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Abstract

We identify a useful property of a program with respect to a predicate, called factoring.
While we prove that detecting factorability is undecidable in general, we show that for a
large class of programs, the program obtained by applying the Magic Sets transformation
is factorable with respect to the recursive predicate. When the factoring property holds,
a simple optimization of the program generated by the Magic Sets transformation results
in a new program that is never less efficient than the Magic Sets program and is often
dramatically more efficient, due to the reduction of the arity of the recursive predicate. We
show that the concept of factoring generalizes some previously identified special cases of
recursions, including separable recursions and right- and left-linear recursions.

1 Introduction

The Magic Sets transformation [BMSU86, BR87] is a rule rewriting technique that, given a
query and a recursive program, produces a new program such that the semi-naive bottom-up
evaluation of the new program constructs the answer to the query more efficiently than the
original recursion. Magic Sets achieves its power by restricting the search of the underlying
database to the portion of the database that is relevant to the query.

The Magic Sets transformation is conceptually simple and the potential savings gained by
ignoring the irrelevant tuples in the database is large. However, for some important recursions
much better algorithms are known. Intuitively, this is because Magic Sets does not reduce the
arity (number of columns) of the recursive predicate. Since the size of the relation computed is
bounded by n*, where n is the number of distinct constants in the database and k is the arity
of the recursive predicate, reducing the arity (k) can result in an order of magnitude increase
in the efficiency of the algorithm.

*Some of the results in this paper were presented in a preliminary form in Proc. VLDB 89.
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In this paper we identify a useful property of a program with respect to a predicate, called
factoring. If a program can be factored nontrivially with respect to a query, then the program
can be rewritten to reduce the arity of the recursive predicate. Few programs and queries
have the factoring property as written; however, in many important cases the Magic Sets
transformation produces programs that do have the factoring property. While we prove that
in general detecting factorable recursions is undecidable, we describe classes of recursions for
which the Magic Sets transformation always produces a factorable recursion.

The separable recursions [Nau88a] and the left- and right-linear recursions [NRSU89] have
also been identified as significant classes of recursion for which there are arity reducing evalu-
ation algorithms. In this work we show that these classes of recursions are proper subsets of
the class of recursions for which Magic Sets produces a factorable recursion. Furthermore, the
special purpose evaluation algorithms of [Nau88a] and the special purpose rewriting techniques
of [NRSU89] can be derived automatically by simple optimizations applied to the factored
Magic program.

We introduce the notion of factoring in Section 2, and show that in general it is undecidable.
We describe classes of programs for which the corresponding “Magic” programs are factorable in
Section 3. In Section 4, we suminarize some simple optimizations that can be used in conjunction
with factoring to refine a program. We discuss the connections between our approach, that is,
Magic Sets followed by factoring, and the Counting transformation and the Separable, One-
sided, and Right- and Left-linear classes of programs in Section 5. In Section 6, we present
conclusions and directions for future work.

We conclude this introduction with two examples of the power of the factoring approach.

Example 1.1 Consider a definition of transitive closure including all three forms of the recur-
sive rule.

HX,Y) WX, W), (W,Y).
HX,Y) - e(X,W), t(W,Y).
HX,Y) - #X,W), e(W,Y).
(X,Y) - e(X,Y).
query(Y) = t(5,Y).
We obtain the following program by first applying the Magic Sets transformation and then
factoring:
m (W) - fy(W).
mtf (5).
fiy) - ma(X), e(X,Y).
query(Y) = fi(Y).

(This example is presented in detail in Section 3.) O

The following example demonstrates that factoring is useful for programs with function
symbols (not just for Datalog).




Example 1.2 Suppose we wish to compute the set of all members of a given list that satisfy
some predicate p. We can do this by augmenting the standard Prolog member procedure

pmem(X, [X|T]) - p(X).
pmem(X,[H|T)) :- pmem(X,T).

and the following query
¢(X) - pmem(X,[z1,Z2,...,Zn])-

where [£1, %2, ..., Ts) is the given list. On this program and query, if all members of the given list
satisfy the predicate p, Prolog will compute the O(n?) facts pmem(z;, [z;,...,z,])for1 < j < n
and j <1< n.

By factoring, we get

m_pmem([z1, T2, ..., Ta))-

m-pmem(T) - m_pmem([H|T]).
fomem(X) - m-pmem([X|T]), p(X)-

query(X) : fpmem(X).

Assuming a structure-sharing implementation of lists, each inference can be made in constant
time (i.e. independently of the list size), and the factored program computes the answer in
linear time. This example is worked out in detail in Example 4.6 0O

2 Definitions

We consider Horn clause logic programs. We will assume the usual definitions of term, literal
and rule [L1087]. In the deductive database literature, a distinction is often drawn between
a set of facts, called the eztensional database or EDB, and the rest of the program, called
the intensional database or IDB. ! The motivation is that optimization strategies focus on the
IDB, since the EDB can contain a large number of facts. We follow this convention, and by
“program” we denote the IDB, unless otherwise noted.

The set of answers to a query, which is a partially instantiated literal, is the set of facts that
unify with it in the least Herbrand model of IDB U EDB. Let P be a program. Each IDB rule
can be viewed as an operator that enables us to derive new (head) facts from known (body)
facts. Indeed, the collection of program (IDB) rules can be viewed, by extension, as such an

! Although our results are applicable to programs containing function symbols, we work with programs in a
restricted standard form, in which no function symbols or constants appear in program rules. This standard
form is described further in Section 4.



operator, say Tp. It is well known that the least Herbrand model of a Horn clause logic program
P is equal to the least fixpoint of the Tp operator that contains the EDB facts [vEKT76]. We
consider how the IDB can be transformed, say to IDB’, such that the set of facts that unify
with the query in the least model of IDB’ U EDB is identical to the set of answers, for all EDBs.
(Of course, we expect that the use of IDB’ will also lead to a more efficient computation of the
set of answers.)

In this paper we use the notion of a derivation tree in several proofs.

Definition 2.1 Consider a program P and an EDB D. Derivation trees constructed using
PUD (trees in PU D, for short) are defined recursively:

1. For each fact in D, there is a derivation tree consisting of a single node labeled with that
fact.

2. Let there be an instance of a rule v of P such that p is the fact corresponding to the
head and ¢;, 1 < i < n, are the facts corresponding to the (n) body literals. If there
are derivation trees D;, 1 < i < n, such that the root of each tree is labeled with the
corresponding g; fact, then there is a derivation tree with D;, 1 < i < n, as subtrees of
the root and with root label p. Each arc from the root to a child is labeled r.

3. Only trees defined by (1) and (2) are derivation trees.

It is easily verified that there is a derivation tree with root label p (we also say “there is a
derivation tree for p”) if and only if the fact p is in the least fixpoint of PU D (and thus in the
least Herbrand model for P).

2.1 The Magic Sets Rewriting Algorithm

This is a program transformation that takes a program, say P and a query, and produces a new
program, say P™9, For all EDBs, the two programs compute the same answers. That is, if we
consider the least fixpoint of P U D and P™ U D, the set of facts that unify with the query
literal is identical.

The idea is to compute a set of auxiliary predicates that contain the goals. The rules in the
program are then modified by attaching additional literals that act as filters and prevent the
rule from generating irrelevant tuples. We assume familiarity with the Magic Sets algorithm,
which we illustrate in Example 4.2. The reader is referred to [BMSU86, BR87, Ram88] for
details.

3 The Factoring Property

Consider a program P, a query (), and a predicate p that appears in P. Let P be the program
obtained by adding the following rules to P:

p1(Xiyse s Xip) = P(Xnpeeer Xn)-
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p2(Xjyy oo s Xj) = p(Xp,..., X5).
p( X1y, Xn) = Xy, X )y p2oA Xy oo o0 Xjy)-
where the X;’s are distinct variables. Here, X;,,...,X;, and Xj,..., X}, represent subsets of
X, through X,,. We say that (P, @, p) has the factoring property if P and P’ compute the
same answers to @ for all EDBs. More precisely, we say that p(X3i,...,X,) can be factored
into p1(Xs,...,X;) and p2(Xk, ..., X;) in P with respect to Q. This holds trivially if either p,
or p, contains all arguments of p. We say that p can be non-trivially factored if neither p; nor
p2 contains all arguments of p, and henceforth, we shall consider only non-trivial factoring of

programs.

Note that factoring is defined for general logic programs, not just Datalog. The following
theorem shows that factorability is undecidable even for Datalog programs.

Theorem 3.1 It is undecidable whether a predicate in a given program is non-trivially fac-
torable with respect to a given query.

Proof Consider the program
HX,Y,2) - a(X),a(Y,Z2).
(X,Y,Z) - aX),q,Z).

with the query #(X,Y, Z)?. Furthermore, let a; and a; be EDB relations, while ¢; and g are
IDB relations. There are two ways to factor ¢ nontrivially: into ¢;(X) and t3(Y, Z), and into
t1(X,Y), t5(Z). We consider the second alternative first.

By definition of factoring, ¢ can be factored into t{ and t} if and only if adding the rules
#H(X,Y) - #X,Y,2).
th(Z) - #X,Y,2).
t(Xa Y7 Z) - tll(Xv Y)7 t,Z(Z)'

to the definition of ¢ computes the same relation for ¢ as the original definition (without the
new rules) for all possible EDBs.

Now consider an EDB such that a; is empty, a; contains the fact a1(1), ¢2 is empty, and
q1 contains the facts ¢1(2,3), and ¢1(4,5). The original program computes only #(1,2,3) and
#(1,4,5), while the rewritten program also computes #(1,2,5) and #(1,4,3), so ¢ cannot be
factored into t] and 5.

Next, consider factoring #(X,Y, Z) into ¢;(X) and #3(Y,Z). Again by the definition of
factoring, this is possible if and only if adding the rules

(X)) - HX,Y,2Z).
(Y,2) - #X,Y,2).
UX,Y,Z) - t(X), (Y, 2).



to the definition of ¢ computes the same relation for ¢ as the original definition (without the
new rules) for all possible EDBs.

