BCD89),
and like array element retrieval in many programming languages, e.g., C and Pascal. If Plant_community in
Figure 1 were a sequenced-set, the following query would retrieve the first plant in each experiment’s system.

for e in Experiment
select e.system[1];

The query syntax to retrieve indexed-set elements is a natural extension: instead of identifying the position
of the indexed-set elements, its indexing element is specified. However, since Moose is unique in providing an
associative connection from a set to an indexed-set, Fox is unique in providing associate retrieval. The next
query retrieves the height of each plant in an experiment, and the temperature value that was associated
with it in the experiment.

for e in Experiment, p in e.system.Plant
select tuple p.height, e.output|p].value

If the indexing element were a single, named object, its name could be used in place of the object variable
p inside the brackets.

4.1.4 Selection of result objects (where clause)

The qualification in the where clause is a single boolean expression, which is evaluated for each potential
object in the result. Fox supports object comparisons by identity, shallow equality, and deep equality,
using the operators is, =, and ==, respectively. We extend earlier definitions of shallow and deep equality
[BNPS92, SZ89] to differentiate a complex object from its associations: only the has-part, set-of, and keyset
relationships of the objects are compared, directly for shallow equality and recursively for deep equality.
Fox also provides comparison operators for comparing scalars to collections and collections to collections by
membership. All membership tests are by object identity. In addition to the operators provided by other
languages [KKS92, BNPS92], Fox adds the disjoint and overlaps operators for comparing two collections
(although they may be simulated using set intersection and an (in)equality comparison with the empty set).
Collection objects may also be combined with set-theoretic union, intersection, and difference, and additive
union [VD91]. Note that shallow equality for collection objects is the same as a membership test for equality.

As an example, the following query finds the input parameters of all experiments using a system that Jo
used.

13

for e in Experiment
select tuple e.input.wind.speed, e.input.humidity,
e.input.wind._direction
where e.system in (for s in Scientist
select s.Experiment.system
where s.name = “Jo”);

4.1.5 Constants and periodic data

Constants may be used in queries wherever an object is needed, e.g., in the for clause or for comparisons.
When a collection is expected, a constant may be specified as a series of element values inside {}’s. In
addition, Fox provides a special construct for creating set constants for periodic data, such as a time series.
Consider the set {5, 10, 15, 20, 25}. Explicitly typing out the elements of the set may be very tedious,
especially when the set contains tens or hundreds of elements. Fox supports the construct “(from <start>
to <finish> step <interval>)”, which can be used to represent the set {<start>, <start> + <interval>,
..., <finish>}. For example, the above set may then be specified as (from 5 to 25 step 5). We expect
this construct to be used often to intensionally specify the members of periodic sets, in combination with
a derived setof relationship. Similar functionality could be obtained using a looping construct provided by
a programming language, but that would require mixing the programming language and query language
statements. By keeping all the constructs inside the declarative query language, Fox permits optimization of
the whole query by the query optimizer. It also prevents crossing the boundary between the query language
and the programming language at run time, which is generally quite time-consuming. The following query
example generates a time series that includes all weekdaysin the eighth through twelfth weeks of the semester.

for w in (from 8 to 12 step 1), d in (from 2 to 6 step 1)
select tuple week = w, day = d
as my-time._series;

4.1.6 Ordering, grouping, and aggregate functions

Any set result may be ordered, making it a sequenced-set. Ordering is specified by an optional order by
clause as in SQL. The query below lists, for each experiment, the scientist’s name, their favorite humidity,
and the humidity they used in the experiment, ordered alphabetically by the name of the scientist.

for e in Experiment

select tuple e.scientist.name, e.input.humidity,
e.scientist.fav_humidity

order by asc e.scientist.name;