It is clear that the program with the new rules will compute the same relation for ¢ for
all EDBs in which a; and ap are identical. So consider an EDB in which a; and ay differ.
In this case, the new program will compute the same relation for #(X,Y, Z) as the original
program if and only if ¢; and g, compute the same relation. Since ¢; and gz can be arbitrary
Datalog queries, and containment for binary Datalog queries is undecidable [Shm87], detecting
factorable programs is also undecidable. O

The proof of Theorem 3.1 is by reduction from the containment problem for Datalog queries,
and assumes multiple IDB predicates. To our knowledge, the decidability of factoring for single
IDB predicate programs is open.

We have the following simple observation, which suggests an equivalent definition of factor-
ing.

Proposition 3.1 Let P’ be obtained from a given program P by the following transformation
with respect to predicate p:

e Every body literal p(ty, . . .,t,) is replaced by the literals py(ti;, .. ., 1) and pa(tjy, - - -, t5)-

o Every rule with head p(ty,...,t,) is replaced by two rules with the same body, and with
heads py(ti,, .., t;,) and pa(ty, ..., t;)-

P and P’ compute the same answers to Q for all EDBs if and only if p(X1,...,X,), where the
X s are distinct variables, can be factored into py(Xi,, ..., Xi,) and po(Xjy,..., X)) in P with
respect to a query Q.

We refer to the transformation described in the above proposition as the factoring transfor-
mation. Note that applying this transformation results in a program that does not contain p,
which is replaced by two predicates, p; and ps, of strictly lower arity.

4 Classes of Factorable Programs

The Magic Sets transformation [BMSU86, BR87, Ram88] rewrites a program with the ob jective
of restricting the computation by propagating bindings in the query. We identify classes of
programs for which the program produced by applying the Magic Sets transformation can be
factored with respect to the recursive predicate.

4.1 Definitions

We begin by introducing some terminology and conventions. We only consider programs in
which there is a single (recursive) IDB predicate, say p, and there is a single reachable adorn-
ment, say p*. We refer to such programs as unit programs.




A rule is said to be in standard form if every argument of p*, in the head or the body, is
a variable, and no variable appears in two arguments of the same p*-literal. We require all
rules to be in standard form, and we allow the use of a special predicates to ensure that this
requirement does not entail a loss of generality. Thus, a literal p*(X, X,5,Y) could be replaced
by p*(X,U,V,Y), equal(V,5),equal(X,U), while a literal p*(X.Y, Z) must be replaced by the
conjunct p*(U, Z), list(X,Y,U). Conceptually, list and equal are infinite EDB relations. Once
this translation to standard form is done, the results in this paper can be used to test for
factorability. We emphasize that this translation is syntactic, and is done only during compile
time to test for factorability; the actual program that is evaluated need not be in standard
form.

We use p*(X,Y) to denote a p*-literal, where X is the vector of variables in the bound
argument positions of a p®-literal, and Y is the vector of variables in the free argument positions.

Consider a rule in the adorned program with head literal p*(X,Y). A left-linear occurrence
of p* is a body literal p*(X,U), and a right-linear occurrence of p* is a body literal p*(V,Y).

The following definitions generalize those in [NRSU89]. In the following, by disjoint con-
junctive queries we mean conjunctive queries that do not share any variables.

Definition 4.1 A rule is left-linear if it is of the form

(X, Y) - left(X), p3(X,T1), p3(X,U2),

ey

p*(X,Us), last(U1,U2y...,Un,Y).
where

o The rule is in standard form.
o left(X) and last(Ui,...,Un,Y) are disjoint conjunctions of EDB predicates.
Definition 4.2 A rule is right-linear if it is of the form
p*(X,Y) - first(X,V),
p*(V,Y), right(Y).

where

o The rule is in standard form.
o first(X,V) and right(Y) are disjoint conjunctions of EDB predicates.
Definition 4.3 A rule is a combined rule if it is of the form
P(XY) = lefi(X),
P (X, U1), p3(7,72),
p%(X,T,), center(U,V),
p*(V,Y), right(Y).
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where

e The rule is in standard form.

o left(X), center(U,V), and right(Y) are disjoint conjunctions of EDB predicates.

We remark that some of the conjunctions of EDB predicates referred to in the above def-
initions may contain occurrences of the special EDB predicate equal. As a special case, a
conjunction may contain only such occurrences.

Also, note that we have used the terms “right” and “left” and “combined” in order to clarify
the exposition. Trivially, any transformation that simply permutes the order of arguments
in predicates (the same permutation for all instances of a predicate) and reorders predicate
instances in the body of rules computes the same relation as the original program (up to
renaming of columns.) For that reason, any program that matches our right (left, combined)
definitions after some permutation of variables in predicates (the same permutation for all
instances of a predicate) and some reordering of predicates in the body of rules, will also be
considered right (left, combined).

Example 4.1 Consider the rule
t(X,Y,2) - e(Y,W), (X, W, 2).

In this form, the rule does not fit the definitions of right, left, or combined linear rules. Rear-
ranging and permuting, we get the new rule

tlbbf(X’ Z, Y) . tlbbf(X, Z, W)’ e'(W, Y)-

which is a left-linear rule. O

4.2 Factorable Programs

We present theorems that identify classes of programs for which the corresponding Magic pro-
grams are factorable. The importance of these theorems lies in the technique that they exem-
plify: a two-step approach to optimizing programs in which the programs are rewritten using
the Magic Sets transformation and subsequently factored if possible.

Let P be a program, @ a query, and P24 the adorned program corresponding to a left-to-
right evaluation of the rules of P. P™ represents the program obtained by applying the Magic
Sets transformation to P and Q.

Example 4.2 The rewriting algorithms presented in [NRSU89] were the first to derive auto-
matically unary programs for single-selection queries for all three forms (left-linear, right-linear,
non-linear) of the transitive closure. We achieve the same result here by first applying the Magic
Sets transformation and then factoring the rewritten program. To illustrate the technique, we
again consider the single program that includes all three forms of the recursive rule for the




mAT (W) - mia(X), (X, W).

mf (W) - ma(X), e(X,W).

m4(5).

I(X,Y) - m(X), #(X, W), HTW,Y).
(X,Y) - ma(X), e(X, W), I(W,Y).
(x,Y) - maM(X), (X, W), e(W,Y).
PH(X,Y) - ma(X), e(X,Y).

query(Y) :- t4(5,Y).

Figure 1: P™ for the three-rule transitive closure.

transitive closure presented in Example 1.1. The Magic Sets algorithm rewrites this program
to produce the program in Figure 1.

If we identify m %/ tuples with goals in a top-down evaluation, we see that only the last
occurrence of ¢/ in a rule body generates new goals, and further, the answer to a new goal is
also an answer to the goal that invoked the rule. In fact, every answer to a subgoal is also an
answer to the query goal m.1%/. Also, if ¢ is generated as an answer to a subgoal, then a new
subgoal m._t*/(c) is also generated. These observations imply that it does not matter which
subgoal an answer corresponds to; its role in the computation is the same in any case. That is,
tb/(X,Y) can be factored into bt(X) and f#(Y) in the Magic program. This yields the program
shown in Figure 2.

Applying further optimizations, discussed in Section 4, we finally obtain the following unary

program:
maf (W) = fi(W).
m_t%7(5).
YY) - m(X), e(X,Y).
query(Y) - fi(Y).
O

Definition 4.4 Let p be the only IDB predicate in a program P, and () be a query on p.
Then the combination of P and Q is an RLC-stable program if P consists only of right-linear,
left-linear, and combined-linear rules plus one exit rule, and p* is the only adorned version of
pin P,

It is convenient to be able to associate sets of tuples with conjunctions of body literals. We
do this by introducing some new predicates and rules that define them. These predicates can
be viewed conjunctive queries (i.e. each predicate is defined by a rule that contains only EDB
predicates in the body). We will refer to them as “conjunctions” to emphasize the fact that
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mf (W) - mi¥(X), bt(X), fHW).
mf (W) - mt(X), e(X,W).
m 4 (5).
b(X) - mi(X), b(X), fHW),
b(W), fHY).
b(X) - mt(X), (X, W),
bt(W), fH(Y).
(X)) - mi(X), bt(X),
FtW), e(W,Y).
(X)) - mit(X), e(X,Y).
Yy = ma(X), 0(X), (W),
b(W), ft(Y).
YY) = ma(X), e(X, W),
b(W), fH(Y).
YY) = mib(X), bt(X),
(W), e(W,Y).
Yy - mtt(X), e(X,Y).
query(Y) = bi(5), ft(Y).

Figure 2: The factored version of P™J.

they correspond to conjunctions of body literals. In the following definition, first, left, right,
and center are used in the same way as in the definitions of left-, right-, and combined-linear
rules.

Definition 4.5 The conjunctions bound_exit and free_exit are defined as follows:

bound_ezit(X) : ezit(X,Y).
freeezit(Y) - exit(X,Y).

where ezit(X,Y) is the body of the exit rule.

The conjunction bound.first is defined for a given right-linear rule:

bound_first(X) :- first(X,0).

The conjunction free-last is defined for a given left-linear rule:

freeldast(Y) :- last(Ui,Ua,...,Un,Y).
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The conjunction bound is defined for a given left-linear or combined rule:

bound(X) :- left(X).

The conjunction free is defined for a given right-linear or combined rule:

free(Y) = right(Y).

The conjunction middle is defined for a given combined rule:

middle(T, V) :- center(U, V).

Often by a slight abuse of notation we will refer to left, right, and center as conjunctions
instead of using bound, free and middle.

Our first theorem essentially generalizes the results in [NRSU89], although it must be used
together with the additional optimizations described in Section 4 in order to do so. It uses the
following definition.

Definition 4.6 Let P,Q be an RLC-stable program with IDB predicate p. Then P,Q is
selection-pushing if the following conditions hold:

¢ For any combined or right-linear rule r in P, the conjunction “free_exit” must be con-
tained in the conjunction “free” for r.

e For any pair of rules r; and 73 in P, if both r; and r; contain a “left” conjunction, these
must be equivalent. If one contains a “left” query, and the other a “first” query, the
conjunction “bound_first” must be contained in the conjunction “bound”.

We use the following notation: p*(z,a) denotes a tuple in the (only) recursive predicate p,
with z being the vector of values in the bound arguments and a being the vector of values in
the free arguments. We sometimes refer to z as a goal and a as an answer to the goal z. The
original query is denoted as the goal zo.

We begin by proving a simple technical lemma.