There is no group by clause in Fox. The effects of grouping can be accomplished with subqueries that
include a join on the grouping attributes [DW89]. Aggregate functions, which are expressed in an unintuitive
manner in SQL, operate on a subquery in Fox. This more intuitive syntax was first proposed for SQL/NF
[RKB87]. Group qualifications are expressed in the where clause for the query, instead of in a having
clause. If the subquery is needed twice, e.g., for two aggregate functions or for the where clause, the result
of the subquery may be named and the name used instead of repeating the subquery. The following query
will print the name of each experiment’s system and the average height of all the plants in that system, when
the average height exceeds 60 inches.

for e in Experiment

select tuple e.system.name, avg(for p in e.system.plant
select p.height
as heights)

where avg(heights) > 60.0;

14

4.2 Persistence of results

Moose supports three levels of persistence for query results: transient, temporary, and persistent. These levels
apply to both the result class and the result objects. Transient results exist only for the duration of a query.
All query results are transient by default. If a query result is named by the query, it becomes temporary,
along with all the the objects created by that query and the name itself. Temporary results persist until
the user exits the current session with the database. Transient and temporary classes are not part of the
persistent class hierarchy. To make query results persistent, the user must use the insert statement to
explicitly store the objects in an existing class in the database. Names attached to persistent objects are
also persistent.

Temporary results provide additional flexibility by allowing the user to examine and perhaps refine a
result before deciding whether to make it persistent. If all results were persistent, the database would
quickly become cluttered with objects the user does not want to see again. For example, scientists often
generate tens or hundreds of graphs plotting various points, when they only want to choose one or two for
a paper or talk. Making the graphs temporary would allow the scientist to make a final selection before
entering the most useful ones into the database for future use. CQL++ also supports temporary results
[DGJ92], although in CQLA++ the result objects need to be explicitly inserted into a special, temporary
class, while Fox infers the class definitions for temporary objects from the query.

4.3 Comparison with other query languages

The major differences between Fox and other query languages lie in the expressiveness of Fox’s path expres-
sions and the ability to have associative indexing. In this section, we give examples of Fox queries with their
corresponding (more complicated) equivalents in O2query [BCD89]. We also show queries that cannot be
expressed in QO2query, or any other declarative query language besides Fox. We chose O2query because it is
one of the most expressive declarative query languages, and also the language most similar to Fox.

Traversing relationships in non-dominant directions Consider the following Fox query on a plant
object named tall.corn.

for tall_corn
select tall_corn.Plant_community.Experiment;

This query retrieves all experiments that used the plant tall_corn. It is a simple query because the select
path expression can navigate directly from tall-corn to the experiments, along the non-dominant direction of
the relationships between Experiment and Plant_.community and between Plant.community and Plant. The
equivalent O2query query follows. (Since O2query syntax is similar to Fox syntax, we show the O2query
syntax.)

select e
from e in Experiment, p in e.system.Plant
where p is tall_corn;

In the above query, it is necessary to first indicate looping through all experiment objects, and then
through all the plant objects of each experiment, to see if any of them are the object tall.corn. The O2query
query requires much more effort to write, since it is necessary to introduce variables for all the collections in
the path to the corn object, instead of only one, and to introduce a where clause that is unnecessary in Fox.
In the general case, the O2query query would require an extra object variable and an extra conjunct in the
where clause for every collection in the path expression, greatly increasing the complexity of formulating it.

Traversing inheritance relationships Path expressions through inheritance relationships can be used in
Fox to restrict which objects belong to the query result. The following query retrieves plant objects that are
members of a homogeneous community used as the system for some experiment. The inheritance relation-
ship restricts the Plant_community objects to only Homogeneous.community objects, and thus additionally
restricts the Plant objects to only members of a Homogeneous.community.

15

for e in Experiment
select e.system@Homogeneous_community.Plant;

To get the same result without traversing an inheritance relationship, a join between the Plant_community
objects and Homogeneous-community objects is required. This also necessitates an object variable ranging
over the Homogeneous.community objects, which is not necessary in the above Fox query. The following is
the equivalent query in O2query®.

select e.system.Plant
from e in Experiment, h in Homogeneous_community
where e.system is h;

Path expresssions may also traverse inheritance relationships in the direction toward the superclass, to
resolve potential name conflicts that arise from multiple inheritance. That is, although two superclasses of
the same class may each have a relationship labeled L, both L relationships are accessible. The desired L
is specified by including the inheritance relationship to the correct superclass in the path expression. In
O2query and all other languages we know, it is not possible to traverse the inheritance relationship, and so
one of the L relationships is lost.

Indexed element retrieval One of the most novel constructs in Moose is indexed-sets. Accordingly, the
query facilities that deal with indexed-sets are the most novel part of Fox, and the most difficult (if not
impossible) to mimic in any other query language.

In 02, it would be possible to model the indexed-set Vegetation_temperatures as a list. If Plant_com-
munity were also a list, rather than a set as in Figure 1, then a correlation could be maintained between the
elements of the two lists. (This is a variation of parallel arrays.) However, the user would need to maintain
the correlation explicitly, and we know of no way to associatively retrieve the elements of Vegetation. tem-
peratures. Given a particular Plant_community element, there is no way in O2query to find out its position,
and hence no way to retrieve the corresponding Vegetation_temperatures element. Also, although it would
be possible to retrieve the corresponding elements for a given position (by specifying the position), there is
no way to iterate through all the possible positions. O2query’s iteration mechanism treats lists as sets, and
ignores position.

It would also be possible in 02 to model the indexed-set Vegetation_temperatures as a tuple with three
parts: one each for the plant, the temperature, and the experiment. However, this would result in a lot of
redundancy inside the database. For each plant in a given experiment, the experiment would be repeatedly
stored. For each experiment that used the same plant community, the plants would be repeatedly stored.
Also, the additional tuple classes would add complexity to the schema, when the single indexing relationship
suffices in Moose.

Deep equality Fox’s deep equality is similar to that of other languages, in that it recursively traverses
the relationships of two objects to compare them. The objects are deep equal if and only if the same
object is found along each relationship path. However, the deep equality of other languages traverses all
relationships. Because Moose distinguishes structural and non-structural relationships, Fox’s deep equality is
able to traverse only structural relationships, resulting in more meaningful comparisons. For example, when
comparing two Experiment objects of the schema in Figure 1, the associated Scientist object should not
affect the result. The Experiments are deep equal if they used the same input parameters, plants with the
same characteristics, and produced the same collection of temperature values. It does not matter whether
the same scientist ran both experiments or not.

Queries in other languages would need to explicitly compare the input, output, and system of the Exper-
iment object. Although a function could be written specifically for Experiment, a different function would
be necessary for each class, since the other models do not distinguish structural relationships. (Even if a
model did distinguish structural relationships, we know of no way to test whether a relationship is structural
or not, inside a user-defined function.)

5XSQL [KKS92] provides a simple syntax for expressing the join in the path expression, although it still requires the extra
object variable.

16

5 Data Modification

Fox’s data modification statements are closely integrated with its query language. There are four such
statements: insert, update, delete, and load.

5.1 Insert

The insert statement adds new objects to the database. There are two forms of insert: in the first one,
the objects related to the new cbject via the appropriate relationship are explicitly specified, whereas in
the second one they are obtained by a query. For explicit specification, insert uses the keyword instance,
followed by the list of related objects in parentheses. Like Iris [FBCT90], we have extended insert to allow
multiple object insertions in one statement and we allow the objects to be named when they are created.
Each instance is followed by an optional naming clause. The following query creates three new corn plants,
and attaches the name “tall_corn” to the second one.

insert into plant(num_ leaves, type, height, x, y)
instance(3, “corn”, 2.3, 0.2, 1.2),
instance(8, “corn”, 5.0, 0.8, 1.4) as tall_corn,
instance(4, “corn”, 3.7, 1.2, 2.2);

Insert can also use an arbitrary query to create objects. Although each insert statement inserts objects
into exactly one class, we have extended insert to allow nested insertions. This extension permits insertions
into multiple classes in the same statement. For example, the entire experiment input may be specified in
one statement. The result of an insert statement is a multiset containing the inserted objects. The multiset
may optionally be named to facilitate using the collection of new objects in later queries. This may be less
advantageous compared to inserting instances explicitly, where each new object may be individually named
in the insert statement.