Lemma 4.1 Let P be a selection-pushing program, m._p*(zo) be a seed, and D be an EDB. If
there is a derivation tree in P™ U D or in Pf* U D for m_p%(z;), zo # =i, then zo must be
contained in the (set of answers to the) conjunctive query ‘bound”, which is uniquely defined
for selection-pushing programs.

Proof All rulesin P™ or Pfect that define magic predicates are generated from right-linear or
combined rules of P. Consider the first magic fact m_p*(z;) that is generated using a magic rule
(i.e. that is not the seed m-p*(zo)). If the magic rule is generated from a right-linear rule, the
body of the magic rule contains a conjunction of the form “m_p*(X), first(X,V)”, and since
m-p*(zo) is the only magic fact that can be used to instantiate the m_p* literal in the body,
zo must be contained in the conjunctive query “bound-first”. ;From the second condition
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on selection-pushing programs, it follows that zo must be contained in the conjunctive query
“bpound”. If the magic rule is generated from a combined rule, the body contains a conjunction
of the form form “m_p*(X), left(X)”, and it follows immediately that zo must be contained in
“bound”. O

The following theorem identifies a class of factorable programs.

Theorem 4.1 Let P,Q be an RLC-stable program with IDB predicate p, and let X be the vector
of variables appearing in bound arguments of p* in the heads of the rules of P and let Y be
the vector of variables appearing in free arguments of p® in Ped, If P,Q is selection-pushing
then p*(X,Y) can be factored into bp(X) and fp(Y) in P™ with respect to the query Q.

Proof Let Pfo¢ denote the factored program. We will prove the following.
For any database D

1. If there is a derivation tree for a fact fp(e) in Pfect y D, then there is a derivation tree
for the fact p®(zg, @) in P™ U D, and

2. If there is a derivation tree for a fact m_p*(c) in Pf2¢ U D, then there is a derivation tree
for m_p®(c) in P™ U D.

The converses of the above two statements are easy to show from the structure of Pfact and
P™3_ From the first statement and its converse, it follows that relation fp contains exactly the
set of answers to @), thereby establishing the theorem.

The proof is by induction on the height of derivation trees. As the basis, the only tree of
height 1 for an m._p® or fp fact in P2t U D is m_p®(zo), and this fact is also in P™ U D.

For the induction, assume that the claim is true for trees of height less than N.

Case 1 (m_p* facts):
Consider a derivation tree T of height N for m.p*(c) in P/*® U D. Since the rules for m_p®
obtained from left-linear rules are redundant, m_p*(c) must have been generated using a magic
rule obtained from either a right-linear or combined rule, say r.

If 7 is a right-linear rule, the children of m_p®(c) in T are facts in D, except for one magic
fact, say m_p®(e1). By the induction hypothesis, m_p®(c;) also has a derivation tree in P™UD.
Thus, we have a derivation tree 7" for m_p*(c) in P™9 U D. (See Figure 3. This figure, and
other figures in the proofs of this section, use two conventions: (1) a triangle hanging off of
a goal represents a subtree that must exist by induction, and (2) a goal with no subtrees is a
basis fact.)

If 7 is a combined rule, the children of m_p*(c) in T include facts in D, plus one magic
fact, say m_p*(c1), and some fp facts. By the induction hypothesis, there is a derivation tree
for p*(zo,a;) in P™ U D for each child fact fp(a;). Further, left(zo) holds by Lemma 4.1, and
we have m_p®(zo). Using these facts in the body of the magic rule obtained from r in P™J,
we obtain an m_p*(c) in the head, which can be used in a derivation tree TV in P™9 U D for
m_p®(c). (See Figure 4.)
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R

T mp’(cl) first( )

Figure 3: T' — a derivation tree for m_p*(c) in P™ U D, right-linear rule case.

m“c)

T
mp’(x0)  left(x0) p*x0,al) ... p(x0,ak) center(ac)
mp| c)
T: mp¥cly  lefia) fpal) ... fp@ak) center(a,c)

Figure 4: Corresponding derivation trees for m_p*(c) (with 7' in P™YUD and T in Pfecty D),
combined rule case.

Case 2 (fp facts):
Consider a derivation tree T' of height N for fp(a) in P2 U D. Since the rules for fp obtained
from right-linear and combined rules are redundant, fp(a) must have been generated from a
rule in Pfect say f, obtained from either an exit or a left-linear rule, say r, in P. There are
two subcases to consider.

Case 2(a) (r is an ezit rule)
The children of fp(a) in T are facts in D, except for one magic fact, say m_p®(c;1). We note

that since fp(a) was generated from an exit rule, a is contained in “free.ezit”, and thus is in
“free” for all right-linear and combined rules.

By the induction hypothesis, there is a derivation tree in P™ U D for m_p®(c;). Let the
magic rule from which m_p*(¢;) is generated be obtained from rule s in P. There are two
subcases to consider.

Case 2(a)(i) (s is a combined rule) Clearly, there is a tree in P™ U D, using the modified
rule corresponding to r, for p*(c1,a). Consider the children of m.p*(c;) in T. In addition to
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facts in D, there is one magic fact, and some fp facts. By the induction hypothesis, there is a
derivation tree for p*(zo,a;) in P™ U D for each child fact fp(a;). Further, left(zo) holds by
Lemma 4.1, and we have right(a) (since a is contained in “free”) and m_p*(zo). Using these
facts — plus the facts in D that are children of m_p*(c;) in T and the fact p*(c1,a) — in the
body of the rule corresponding to s in P™9, we obtain an instance with p*(zo, a) in the head.
This instance can be used in a derivation tree T' for fp(a) in P™ U D. (See Figure 5.)

p*(x0,2)

%\

T mp (xO) lefi(x0) p Ox0,al) ... P°60.aK) cemeracl)  pX(gla) right@)
mp’(cl) (base facts
fromr)
(a)
mpa cl) ... (base facts from
T exit rule)

RRR=

Figure 5: Corresponding derivation trees 77 in P™ U D and T in Pfact y D, combined rule
case.

Case 2(a)(ii) (s is a right-linear rule) Let m_p®(cy) be a magic fact that is either the seed or
is generated from a magic rule obtained from a combined rule, and let the magic fact m. *(e1)
be obtained from m_p*(cy) by one or more applications of a magic rule obtained from a right-
linear rule. (Such a fact m_p*(cy) must clearly exist.) We show that there is a derivation tree
for p*(zo,a) in P™ U D in three steps. We show, in order, that there is a derivation tree in
P™3 4 D for: (1) p*(c1,a), (2) p*(cz,a), and (3) p*(o, a)-

For part (1), by the induction hypothesis, there is a tree in P™ U D for m-p*(e1). Thus,
there is a tree in P™ U D for p*(c;,a) (using the rule corresponding to 7).

For part (2), consider the derivation of m_p*(c1) from m_p*(cz). This derivation tree is a
subtree of T', the derivation tree for fp(a) in Pt U D. By the induction hypothesis, there is a
derivation tree in P™9 U D for every magic fact that appears in T', and therefore in the subtree

14




for m_p*(c1).

Let the sequence of magic rules used (proceeding from m_p*(cz) to m_p*(c1)) be obtained
from the sequence of right-linear rules r/,...,7,’. Consider the reverse sequence r/,...,7y".
Using the m.p® and “first” facts that are the children of m_p®(¢1) in T, the fact p*(¢1,a) and
the fact right(a), each of which has a derivation tree in P™9 U D, we obtain an instance of rule
/. (See Figure 6.) Proceeding similarly, and using the magic fact and the first fact used at
the corresponding step in the derivation of m_p*(¢;) from m_p®(c2), we can obtain a derivation

tree T/ with root p*(eg,a).

For part (3), if m_p®(cz) is the seed, the claim holds trivially. If not, m_p*(c2) is generated
from a combined rule, say s’. The argument in this case is essentially that of Case 2(a)(i), using
rule &' instead of s. Consider the children of m_p*(¢z) in T. In addition to facts in D, there
is one magic fact, and some fp facts. By the induction hypothesis, there is a derivation tree
for p*(zo,a;) in P™ U D for each child fact fp(a;). Further, left(zo) holds by Lemma 4.1, and
we have right(a) (since a is contained in “free”) and m.p*(zo). From part (2) above, there
is a derivation tree in P™ U D for p*(cz,a). Using these facts — plus the facts in D that are
children of m.p®(¢;) in T — in the body of the rule corresponding to s’ in P™9, we obtain an
instance with p*(zo,a) in the head.

Case 2(b) (r is a left-linear rule)

By the induction hypothesis there is a derivation tree for p®(zo,a;) in P™ U D for each fp(a;)
fact in the body of the instance of f that derives fp(a). Further, left(zo) holds, from the
restrictions on selection-pushing programs, since otherwise no p*, and hence fp, facts can be
generated from non-exit rules. (Recall that all left conjunctions are equivalent and that all
bound_first conjunctions are contained in left. Incidentally, we cannot use Lemma 4.1 to show
that left(zo) holds in this case since we have not established that there is a derivation for some
m_p®(z;), T; # To; indeed there may not be such a derivation.) Using the fact last(a1, ..., an,a)
from the body of the rule instance deriving fp(a) along with left(zo), m-p*(zo) and the facts
p%(zo,a;), we obtain an instance of (the modified rule corresponding to) rule r in P™9, with
head fact p®(zo,a). O

Example 4.3 We illustrate the intuition behind selection-pushing and show that violating any
of the associated conditions could destroy this property.

p(X,Y) = (X)), p(X,U), c1(U,V), p(V,Y), r1(Y).
p(X,Y) = 12(X), p(X,U), 2(U,V), p(V,Y), r2(Y).
pX,Y) - f(X,V), p(V,Y), r3(Y).
p(X,Y) - e(X,Y).

query(Y) - p(5,Y).