A nested insert statement is needed to make a temporary object into a persistent one when the object
is related to other temporary objects, since they must also be inserted. Nested insert statements also have
the advantage of allowing the user to mostly copy a complex object, but make a few changes. For example,
when creating a new simulation experiment the scientist often wants to use almost the same input as the
last experiment, with a few modifications. The following example creates new experiments based on those
that used a system named “Nebraska,” but increases the humidity of each experiment by 5%. Each new
experiment will have a null output object until it has been run.

for s in Scientist

select the s

where s.name = “Sally”
as Sally;

insert into Experiment(Scientist, system, input)
for e in Experiment
select tuple Sally, e.system,
(insert into Weather(wind.speed, humidity, wind_direction)
select tuple e.input.wind_speed,
e.input.humidity * 1.05, e.input.wind.direction)
where e.system.name = “Nebraska”;

Note that the query to name the Scientist object Sally could have been nested in the insert statement
instead.

5.2 Update

Fox’s update statement extends that of other languages by allowing multiple values of the same object to be
updated in the same statement. However, only objects of the same class may be updated in one statement.

17

A name may optionally be attached to the multiset containing all updated objects, to keep track of which
objects were updated, for instance. This example grows all the corn plants by both 1 leaf and 3 cm in
height, which would require two update statements in other languages [DW89, DGJ92]. (We have not seen
declarative update statements for most systems, e.g., 02, Extra/Excess, Iris, and Orion.)

for p in plant

update p.num-leaves to p.num.eaves + 1,
p-height to p.height + 3.0

where p.type = “corn”;

5.3 Delete

The delete statement removes objects from a given class from the database. The objects may be specified
either by name, if they are named, or by a query. Related objects are deleted only if there is an existance
dependency from the deleted object to them, i.e., if the relationship to the deleted object is immutable or
if it is single-valued and does not allow a null object. The first example below deletes the (Scientist) object
named Sally, and the second example deletes the output of Ted’s experiments, which were corrupted.

delete Sally;

for e in Experiment
delete e.output
where e.Scientist.name = “Ted”;

5.4 Load

The load command is for bulk insertion of data from a file, generally into multiple classes at once. Many
scientific experiments have input and output parameters that number in the hundreds and thousands, and
must be loaded into the EMS for each experiment. There needs to be an easier and less time-consuming
way to store the new data in the EMS than using multiple insert statements (or “new” statements in a
programming language), the only method available in many other OO systems. The load command provides
an easy way to load the new data: the scientist generates one text file containing all the data in the load
format and calls load. The system can then optimize the loading process for the specified new objects,
while multiple insert or new statements would be executed in the (probably non-optimal) order they were
specified. Additionally, the ability to load data that already exists in flat files or notebooks is critical to
providing an effective new environment for scientists with ongoing experiments. By writing small programs
to transform the old flat file data into the load file format, a scientist can easily load old data into a Moose
database.

Load facilities exist in most relational DBMS, but in almost no QODBMS. In a relational DBMS, there
is no cross-referencing between tuples and therefore data is easily represented in a file. In OO data models,
the use of OIDs makes the representation of bulk data harder. We address the problem in Moose by allowing
the user to generate surrogate OIDs for the objects. One of the relationships of the objects may be used as
a surrogate OID if it uniquely identifies objects [PG88]; otherwise an arbitrary identifier may be used, e.g.,
meaningful strings or integers automatically generated by a counter in the program generating the data.
Surrogate OIDs may be assigned to new objects created in the file, and also to already existing objects in
the database by using queries (either before calling load or inside the file) to name them.

The following example is a sample data file for part of the schema of Figure 1. Within the text file,
objects are grouped together by class, although a given class may appear more than once in the file and the
order of the classes is not important. Each class is described by its name, labels for the relationships for
which target objects will be given, and a surrogate key type. If a relationship of the class is not specified,
then new objects get a null target object for that relationship. Next, the objects in the class are listed.
Each object begins with a surrogate key (possibly one of its target objects, as in Plant_community below),
continues with a comma-separated list of its (other) target objects, and ends with a semicolon. The target
objects for a setof relationship are listed inside curly brackets. Strings are surrounded by quotes, have no
maximum length, and may contain any characters.

18

Weather<wind._speed, humidity, wind_direction> key string

{

“hot&edry”: 5.2, 0.08, 35.0;
“damp”: 15.5, 0.73, 186.0;
“sticky”: 12.0, 0.89, 320.0

}

Plant.community <name, Plant> key name

“tall”, {“corn2”, “corn6”, “ryel”};

“corn”, {“corn5”, “corn2”, “corn6”, “corn?”};
}

Plant<num leaves, type, height, x, y> key string
{

“corn2”: 24, “corn”, 62.2, 14.2, 3.3;

“cornd”: 10, “corn”, 33.5, 24.3, 22.8;

“corn6”: 38, “corn”, 64.8, 16.6, 4.7;

“corn7”: 14, “corn”, 42.0, 2.6, 18.7;

“ryel”: 50, “rye”, 70.2, 34.5, 5.6;

“wheat8”: 9, “wheat”, 20.6, 89.3, 17.2;

}

Experiment<input, system> key integer

1: “hot&dry”, “corn”;
2: “damp”, “corn”;
3: “sticky”, “corn”;

}

There are several features worth noting in the above example. The surrogate keys for Plant_community
objects are the (string) target objects of its name relationship. They are listed only once, as the first target
relationship, and there is no surrogate key field in the object description. For Experiment objects, the
target objects for the input relationship are the surrogate identifiers of the Weather objects, and the new
Experiment objects will have a null Scientist target object. Also, there are new Plant and Plant_community
objects which are not used in any Experiment.

6 Conclusions

In this paper, we have presented a new declarative query language, Fox, for the Moose data model, which
has been designed specifically for the needs of an Experiment Management System. We have completed
a preliminary implemention of Moose and Fox on top of the Exodus storage manager [CDGT90]. The
implementation is limited in that it only processes the select clause. However, it is the foundation for our
current efforts to add more processing capabilities. We are also designing a query algebra to correspond to
the expressive power of Fox, and investigating various techniques for efficient query processing.

7 Acknowledgements

We would like to thank Miron Livny and the rest of the Zoo project members, Eben Haber, Renée Miller,
and Odysseas Tsatalos, for generating a stimulating environment in which many of the ideas presented in
this paper were conceived. We would also like to thank Sophie Cluet, Mark McAuliffe, Scott Vandenberg,
and the anonymous reviewers from Brown University whose comments improved many aspects of this paper.

19

References

[ABD*89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The Object-

[AK89)]

[ASL89)]

[BCD8Y)

[BCG+87]

[

[Bee88]

[BKK8S]

[BNPS92]

CDG+90]

[CDV8S]

[Che76]
[Deu9q]

[DGJ92]

[DW89)]

Oriented Database System Manifesto. In Proceedings of the International Conference on Deduc-
tive and Object-Oriented Databases, pages 223-240, Kyoto, Japan, December 1989.

S. Abiteboul and P. Kanellakis. Object Identity as a Query Language Primitive. In Proceedings of
the ACM SIGMQOD International Conference on Management of Data, pages 159-173, Portland,
OR, June 1989.

A. M. Alashqur, S. Y. W. Su, and H. Lam. OQL: A Query Language for Manipulating Object-
Oriented Databases. In Proceedings of the International Conference on Very Large Data Bases,
pages 433-442, Amsterdam, The Netherlands, August 1989.