The Magic Sets algorithm rewrites this to

mp (V) = mp(X), N(X), p/(X,U), el(U,V).
mp (V) - mpb(X), 12(X), B (X,U), c2(U,V).
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p*el’, a)

T
mp°(x0)  first(cl’, c1) p%(cl, a) right(a)
/fp0\
mp’(cl) (base facts
/\ fromr)
T: appl. of mpcl’)  first(cl’, c1)
magic rules
obtained from
right-linear .
rules /\

mp’(c2)

Figure 6: Corresponding derivation trees T in P™ U D and T in Pfact y D, right-linear rule
case.

mp (V) == mp¥(X), f(X,V).
m_p® (5).
XY = mp(X), 1(X), (X, ),
(U, V), pP(V,Y), r1(Y).
pbf(X; Y) - m—pbf(X)’ 12(X), pbf(X" U),

2(U, V), o (V,Y), r2(Y).
XYY - mp(X), f(X,V), B (V,Y), r3(Y).
(X,Y) - mptf(X), e(X,Y).
query(Y) *(5,Y).

1

Factoring this program and applying further transformations described in detail in Section 4
yields

mp (V) = bp(X), I(X), fp(U), c1(U,V).

mp (V) = bp(X), 12(X), fp(U), 2T, V).

mp (V) = mp(X), f(X,V).
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m_p? (5).
bp(X) = mp(X), f(X,V), bp(V), fp(Y), r3(Y).
bp(X) - mpt(X), e(X,Y).
BY) = mp(X), e(X,Y).

fo(Y).

The transformations that produce the above program from the factored version of the Magic
program preserve equivalence. We have applied these transformations in order to delete some
unnecessary literals and rules in the factored program, thus making it easier to understand the
essential ideas.

Consider the following EDB instance: f(5,1), e(5,6), e(1,7), (2,8), 11(1), ¢1(6,2), 71(7),
71(8). Because the condition that bound_first should be a subset of /1 is violated by this
EDB, 8 is incorrectly derived as an answer. Indeed, m.p*/(1) is generated using m_p*/(5) and
f(5,1). This generates bp(1) using e(1,7). Also, the tuple e(5,6) gives us fp(6). The critical
step follows: the fact fp(6) is used in the first rule with dp(1), !1(1) and c1(6, 2) to generate the
fact m_p®/(2). That is, the fact fp(6), which is an answer to the goal mp* (5), is incorrectly
used where an answer to the goal m_p®/(1) is required, thereby generating a spurious subgoal.
One can verify that 8 is a valid answer if /1(5) is added to the EDB. A similar example can be
constructed if /1 and 2 are not identical, since the answer generated in response to a subgoal
that satisfies {1 but not /2 can be used in the second rule to generate spurious subgoals.

Now consider the EDB instance: f(5,1), (5,6), e(1,7), 11(5), €1(6,1). The fact fp(7) is
incorrectly generated. The first rule is used to generate m.-p*/ (1) from the query goal and the
fact e(5,6). The fact fp(7) is generated in response to this subgoal, but it cannot be an answer
to m_p*/ (5) unless r1(7) is true. The EDB instance violates the condition that free_exit should
be contained in r1. This made it possible to generate subgoals whose answers are not answers
to the original goal. I

query(Y) :

Intuitively, when factoring we are separating the bound arguments from the free arguments,
and we must ensure that every answer to a subquery (keeping in mind a top-down evaluation
of the program) is also an answer to the original query. (We refer to the vector of values in
the free arguments as the answer, corresponding to a query that is the vector of values in the
bound arguments of a p®-fact.) For this, we require that the right conjunctions be satisfied
by every potential answer tuple, that is, free_exit is contained in every right conjunction.
(Some answer tuples may be generated from left-linear rules, but these need not satisfy the
right queries since there is a derivation of these answers to the original query that does not
propagate these answers through right-linear occurrences of p®.)

In addition, we must ensure that no spurious answers are generated. The main idea is that
for every derivation of a fact using P™9, there is an equivalent derivation in which the bound
arguments of every left-linear p® fact is identical to the bound arguments in the query. That is,
in every recursive rule that contains a left-linear occurrence of p*, we can replace the variables
X1,..., X in the bound arguments by the constants provided in the original query. This is in
fact the motivation for the term “selection-pushing.”
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When a right-linear rule is applied to generate new subqueries, the answers to these sub-
queries could be used in left-linear occurrences of p*. To justify this, we must ensure that a
subquery invoking the right-linear rule is reachable from a subquery that satisfies the conditions
on the bound arguments of the left-linear occurrences of p*. Since every subquery is reachable
from the initial goal, this is guaranteed if the initial query satisfies the (unique, for the given
program) left conjunction. If the initial goal does not satisfy the left conjunction, then we
cannot apply the right-linear rule, and the condition that the bound_first conjunctions should
be contained in the left conjunction ensures this.

This discussion suggests a way to strengthen the theorem — we can replace the last condition
by the requirement that the bound arguments in the query should satisfy every left conjunction
and every bound_first query. However, this can only be tested at run time, when the query

constants are available.

We can identify further classes of programs that can be factored.

Definition 4.7 Let P, Q be an RLC-stable program containing only combined recursive rules.
Then P, Q is symmetric if the following conditions hold:

e Every recursive rule is a combined rule.
e For each combined rule, free.exit must be contained in free.
o For every pair of combined rules, the middle conjunctive queries must be equivalent.

Theorem 4.2 Let P,Q be an RLC-stable program with I1DB predicate p, and let X be the vector
of variables appearing in bound arguments of p* in the heads of the rules of Ped gndlet Y be
the vector of variables appearing in free arguments of p® in Ped, If P, Q is symmetric, then
p*(X,Y) can be factored into bp(X) and fp(Y) in P™ with respect to the query Q.

Proof Let us denote the factored program as Pfet, We will prove the following stronger
claim:
For any database D

1. If there is a derivation tree for a fact fp(a) in Pf%¢* U D, then there is a derivation tree
for the fact p*(2o,a) in P™ U Dj that is, relation fp contains exactly the set of answers
to @, and

9. If there is a derivation tree for a fact m_p®(c) in P/t U D, then there is a derivation tree
for m_p*(c)in P™ U D.

The converses of the above two statements are easy to show from the structure of pfact

and P™. From the first statement and its converse, it follows that relation fp contains exactly
the set of answers to (), thereby establishing the theorem. The second statment is used in the
induction in the proof below.

We make the following observations. First, all rules defining bp or fp obtained from non-exit
rules are redundant, from the structure of symmetric rules. Thus, we only need to consider
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the magic rules and the rules obtained from the exit rules in the factored program. Second,
left;(zo) must hold for at least one rule, say r;, else the magic rules are also redundant, i.e., we
cannot generate any magic fact other than the seed.

The proof is by induction on the height of derivation trees. As the basis, the only tree of
height 1 for an m._p® or fp fact in Pfect y D is m.p®(z0), and this fact is also in P™ U D.

For the induction, assume that the claim is true for trees of height less than V.

Case 1 (magic facts)
There must be a rule, say r;, such that left;(zo) holds, since we have derived a magic fact, say
m, that is distinct from the seed. By the induction hypothesis, if the body of the (magic) rule
instance used to derive m contains the facts fp(ay),..., fp(an), there are derivation trees for
p*(%0,@1), - - -, P*(%0, @n) in P™ U D. Using these facts, the seed m_p*(zo), and the “center”
facts from the rule instance (in Pf°°) deriving m, we get an instance of the magic rule in P™9
obtained from the rule r;, with m as the head fact.

Case 2 (fp facts)
The body of the rule instance used to derive the fact, say fp(a), contains an m_p* fact, say
m.p®(c;). By the induction hypothesis, there is a derivation for this magic fact in P™UD,
and thus, using an exit rule, for the fact p*(cy, a).

Now consider the rule instance used to derive m_p®(e;) in P72 U D:

mp®(c1) - mp*(ez),left(c2), fo(ar), fp(az),. .., fp(an), center(u, cy).

By the induction hypothesis there is a derivation tree in P™9 U D for m-p®(c2) and for each of
the facts p*(zo,a1), - - -, P*(20, @n).

There must be some rule, say ;, such that left;(zo) holds. (If c2 = zo, then left(zo) holds
in the above rule instance. If ¢z is not identical to the seed zg, we have generated a magic fact
distinct from the seed, and there must be some such rule.) Consider the modified rule in P™9
that corresponds to rule r;. From the second condition on symmetric rules, right;(a) holds.
Using the seed m_p*Ph3(zy), the facts p*(zo,a1),. .., p*(To, @n), the fact center(w, c1), the fact
p%(c1,a), and the fact right;(a), we obtain an instance of this modified rule in P™7 that derives

pa(xﬂ’ a)‘ o

Example 4.4 This example illustrates symmetric programs.

p(X,Y) = IUX), p(X,U), p(X,V), ¢(U,V,W), p(W,Y), 71(Y).
p(X,Y) - 12(X), p(X,0), p(X,V), c(U,V,W), p(W,Y), 72(Y).
p(X,Y) - e(X,Y).

query(Y) : p(5,Y).

Rewriting using Magic Sets, factoring, and then applying further transformations described in
Section 4 yields:

mp* (W) - bp(X), IL(X), fp(U), fo(V), e(U,V,W).
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mp (W) - bp(X), 12(X), fo(U), fo(V), e(U,V,W).
m_p*(5).
bp(X) = mp(X), e(X,Y).
fp(Y) - m—pbf(X)s e(XAa Y)
fo(Y).
We observe that once a bp tuple is generated that is also in /1, we can discard the second rule
defining m_p®f; similarly, we can delete the first rule if a bp tuple is also in [2. (We can only

delete one of them, of course.) Also, if the original query, 5, is not contained in either /1 or 12,
then neither the first nor the second rule will produce any facts. O

query(Y)

The ideas underlying selection-pushing and symmetric programs can be combined to identify
a third class of programs, which we call enswer-propagating programs.

Definition 4.8 Let P, Q be an RLC-stable program containing only combined recursive rules.
Then P, Q is answer-propagating if the following conditions hold:

e Left-linear rules For each left-linear rule, bound_exit must be contained in bound.
e Right-linear rules For each right-linear rule, free_ezit must be contained in free.
o Combined rules For each combined rule, free_ezit must be contained in free.

e Pairs of recursive rules
For every pair of combined rules, the middle conjunctive queries must be equivalent.
For every pair of one left-linear and one combined rule, bound for the left-linear rule must
be contained in bound for the combined rule, and free_last must be contained in free.
For every pair of one right-linear and one combined rule, bound_first must be contained
in bound.
For every pair of one right-linear and one left-linear rule, bound._first must be contained
in bound, and free_last must be contained in free.

We have the following technical lemma.

Lemma 4.2 Let P be an answer-propagating program, m_p*(zo) be a seed, and D be an EDB.
If there is a derivation tree in P™ U D or P/* U D for m_p®(z;), zo # =i, then there is at
least one combined rule in P such that zo is contained in the (set of answers to the) associated
conjunctive query ‘bound”.

Proof Consider the first magic fact generated that is distinct from the seed. The magic rule
used to derive this fact must be obtained from a combined or a right-linear rule, and the magic
fact used in the instance of this magic rule must be the seed. If the magic rule is obtained
from a combined rule, the observation clearly holds. If it is obtained from a right-linear rule, zo
must be in the associated conjunctive query bound._first, and thus by the definition of answer-
propagating programs, left(zo) must hold for every combined rule. O
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The following theorem, which strictly generalizes Theorem 4.2, is proved using a combination
of the arguments used in the proofs of Theorems 4.1 and 4.2. The structure of the proof is
similar to that of Theorem 4.1, but there are some significant differences.

Theorem 4.3 Let P,Q be an RLC-stable program with IDB predicate p, and let X be the vector
of variables appearing in bound arguments of p* in the heads of the rules of P and let Y be
the vector of variables appearing in free arguments of p* in P, IfP, Q is answer-propagating,
then p*(X,Y) can be factored into bp(X) and fp(Y) in P™ with respect to the query Q.

Proof Let us denote the factored program as Pfe¢t, We will prove the following stronger
claim:
For any database D

1. If there is a derivation tree for a fact fp(a) in Pt U D, then there is a derivation tree
for the fact p*(zo,a) in P™ U D; that is, relation fp contains exactly the set of answers
to @, and

2. If there is a derivation tree for a fact m._p*(c) in P¥*°* U D, then there is a derivation tree
for m_p®(¢) in P™ U D.

The converses of the above two statements are easy to show from the structure of Pfect and
P™9. From the first statement and its converse, it follows that relation fp contains exactly the
set of answers to @, thereby establishing the theorem.

The proof is by induction on the height of derivation trees. As the basis, the only tree of
height 1 for an m_p® or fp fact in Pf** U D is m_p®(zo), and this fact is also in P™ U D.

For the induction, assume that the claim is true for trees of height less than N.

Case 1 (m_p* facts):
Consider a derivation tree T' of height N for m_p*(c) in P U D. Since the rules for m_p®
obtained from left-linear rules are redundant, m_p*(c) must have been generated using a magic
rule obtained from either a right-linear or combined rule, say 7.

If r is a right-linear rule, the children of m_p®(c) in T are facts in D, except for one magic
fact, say m_p®(c;). By the induction hypothesis, m_p®(¢;) also has a derivation tree in P™UD.
Thus, we have a derivation tree for m_p*(c) in P™ U D.

If r is a combined rule, the children of m.p*(¢) in T include facts in D, plus one magic
fact, say m.p®(c;), and some fp facts. By the induction hypothesis, there is a derivation tree
for p*(zo,a;) in P™9 U D for each child fact fp(a;). Further, by Lemma 4.2, there must be
a combined rule, say r;, such that left;(z¢) holds, since we have derived a magic fact that is
distinct from the seed. Using the above p* facts, the seed m_p®(zo), and the center facts from
the rule instance (in P¥%%*) deriving m_p*(c1), we get an instance of the magic rule in P™7
obtained from the rule r;, with m_p*(c) as the head fact. (With the difference that we consider
r; instead of r, this proof in this case is identical to that of case 1 in Theorem 4.1.)

Case 2 (fp facts):
Consider a derivation tree T of height N for fp(a) in P/**U D. Since the rules for fp obtained
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from right-linear and combined rules are redundant, fp(a) must have been generated from a
rule in Pfe¢ say f, obtained from either an exit or a left-linear rule, say r, in P. In either case,
for each right-linear or combined rule, a is in the associated conjunctive query “ free” by the
conditions on answer-propagating programs. (Recall that queries “free.last” and “free-ezit”
are always contained in queries “free”.) As in the proof of Theorem 4.1, there are two subcases
to consider: (i) 7 is an exit rule, and (ii) 7 is a left-linear rule.

Case 2(a) (r is an exit rule)
A magic fact, say m_p*(c1), appears as a child of fp(a) in T By the induction hypothesis,
there is a derivation tree in P™ U D for m_p®(c;). Let the magic rule from which m_p*(c1) is
generated be obtained from rule s in P. There are two subcases to consider.

Case 2(a)(i) (s is a combined rule) Let m_p*(c;) = m-p*(c1). Clearly, there is a tree in
P™9 U D, using the modified rule corresponding to 7, for p*(cy,a). Consider the children of
m_p*(cy) in T. In addition to facts in D, there is one magic fact, and some fp facts. By the
induction hypothesis, there is a derivation tree for p®(zo,a;) in P™ U D for each child fact
fo(a;). Further, left(zo) holds by Lemma 4.2 for some combined rule, say s’'. Using these facts
— plus the facts in D that are children of m_p*(c;) in T and the facts m_p*(zo), right(a) and
p*(cy,a) — in the body of the rule corresponding to s’ in P™I, we obtain an instance with
p*(2o,a) in the head. (With the difference that we must use some rule s', instead of s, this
proof is identical to the proof of Case 2(a)(i) in Theorem 4.1.

Case 2(a)(ii) (s is a right-linear rule) Let m_p*(cz) be a magic fact that is either the
seed or is generated from a magic rule obtained from a combined rule, and let the magic fact
m-p®(c1) be obtained from m.p®(cz) by one or more applications of a magic rule obtained from
a right-linear rule. (Such a fact m_p*(cy) must clearly exist.) Let m_p*(e1) = m-p®(c1) and let
m.p*(cz) = m_p*(ca).

As in the proof of Theorem 4.1, we show that there is a derivation tree for p*(z0,a) in
P™3 U D in three steps. We show, in order, that there is a derivation tree in P™ U D for: (1)
p*(c1,a), (2) p*(c2,a), and (3) p*(zo,a). Parts (1) and (2) can be established by exactly the
arguments used in the proof of Theorem 4.1.

For part (3), if m.p®(cz) is the seed, the claim holds trivially. If not, m_p*(cp) is generated
from a combined rule, say s”. The argument in this case is essentially that of Case 2(a)(i), using
rule s” instead of s. Consider the children of m_p®(c2) in T'. In addition to facts in D, there
is one magic fact, and some fp facts. By the induction hypothesis, there is a derivation tree
for p*(zo,a;) in P™ U D for each child fact fp(a;). jFrom part (2) above, there is a derivation
tree in P™ U D for p*(cz,a). Further, left(zo) holds by Lemma 4.2 for some combined rule,
say s'. Using these facts — plus the facts in D that are children of m_p®(e¢;) in T and the
facts m.p®(zo), right(a) and p*(c1,a) — in the body of the rule corresponding to s’ in P™,
we obtain an instance with p*(zo,a) in the head.

Case 2(b) (v is a left-linear rule)

By the induction hypothesis there is a derivation tree for p*(2o, a;) in P™9 U D for each fo(a;)

fact in the body of the instance of f that derives fp(a). Further, left(zo) holds, since bound
for any left-linear rule must be contained in bound for any combined-linear rule, and from
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Lemma 4.2, there is at least one combined-linear rule such that left(zo) holds. Using the
fact last(ay,. . .,an,a) from the body of the rule instance deriving fp(a) along with left(zo),
m_p*(zo) and the facts p*(zo, a;), we obtain an instance of (the modified rule corresponding
to) rule r in P™9, with head fact p*(zo,a). O

Example 4.5 This example illustrates answer-propagating programs.

p(X,Y) = (X)), p(X,0), p(X,V), e(U,V,W), p(W,Y), r1(Y).
p(X,Y) = 12(X), p(X,U), p(X,V), (U, V,W), p(W,Y), r2(Y).
p(X,Y) = 13(X), p(X,U), la(U,Y).
p(X,Y) = f(X,U), p(UY), r3(Y).
p(X,Y) - e(X,Y).

query(Y) : p(5,Y).

Rewriting using Magic Sets, factoring, and then applying further transformations described in
Section 4 yields:

m_pbf(W) - bp(X), (X)), fp(U), fo(V), «(U,V, w).
mb (W) = bp(X), 12(X), fo(U), Jo(V), (U, V, W).
mp(U) = bp(X), f(X,U).
m_p*?(5).

bp(X) - mp(X), e(X,Y).

bp(X) = mp(X), f(X,U), bp(U), fp(Y), r3(Y).

oY) - m-pbf(X)7 e(X,Y).

pY) = m-pbf(X)a 13(X), bp(X), fp(U), la(U,Y).
query(Y) : fp(Y).

In summary, the results in this section are illustrative of a general approach to optimizing
programs, in which we first apply the Magic Sets transformation and then factor. When we
factor a Magic program and separate the bound and free arguments, we must establish three
things:

1. In the magic program, every answer to a subgoal is an answer to the original query.

2. In the factored program, the “subgoals” generated are exactly those generated in evalu-
ating the original magic program.

3. In the factored program, let S be the subgoals generated, and let A be the answers
generated. Then for every a in A, there is some s in S such that @ is an answer to S in
the magic program.
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Because testing for these factorable classes of recursions in general requires testing for
containment of conjunctive queries, and testing for conjunctive query containment is NP-
complete [CM77, ASUT79), testing for membership in these classes is also NP-complete. It is
important that the measure of size here is the size of the recursion and query, not the database.
An algorithm that is exponential in the size of the recursion and query (small) may be worth
running during query planning in order to save time proportional to the size of the database
(large) during query evaluation. Furthermore, in many cases, the conjunctions will be empty,
in which case polynomial time algorithms for testing if a recursion satisfies Theorems 4.1, 4.2,
and 4.3 exist.

We conclude this section with an example involving a program with function symbols. The
example illustrates that applying bottom-up evaluation to a factored program can give order
of magnitude speedups over Prolog on the original program.