F. Bancilhon, S. Cluet, and C. Delobel. A Query Language for the 02 Object-Oriented Database
System. In R. Hull, R. Morrison, and D. Stemple, editors, Proceedings of the International
Workshop on Database Programming Languages, pages 122-138. Morgan-Kaufman, Inc., San
Mateo, CA, 1989.

J. Banerjee, H. T. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou, and H. J. Kim. Data model
issues for object-oriented applications. ACM Transactions on Office Information Systems, 5(1):3—
26, January 1987.

D. Beech. A foundation for evolution from relational to object databases. In Proceedings of
the International Conference on Eaxtending Database Technology, pages 251-170, Venice, Italy,
March 1988.

J. Banerjee, W. Kim, and K. C. Kim. Queries in Object-Oriented Databases. In IEEE Conference
on Data Engineering, pages 31-38, Los Angeles, CA, February 1988.

E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella. Object-Oriented Query Languages: The
Notion and the Issues. IEEE Transactions on Knowledge and Data Engineering, 4(3):223-237,
June 1992.

M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E. Richardson, D. T. Schuh, E. J. Shekita,
and S. L. Vandenberg. The EXODUS Extensible DBMS Project: An Overview. In Stanley B.
Zdonik and David Maier, editors, Readings in Object-Oriented Database Systems, pages 474-499.
Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

M. Carey, D. DeWitt, and S. Vandenberg. A Data Model and Query Language for Exodus.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
413-423, Chicago, IL, June 1988.

P. P. Chen. The Entity-Relationship Model — Towards a Unified View of Data. ACM Transac-
tions on Database Systems, 1(1):9-36, March 1976.

0. Deux. The Story of Q2. IEEE Transactions on Knowledge and Data Engineering, 2(1):91-108,
March 1990.

S. Dar, N. H. Gehani, and H. V. Jagadish. CQL++: A SQL for a C++ Based Object-Oriented
DBMS. In Proceedings of the International Conference on Eztending Database Technology, pages
201-216, Vienna, Austria, April 1992.

C. J. Date and C. J. White. A Guide to DB2. Addison Wesley, Reading, MA, 3rd edition, 1989.

[FBC*90] D.H. Fishman, D. Beech, H.P. Cate, E. C. Chow, T. Connors, J. W. Davis, N. Derrett, C. G.

Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A. Neimat, T.A. Ryan, and M. C. Shan. Iris: An
Object-Oriented Database Management System. In S. B. Zdonik and D. Maier, editors, Readings
in Object-Oriented Database Systems, pages 216-226. Morgan-Kaufman, Inc., San Mateo, CA,
1990.

20

[HK87] R. Hull and R. King. Semantic Database Modeling: Survey, Applications, and Research Issues.
ACM Computing Surveys, 19(3):201-260, September 1987.

[HM81] M. Hammer and D. McLeod. Database Description with SDM: A Semantic Database Model.
ACM Transactions on Database Systems, 6(3):351-386, September 1981.

[IL89] Y. Ioannidis and M. Livny. Moose: Modeling Objects in a Simulation Environment. In Proc.
IFIP 1989, 11th World Computer Congress, pages 821-826, San Francisco, CA, August 1989.

[IL92] Y. Ioannidis and M. Livny. Conceptual Schemas: Multi-Faceted Tools for Desktop Scientific
Experiment Management. International Journal of Intelligent and Cooperative Information Sys-
tems, 1(3):451-474, December 1992.

[ILH*93] Y. Ioannidis, M. Livny, E. Haber, R. Miller, O. Tsatalos, and J. Wiener. Desktop Experiment
Management. IEEE Data Engineering Bulletin, 16(1):19-23, March 1993.