Example 4.6 Wereturn to Example 1.2 from the introduction. Recall that we wish to compute
the set of all members of a given list that satisfy some predicate p by augmenting the standard
member procedure

pmem(X,[X|T]) :- p(X).
pmem(X,[H|T]) :- pmem(X,T).

and the following query
¢(X) - pmem(X,[z1,Z2,...,Tn])

where [z, 22, . . ., T,] is the given list. As noted in the introduction, on this program and query,
if all members of the given list satisfy the predicate p, Prolog will compute the O(n?) facts
pmem(zi,[zj,...,2p]) for 1 < j<nand j<i<n.

Now consider first rewriting the program in standard form:

pmem(X,L) : list(X,T,L), p(X).
pmem(X,L) = pmem(X,T), list(H,T,L).

This program, with the query g(X ):-pmem(X, 21, %2, ..., Zx]), generates the adorned program

pmem(X,L)® = list(X,T,L), p(X).
pmem(X, L)’ - pmem(X,T), list(H,T,L).

This program is selection pushing, so the corresponding magic program can be factored. At
this point we revert to the original notation (recall that the “standard” notation with lists
represented by the EDB relation list is used only for compile-time testing for factorability) to
get the magic program

m-pmem([z1, T2, ..., Zx]).
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m_pmem(T) :- m_pmem([H|T)).

pmem(X,[X|T])® - mpmem([X|T]), p(X).
pmem(X, [H|T)® - m_pmem(X), pmem(X, T)7®.
query(X) = pmem(X,[z1,2q,...,2,))"
Factoring, we get
m_pmem([z1,T2,...,Ts))-

m.pmem(T) :- m_pmem([H|T)).

bpmem((X|T)) = m_pmem((X|T]), p(X).
bpmem([H|T]) :- m.pmem(X), fpmem(X), bpmem(T).

fomem(X) :- mpmem([X|T]), p(X).
fpmem(X) :- mpmem(X), fpmem(X), bpmem(T).
query(X) :- fpmem(X), bpmem([z1,22,...,Zx]).
Applying optimizations from Section 5 gives
m_pmem([z1,Z2,...,Tn])-
m_pmem(T) :- m_pmem([H|T)).

fomem(X) - m_pmem([X|T]), p(X).

query(X) - fpmem(X).
Evaluating the resulting program bottom-up produces the m_pmem relation

m_pmem([z))

m-pmem([Zp_1,Ty]

m_pmem[zy,...,Ty5)])

A standard structure-sharing implementation of lists stores these n facts in O(n) space and
avoids a list copy on each application of the recursive rule for m_pmem. Assuming such a
structure-sharing implementation of lists, the factored program computes the answer in linear
time. O
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5 Some Additional Optimizations

We use the following definitions.

Definition 5.1 A bound argument position of p* is a static argument position if for every
p“-literal in the body of a rule, the variable in this argument position also appears in the same
argument position in the head of the rule. (Recall that the head must also be a p* literal, since
we only consider unit programs.)

Definition 5.2 Let (P, Q) be a unit program — query pair, and let the ith argument of p* be
a static argument. Without loss of generality, let the variable in the ith argument of P* always
be X, and let the constant in the ith argument of the query @ be c. The program P is reduced
with respect to argument position i as follows:

e Every rule r is replaced by o(r), where o is the substitution X « c.

o Every p®-literal — in the head or the body of a rule — is replaced by a s8-literal with
the same vector of arguments except for the ith argument, which is deleted. s is a new
predicate with one fewer argument position, and 6 is identical to the adornment a, but
with the b corresponding to the ith argument deleted.

We begin with a result that augments the theorems presented in the previous section. Some
programs that do not satisfy the conditions of these theorems can be transformed into programs
that do by applying the following lemma.

Lemma 5.1 Let (P, Q) be a unit program — query pair, let the ith argument of P* be a static
argument, and let P' be the reduced program. Then P and P! are equivalent with respect to Q.

Example 5.1 As an illustration of the above lemma, consider the following program and query:

(XY, 2) - a(X), (X, Y, W), dW,U), P (X,T, 2).
(XY, Z) - exit(X,Y,Z).
query(U) :- 1 (5,6,U)?
None of the theorems in Section 3 is applicable since X, a variable that appears in a bound
argument position in the head of the first rule, also appears in the right linear literal. The
reduced program with respect to the first argument position, which is a static argument, is:
Y, 2) - a(5), SH(Y,W),dW,U), (U, Z).
S, 2) - exit(5,Y, Z).
query(U) = s(6,U)?

The theorems in Section 3 are applicable to the reduced program. O

A special class of rules was defined in [NRSU89].
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Definition 5.3 A pseudo-left-linear rule is a rule that satisfies all the criteria for a left-linear
rule, except that the conjunctions left and last may share a variable.

Example 5.2 A second example of the use of the reduction lemma is a program that contains
a pseudo-left-linear rule.

P(X,Y,2) - pM(X,Y,W),dW,X,2Z).
(XY, Z) - exit(X,Y,2).
query(U) - pbbf(5767 U)?
As in the previous example, the theorems in Section 3 do not apply to this program because X

is connected to the variable in the free argument, Z. Reducing the program with respect to
the first argument, which is a static argument, gives us

I, z)y - Y, W), dW,5,2).
(Y, 2) - exit(5,Y, Z).
query(U) - s*7(6,U)?

This program contains only a left-linear recursive rule, and can be factored using the theorems
of Section 3. O

If every occurrence of the recursive predicate in a unit program is left-linear, we observe
that every bound argument is a static argument. Using this observation, the previous example
can be generalized to show the following lemma.

Lemma 5.2 Reducing a unit program containing only pseudo-left-linear rules with respect to
the bound arguments that violate left-linearity yields a program in which every recursive rule is
left-linear.

In the rest of this section, we summarize a few simple optimizations that are often applicable
to factored programs.

If p* is factored into bp and fp in P™9, then the relation bp is contained in magic_p®, since
every rule defining bp contains magic.p® (with identical arguments) in the body. Further, for
every rule defining fp (resp. bp) there is a rule with an identical body describing bp (resp. fp).
Therefore, the goal bp(_), where _ denotes an “anonymous” variable, succeeds if any fp goal
succeeds, and vice-versa. These observations lead to the following propositions.

Proposition 5.1 If a rule contains both bp and magic_p® in the body, with identical arguments,
then we may delete the magic.p* literal.

Proposition 5.2 If a rule contains the literal bp(-) and also an fp literal, the literal bp(-) can
be deleted.

A symmetric proposition allows us to delete some fp(-) literals.

A similar observation is that if m_p®(€) is the original query goal, then bp(E) is true if any
fp goal succeeds. This is because every fp fact, in particular the successful fp goal, is an answer
to the original query. However, note that in general, p* may be factored but the original query
may not be on predicate p*.
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Proposition 5.3 Let the original query correspond to the fact m_p*(¢). If a rule contains the
literal bp(€) and also an fp literal, then the literal bp(c) can be deleted.

Some additional simple observations that are useful are mentioned below.
Proposition 5.4 We may delete a rule if the head literal also appears in the body, or if the
head predicate is not reachable from the query predicate.

This is a special case of deletion under uniform equivalence [Sag88].

Proposition 5.5 We may introduce an “anonymous” variable in an argument position if the
variable in it appears nowhere else in the rule.

As shown in [RBK88], the preceding proposition can be strengthened to prove that an
anonymous variable can be introduced in any existential argument position.?

Example 5.3 Consider again the factored version of P™ from the three-rule transitive closure
(Figure 2.) We can delete the first and the third rules defining bt and the first two rules defining
ft because the head literal also appears in the body. We can also delete the literal m.tf (X)
from every rule that also contains b#(X), and then replace all variables that only appear once
in a rule by anonymous variables. This yields:
maf (W) = bt(.), fH(W).
mf (W) - mab(X), e(X,W).
mt(5).
b(X) - mi(X), (X, W),
bW), FUY).
b(X) - mt(X), e(X,Y).
FHY) = b, fUW), e(W,Y).
YY) = m(X), e(X,Y).
query(Y) = bt(5), fi(Y).
We can delete both body occurrences of bt(.) since the rules in which they appear also contain
ft literals in the body. Similarly, we can delete the literal b¢(5) from the rule defining the query.
This makes bt unreachable from the query, and we can delete all remaining rules for b¢. This
gives us:
m (W) - fyW).
m I (W) - ma(X),e(X,W).
m1%1(5).
ft(Y) - ft(W)a G(W, Y)
fY) - ma(X), e(X,Y).
query(Y) = fi(Y).

2Consider a program predicate p, and let p’ be a new predicate defined by the single rule p’(')_(‘) : -—p(?). where
X is identical to the vector Y except that the ith argument is deleted. We say that the ith argument position of
p in a given occurrence of p is ezistential if replacing this p literal by the corresponding p’ literal leaves the set
of answers to the query unchanged.
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The second rule defining m 1%/ and the first rule defining ft can be deleted under uniform
equivalence, and we finally obtain the following program:

m (W) = fy(W).
m1% (5).

f(Y) = mi(X), e(X,Y).
query(Y) = fi(Y).

6 A Unifying Overview

We consider how the refinements of the Magic Sets transformation presented in this paper are
related to some previously defined optimizations.

6.1 One-Sided Recursions

One-sided recursions were identified in [Nau87] as a class of recursions for which there are
efficient evaluation algorithms. Here we restate the characterization of one-sided recursions.

Theorem 6.1 (Theorem 3.1 from [Nau87]) Let D be a recursive definition with a single, linear
recursive rule r. Then D is one-sided if and only if the full A/V graph for r has only one
connected component with a cycle of nonzero weight, and that component has a cycle of weight 1.

An important subset of the one-sided recursions are those such that the full A/V graph has
one connected component with a cycle of nonzero weight, and that component contains exactly
one cycle of nonzero weight, and that cycle is of weight 1. We call such a one-sided recursion a
simple one-sided recursion. Any simple one-sided recursion can be “expanded” (by substituting
the rule into itself some number of times) to produce a rule of the form

»(4, B) - p(4, C),c(C,D, B). (1)

where A, B, C, and D are vectors of disjoint variables, and c is a conjunction of EDB predicates.

The preceding recursion is written in a form isomorphic to what we have called a left-linear
recursive rule. However, the definition of left-linear is in terms of both the recursion and the
specific query in question. By contrast, the one-sided recursions are defined independently of
queries. Notice, however, that coupled with the query p(¢,Y)?, the preceding rule is left-linear;
while coupled with the query p(X,d)? it is right-linear.

A selection that binds either every variable in A or B is a full-selection. With this definition,
we can formalize the preceding discussion with the following theorem.

Theorem 6.2 Let P be a simple one-sided recursion, expanded so that it is of the form of
Equation 1. Let Q be a full-selection query on p, the recursive predicate of P. Also, let P™9 be
the output of the Magic Sets algorithm on P and Q. Then P™ and Q factor with respect to p.

29



Proof We are given that P is a simple one-sided recursion that has been expanded to the

form

where 4, B, C, and D are vectors of disjoint variables. There are two possible full-selection
queries on this program: p(@, B)? and p(4,b)?. We consider each in turn.

If the query is p(@, B)?, then the adorned program P22 corresponding to P is

(A4, B) - »"/(4,0),«(C,D,B).

"(4,B) :- ezit(A,B)
This is an RLC-stable program, since it consists of one left-linear rule and one exit rule, and
the only adorned version of p in the program is p®/. Furthermore, this adorned program is
selection-pushing, since by definition of selection-pushing recursions, any single recursive rule,

RLC-stable program with a left-linear recursive rule is selection pushing. Then by Theorem 4.1,
P™ factors with respect to the query Q = p(@, B)?.

Next consider the query p(4,5)?. In this case, P*¢ is
pfb(zs -B-) - pfb(“;i', 6)7 C(Ea -57 _B—)
" (4,B) :- exit(A,B)

Now the recursive rule is a right-linear rule. This can be seen most clearly if we reverse the
order of arguments in all predicates of the recursion, and reverse the order of predicates within
the recursive rule, giving

(B,A) - ¢ (B,D,C),p!’C,A).
ptf(B,A) : ezit(B,A)
(Here we have used the notation that p, is p with the order of arguments reversed.)
The auxiliary predicate free_exit is defined by
freeexit(A) :- exit(A,B).
while the predicate free is defined by
free(A).

That is, since right is empty in the recursive rule, free(4) is true for any instantiation of A.
This in turn implies that free_ezit is contained in free, so again, the program is selection-
pushing. Then again by Theorem 4.1, P™¢ factors with respect to the query Q = p(4,b)?.
o
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6.2 Separable Programs

Separable programs, defined in [Nau88a], were defined to be class of recursions for which se-
lection queries have efficient evaluation algorithms. Essentially, [Nau88a] gave conditions that
determine if a given recursion is separable and a schema for evaluating selection queries over
separable recursions. Given a specific selection query on a recursion that is separable, the
schema can automatically be instantiated to produce an evaluation algorithm for the query.

In order to define the separable recursions, we need some auxiliary definitions.

Definition 6.1 Let r be a linear recursive rule and let ¢ be the recursive predicate in 7. Then
r contains shifting variables if there is some variable X such that X appears in position p; in
the instance of t in the head of 7 and in position p, in the instance of ¢ in the body of r, where

p1 # Pa2-

Definition 6.2 A predicate instance p; is connected to a predicate instance p, if p; shares a
variable with p;, or shares a variable with a predicate instance connected to p;.

Definition 6.3 A subset of predicate instances C is a mazimal connected set if

1. For every pair of predicate instances p; and p; in C, p; and p; are connected, and
2. No predicate instance in C shares a variable with any predicate instance not in C.

Definition 6.4 (Separable Recursions) Let ¢ be defined by n linear recursive rules r;
through 7,. Furthermore, let ## be the argument positions of ¢ such that in the instance
of t at the head of rule r;, each argument position in t? shares a variable with a nonrecur-
sive predicate in the body of r;. Similarly, let t® be the argument positions of ¢ such that in
the instance of ¢ in the body of rule r;, each argument position in ¢! shares a variable with a
nonrecursive predicate in the body of r;. Then the definition of ¢ is a separable recursion if

1. For 1 < i < n, r; has no shifting variables, and
2. For1 <i<m,th=1, and
3. For 1 <i<mnandi<j<n,either th = t;‘ or t# and t;? are disjoint, and

4. For 1 < i < n, removing the instance of ¢ from the body of r; leaves a maximal connected
set.

Conditions 1 and 2, together with the fact that all rules in separable recursions must be
linear, imply that any given recursive rule of a separable recursion can be written in the form
(up to consistent reordering of arguments within predicates and predicates within rules)

WX, 7) - AX), (X, W), B(W,7).

where
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o X,Y, and Z are disjoint vectors of variables, and

e A or B could be empty (if B is empty, then so is Y).

If A is nonempty, then any full selection on such a rule must bind both X and Y, since both
are in t* for that rule. On such a selection, the separable recursion evaluation algorithm does
not reduce the arity of the recursion (see [Nau88b| for details.) A more interesting class of
recursions are those in which A is empty. A formal definition of this class follows; first we need
one auxiliary definition.

Definition 6.5 Let 7 be a linear recursive rule and let ¢ be the recursive predicate in 7. Then
a variable X is a fized variable if X appears in the same position in the instances of ¢ in the
head and body of r.

Definition 6.6 A separable recursion consisting of n recursive rules 7y ...7, is reducible if for
1 < i < n, no fixed variable appears in t}.

Theorem 6.3 Let P be a reducible separable recursion, let Q be a full-selection query on p (the
recursive predicate of P), and let P™ be the result of the Magic Sets transformation applied to
P,Q. Then the pair P™,Q is factorable.

Proof For the purposes of this proof, it is sufficient to group the equivalence classes of
arguments of ¢ into two classes: the one bound by the query, and those not bound by the query.
Using this grouping, by the definition of reducible separable recursions, the adorned program
resulting from any full selection on any separable recursion consists only of 1) left-linear rules
with no left predicate, and 2) right-linear rules with no right predicate. This implies that the
recursion is selection-pushing; hence by Theorem 4.1, the pair P™, () is factorable. O

There is also a close connection between the instantiated separable recursion evaluation algo-
rithm and the program resulting from Magic Sets followed by the factoring rewrite. Essentially,
for a full selection on a separable recursion, the instantiated separable recursion evaluation
schema represents the same computation as the semi-naive bottom-up evaluation of the output
of the factoring rewrite applied to the Magic program.

6.3 Left- and Right-Linear Programs

In [NRSU8Y], recursions containing right-linear, left-linear, mixed-linear, and combined-linear
recursions were identified and special rewriting algorithms in the spirit of the Magic Sets trans-
formation were given. A simple check shows that the classes of programs defined in [NRSU89]
are a proper subset of the programs satisfying the conditions of Theorem 3.1, and that The-
orem 3.2 handles some additional programs. In addition, for the programs considered in that
paper, the Magic Sets plus factoring transformation produces the same final program as the
rewriting algorithms from that paper.
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6.4 The Counting Transformation

The Counting transformation [BMSU86, BR87, SZ86] can be understood as a variant of the
Magic Sets transformation. First, every derived predicate is augmented with some index fields,
which, intuitively, encode the derivation of the fact. That is, the value of the index encodes the
sequence of rule applications, and the literal that is expanded at each step, that was used to
derive the fact. The program P™J with these additional fields is then refined by deleting the
fields corresponding to bound arguments in derived predicates.

When we describe Counting as reducing the arity of derived predicates, we ignore the new
index fields that are introduced. The cost of computing the indices can be significant; in fact,
this may make the Counting strategy more expensive than even Naive fixpoint evaluation, or
cause non-termination.

There is an obvious parallel to factoring Magic programs, since the objective here is again
to reduce the arity of derived predicates by separating the bound and free arguments. The
connection is quite close — for the class of programs for which we have shown the Magic
program to be factorable, the factored program (with some of the simple optimizations that we
discussed in Section 4) is identical to the Counting program with all index fields deleted. In
effect, this is a class of programs for which the benefits of the Counting strategy — reductions
in predicate arity, and accompanying deletion of some literals and rules — can be obtained
without the overhead of computing indices.

If a program contains left-linear or combined rules, the Counting program will not terminate
since a rule is created that generates the same fact with an infinite number of values in the
index fields. The following example is illustrative:

H(X,Y) - (X, 2),e2,Y).
t*1(X,Y) - e(Z,Y).

The first rule generates the Magic rule:
magict*(X) - magict® (X).
With the indices added in the Counting transformation, this is:
ent (X, I+1) = entt(X,I).

This is a rule whose fixpoint evaluation does not terminate, given an initial cnt.t®f fact, which
is obtained from the query.

We restrict ourselves in the remainder of this section to programs in which every recursive
rule is right-linear. Consider the following example:

PI(X,Y) - firstl(X,U),p"(U,Y), right1(Y).
(X, Y) - first2(X,U0), % (U,Y), right2(Y).
PH(X,Y) - exit(X,Y).

33



For either of the factoring theorems in Section 3 to be applicable, if we assume that rightl,
right2 and exit are EDB relations, then every value in the second column of the relation exit
must also be in rightl and right2.

Let us consider the corresponding magic program, for the query (5, X)7:

magicp® (5).
magicp (U) - magicp®(X), firstl(X,U).
magicp (U) = magicp®(X), first2(X,U).

PM(X,Y) i magicp®(X), firstl(X, U),p(U,Y), right1(Y).
P(X,Y) ~ magicp® (X), first2(X,U),p" (U, Y), right2(Y).
(X,Y) - magicp*! (X), ezit(X,Y).

When factored, this yields:

magicp (5).
magicp (U) - magicp* (X), first1(X,U).
magic.p(U) - magicp® (X)), first2(X,U).

bp(X) : magicp® (X)), firstl(X,U),bp(U), fo(Y), rightl(Y).
oY) = magicp®l (X)), firstl(X,U),bp(U), fo(Y), right1(Y).
bp(X) = magicp® (X)), first2(X,U),bp(U), fp(Y), right2(Y).
pY) - magic_p®f (X), first2(X,U),bp(U), fp(Y), right2(Y).
bp(X) = magicp®(X),ezit(X,Y).
oY) : magicp?(X),exit(X,Y).
Both of the recursive rules defining fp can be deleted, since the head literal appears in the body

in each. Since we are only interested in fp, and the exit rule defining fp does not refer to bp,
bp is not reachable and all rules defining it can be discarded, leaving us with:

magicp®f (5).

magic.p’ (U) - magicp®? (X)), firstl(X,U).

magicp’ (U) :- magicp® (X), first2(X,U).
oY) :- magicp®(X),ezit(X,Y).