[ISK*93] H. Ishikawa, F. Suzuki, F. Kozakura, A. Makinouchi, M. Miyagishima, Y. Izumida, M. Aoshima,
and Y. Yamane. The Model, Language, and Implementation of an Object-Oriented Multimedia
Knowledge Base Management System. ACM Transactions on Database Systems, 18(1):1-50,
March 1993.

[KC86] S. Khoshafian and G. Copeland. Object Identity. In Proceedings the International Conference
on Object-Oriented Programmang Systems, Languages, and Applications, pages 406-416, 1986.

[Kim89] W. Kim. A Model of Queries for Object-Oriented Databases. In Proceedings of the International
Conference on Very Large Data Bases, pages 423-432, Amsterdam, The Netherlands, 1989.

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented Databases. In M. Stonebreaker,
editor, Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 393-402, San Diego, CA, June 1992.

[Las93] Y. Lashkari. Domain Independent Disambiguation of Vague Query Specifications. Technical
Report 1181, Department of Computer Sciences, University of Wisconsin-Madison, October 1993.
Master’s Thesis.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore Database System. Com-
maunications of the ACM, 34(10):50-63, October 1991.

[MF91] G. Miller and C. Fellbaum. Semantic Networks of English. Cognition, 41(1-3):197-229, 1991.

[NO92] M. Nabil and S. L. Osborn. COQL: A Query Language for an Object-Oriented Database System.
Unpublished manuscript, May 1992.

[Obj91] Objectivity, Inc. Objectivity/DB Documentation Vol. 1, 1991.
[Ont92] Ontos. Ontos Object SQL Guide, 2.2 edition, February 1992.

[PG88] N. W. Paton and P. M. D. Gray. Identification of Database Objects by Key. In K. R. Dittrich,
editor, Advances in Object-Oriented Database Systems: 2nd International Workshop on Object-
Oriented Database Systems, pages 280-285, Berlin, Germany, September 1988. Springer-Verlag.

[RKB87] M. A. Roth, H. F. Korth, and D. S. Batory. SQL/NF: A Query Language for ~1NF Relational
Databases. Information Systems, 12(1):99-114, January 1987.

[Shi81] D. W. Shipman. The Functional Data Model and the Data Language DAPLEX. ACM Transac-
tions on Database Systems, 6(1):140-173, March 1981.

[SKL88] S. Su, V. Krishnamurthy, and H. Lam. An Object-oriented Semantic Association Model (OSAM).
In S. Kumara, A. L. Soyster, and R. L. Kashyap, editors, A.I. in Industrial Engineering and Man-
ufacturing: Theoretical Issues and Applications, chapter 17, pages 463-494. American Institute
of Industrial Engineering, 1988.

21

[SS77] J. M. Smith and D. C. P. Smith. Database abstractions: Aggregation and generalization. ACM
Transactions on Database Systems, 2(2):105-133, June 1977.

[SZ89] G. M. Shaw and S. B. Zdonik. An Object-Oriented Query Algebra. In R. Hull, R. Morrison,
and D. Stemple, editors, Proceedings of the International Workshop on Database Programming
Languages, pages 103-112, San Mateo, CA, 1989. Morgan-Kaufman, Inc.

[VD91] S.L. Vandenberg and D.J. DeWitt. Algebraic Support for Complex Objects with Arrays, Identity
\ and Inheritance. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 158-167, Denver, CO, May 1991.

[Ver91] Versant Object Technology. VERSANT System Reference Manual, Release 1.6, 1991.

[WCHS87] M. Winston, R. Chaffin, and D. Herrmann. A Taxonomy of Part-Whole Relations. Cognitive
Science, 11:417-444, 1987.

[WI93] J. L. Wiener and Y. Ioannidis. A Moose and a Fox Can Aid Scientists with Data Management
Problems. Technical Report 1182, Department of Computer Sciences, University of Wisconsin-
Madison, October 1993.

[Zan83] C. Zaniolo. The Database Language GEM. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 207-218, San Jose, CA, May 1983.

22