Now consider the counting program (which can be obtained by adding index fields to the magic
program and then deleting some arguments, literals and rules [BR87]):
cnt.pbf(5, 0).
entp P (U, 1+1) = entp? (X, 1), firstl(X,U).
entp (U, T+1) = entp® (X, ), first2(X,U).
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(v, 1) = pM(Y, I+ 1),rightl(Y).
P, D) - (Y, I+ 1),right2(Y).
Py, 1) - ent p* (X, 1), exit(X,Y).

If we delete the index fields, we obtain:

ent_pb (5,0).
ent.pf(U) - entpb(X), firstl(X,U).
ent_pP (U) - ent pb¥ (X)), first2(X,U).
pPPH(Y) = pM(Y),rightl(Y).
(V) - pP(Y),right2(Y).
(Y = entpt(X),exit(X,Y).

The two recursive rules defining p?/ can be dropped since the head literal appears in the body,
and this leaves us with the same program obtained via factoring (except that some predicates
are named differently). Intuitively, the index fields are unnecessary because every value that
appears in the free argument of p®/, which must be from the second column of ezit, is also in
both rightl and right2, and so any value that appears in p®f with any index value also appears
in pbf with index value 0. Thus, we can drop the indices without affecting the set of answers
(which is the set of values that have index value 0).

The above example can be generalized to establish the following theorem.

Theorem 6.4 If a program satisfies the conditions of the factoring theorems in Section 3, and
no rule contains a left-linear literal, then the factored Magic program, after deleting trivially
redundant rules, is identical to the Counting program with all indez fields deleted.

Proof If a program-query pair contains no left-linear literals, then it must consist only of
right linear rules, which have the form

p*(X,Y) = first(X,V),p*(V,Y),right(Y).
For each rule of this form, the Magic program will have the magic rule
mp*(V) = mp*(X), first(X,V).
and a modified original rule
*(X,Y) = mp*(X), first(X,V),p*(V,Y), right(Y).
Factoring will give the rules

m.p*(V) - mp*(X), first(X,V).
bp(X) - mp*(X), first(X,V),bp(V), fo(Y), right(Y).
BT) = mp(X), first(X, V), bp(7), f67), right(T). (2)
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Rule 2 is trivially redundant, and can be deleted.

Corresponding to the exit rule of the original recursion,
*(X,Y) - ezit(X,Y).
the Magic program will have the rule
?*(X,Y) - mp(X),ezxit(X,Y).
which factors into the two rules

bp(X) - mp*(X),ezit(X,Y).
(¥) = mp*(X),exit(X,Y). 3)

Finally, the query
oY) = p@Y)?
generates the following initialization rule:
m-p*(%).
Finally, the query is defined by
qv) = fo*(Y).

This definition can be further optimized by another transformation from Section 5: since the
literal bp is not reachable from the query, all rules defining bp can be deleted.

To summarize, there are four types of rules generated. Each recursive rule generates a rule
of the form

mp*(V) = mp*X), first(X,V).

while the initialization generates

m_p*(T).

The exit rule generates

) - mp*(X),ezit(X,Y).

and the query gives

«¥) = f*(Y)
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We now turn to the Counting transformation on P.

If there are k recursive rules in P, then the ith recursive rule will generate the rules

ent p*(V, I+ 1,kxi+ J) = entp*(X,I,J), first(X,V).
pent®(Y,I1,J) - pent®(Y, I+ 1,k+i+ J),right(Y).

The exit rule will generate
pent*(Y,I,J) = cntp*(X,I,J),ezit(X,Y).
while the initialization of ent_p will be
ent_p®(%,0,0).
and the query is defined by’
qY) - pent*(Y,0,0).
Deleting index fields gives

entp®(V) - entp*(X), first(X,V).
pcnt®(Y) - poent*(Y).

from each recursive rule. The second rule is trivially redundant, and can be deleted. The exit
rule generates

pent*(Y) - entp*(X),exit(X,Y).
and finally the initialization gives
ent_p®(T).
and the query
q(Y) : pent®(Y,0,0).

To summarize, there are four types of rules in the recursion after the index fields have been
deleted: for each recursive rule, we get the rule

entp*(V) - entp*(X), first(X,V).

while the initialization generates
ent_p®(Z).
The exit rule generates

pent®(Y) - centp*(X),exit(X,Y).
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and the query generates
¢¥) - pent*(Y).

Substituting cnt_p for m_p, and p.cnt for fp, we see that this recursion is identical to that
produced by factoring the magic program. O

The factoring approach allows us to reduce arities of some programs with left-linear literals,
whereas the Counting program would never terminate in such cases. On the other hand, the
well-known same-generation program is the canonical example of a program that cannot be
factored, and in which the index fields introduced in Counting are necessary.

7 Directions for Future Work

The results presented in this paper motivate several interesting problems, and we describe them
briefly in this section.

7.1 New Classes of Factorable Programs

We have identified classes of programs for which the corresponding Magic program can be
factored. However, there are other interesting programs that can also be factored. We present
some examples of programs that can be factored and that are not Magic programs. It is
interesting that these factorable programs arise as a result of factoring Magic programs. This
suggests that even if programmers do not write factorable programs, optimization strategies
might produce programs that can be factored. Identifying broader classes of factorable programs
is therefore an interesting research direction.

Example 7.1 Consider the following program.
H(X,Y,2) - #(X,U,W),bU,Y),d(Z).
HX,Y,Z) = e(X,Y,2).
query(Y,Z) = 1(5,Y,7Z).
Rewriting using Magic Sets, factoring, and optimizing gives us
mtb4(5).
ft(Ya Z) - ft(Ua W)vb(U’Y)’d(Z)'
(Y, z) - mt¥(X),eX,Y,Z).
query(Y,Z) = fUY,Z).

This program can also be factored with respect to the predicate f, although we cannot establish
this using the results presented in this paper. Factoring and optimizing along the lines of Section

38




4 yields

mt%4(5).

YY) == f(U),b(U,Y),d().

fIY) = mt(X),e(X,Y,2).

fi2(2) - ft1(U),b(U,Y),d(Z).

ft12(2) - mib(X),e(X,Y,2).

Y, 2) = ftI(Y), ft2(Z).
query(Y,Z) = fi(Y,2).

If the second argument is bound in the original program, the factored Magic program can
again be factored with respect to the only binary predicate, fi, to yield a unary program.

Finally, consider the same initial program with a query that binds the last argument to 5.

WX,Y,Z) - #(X,U,W),bU,Y),d(Z).
HX,Y,2) - eX.Y,Z).
query(X,Y) = ¢(X,Y,5).

This illustrates an interesting point: If we wish to treat the last argument of the body literal
t as a bound argument, we must allow non-ground tuples [Ram88]. We can then factor the
program. O

7.2 Relationship to Other Optimizations

We showed that for the classes of factorable Magic programs identified in this paper, the indices
in Counting were unnecessary. In fact, the factored program could be optimized to essentially
the Counting program with all index fields deleted. The index fields therefore represent an un-
necessary overhead, and in programs with left-linear occurrences, this causes non-termination.
Can such a result be established for any Magic program (corresponding to a unit program) in
which the recursive predicate can be factored into its bound and free parts? That is, can we
show that the Counting indices are unnecessary in factorable Magic programs, independently
of the sufficient conditions that we use to ensure factorability?

Another interesting question concerns one-sided recursions. Not all one-sided recursions
have arity-reducing evaluation algorithms, and not all one-sided recursions produce factorable
Magic programs. Does Theorem 3.1 cover all one-sided recursions that have arity-reducing
evaluation algorithms?

7.3 Non-Unit Programs

Suppose the program for p* is factorable, but this predicate is not the query predicate. Then,
we can still use the factored program for p* by generating calls to this program for each p®
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goal. Can we identify cases where we need not distinguish between answers to different calls
to p*? That is, can we identify cases in which p* can be factored even if it is not the top-level

query?
Example 7.2 Consider the following two programs. The first is Py:

p(X,Y) - ®X,U),p(U,Y).
p(X,Y) = e(X,Y).

The second is Py:

p(X,Y) = UX),p(X,U),c(U,V),p(V,Y).

p(X,Y) = d(X,Y).
For both programs, the Magic program corresponding to a selection query that binds the first
argument, that is, query form p*f, can be factored.

Let P be the following single-rule program:
Q(Y) = a(X) Z)’ p(Z’ Y)

Consider the program P U Py, and the query ¢(1)?. The predicate p%f can be factored in the
corresponding Magic program. However, this is not the case if P is the program

o X,Y) - aX,2),p(Z,Y).

and the query is ¢(X,Y)?.
Further, p?/ cannot be factored in P U P, regardless of which rule is chosen for P, and

which of the two query forms we consider.

An important problem is to develop sufficient conditions that allow us to factor p*f in
programs where it is not the top-level goal.

Another interesting question is to identify classes of programs defining pbf for which the
factorability of p*/ in (other) programs can be decided without examining the definition of p/.
As an example, consider the program P as the definition of p. Let P’ be any (Magic) program
in which p®/ appears. Let the following be the only rule defining pbf in P!, where h is a new
EDB predicate:

(X,Y) = h(X,Y).
We conjecture that if p*f is factorable in P/, then it is also factorable in P'UP;. What programs

(defining p®/) have this property? For instance, it is clear that P, does not. O

7.4 Order of Deleting Rules and Literals

Consider the various techniques for deleting rules and literals in Section 4 (additional optimiza-
tions). Does the order in which these are applied to a program affect the final result? If so, can
we identify classes of programs for which the final result is unique?
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8 Conclusions

We have presented a technique for logic program optimization called factoring. It is a simple
transformation that, when applicable, essentially allows us to compute projections of a relation
instead of the actual relation. We have identified sufficient conditions under which this trans-
formation can be used in conjunction with the Magic Sets transformation. One contribution
of this work is that it allows a unified treatment of several previously proposed optimization
techniques for particular classes of programs; we have shown that these earlier results can be
understood as special cases of the Magic Sets / factoring approach. Our results also offer new
insight into the relationship between Magic Sets and Counting. There are several promising
directions in which this research can be extended, and we expect the results to be of both
practical and theoretical interest.
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