BERMUDA - AN ARCHITECTURAL PERSPECTIVE
ON INTERFACING PROLOG TO A DATABASE MACHINE

by
Yannis E. Ioannidis
Joanna Chen

Mark A. Friedman
Manolis M. Tsangaris

Computer Sciences Technical Report #723

October 1987

BERMUDA — AN ARCHITECTURAL PERSPECTIVE
ON INTERFACING PROLOG TO A DATABASE MACHINE

Yannis E. Ioannidis
Joanna Chen
Mark A. Friedman
Manolis M. Tsangaris

Computer Sciences Department

University of Wisconsin
Madison, WI 53706

(Submitted to EDS ’88)

1.

BERMUDA — AN ARCHITECTURAL PERSPECTIVE
ON INTERFACING PROLOG TO A DATABASE MACHINE

Yannis E. Ioannidis *
Joanna Chen ?
Mark A. Friedman 3
Manolis M. Tsangaris

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Abstract

We describe the design and implementation of BERMUDA, which is a system interfacing Prolog to the
Britton-Lee Intelligent Database Machine (IDM). We discuss several architectural issues faced by such
systems, and we present the solutions adopted in BERMUDA. In BERMUDA, rules are stored in Prolog,
and facts are primarily stored in a database. BERMUDA has been designed and implemented so that mul-
tiple concurrent Prolog processes, possibly running on different machines, can share a database. Moreover,
the semantics of Prolog programs remain unchanged and the use of a database system is transparent to the
user. Finally, BERMUDA has achieved a certain level of portability by using the given Prolog interpreter
and database system (almost) unchanged. BERMUDA also employs several novel technigues to make the
interface of Prolog to the database efficient.

! Partially supported by the University of Wisconsin Graduate School Research Foundation and by the National Science Foun-
dation under Grant IRT-8703592,

2 Author’s present address, Digital Equipment Corporation, 110 Spit Brook Rd., ZK02-3/N30, Nashua, NH 03062.
3 Partially supported by the Resident Study Program of IBM. On leave from IBM Poughkeepsie, NY.

2.

1. INTRODUCTION

Existing logic programming systems usually deal with knowledge bases of small size. They function
based on the assumption that the knowledge base is stored in virtual memory. In addition, they provide
only limited services for recovery, protection, concurrent access to distributed knowledge bases, etc., if any
is provided at all. This makes them inadequate for supporting many new data/knowledge-intensive appli-
cations, such as sophisticated office automation, computer aided design and manufacturing, decision sup-
port, etc. This lack of functionality on the part of logic programming systems has motivated the develop-
ment of Deductive Database Systems. Deductive database systems incorporate the functionality of both

logic programming and database systems.

The design and construction of deductive database systems has taken many forms
[Gall78, Gall81a, Dahl82, Gall84, Kowa84]. A significant role in this effort is played by the Prolog pro-
gramming language [Cloc81] and systems based on it. There are four major architectures of deductive

database systems:

(1) An existing logic programming system is enhanced with database functionality. Although work has
been done to partially add database functionality to logic programming systems [Nais83, Scio84],
doing so to an absolute level requires writing a large portion of a database system, which accounts

for a considerable amount of work.

(2) An existing relational database system is enhanced with inferential capabilities. This approach is the
dual of the previous one and is the one adopted in several research projects
[Ston81, Nico83, Ioan84, Daya84, Ston85]. Besides inferencing, there are a few other services pro-
vided by logic programming systems that are absent from database systems, e.g. support for lists in
Prolog [Park86]. The transition from a database system to a deductive database system does require

some effort in enhancing the former with these new features.

(3) A system is built from scratch. This approach, when affordable, is always advantageous, because
there are no previous (bad) decisions that affect the new design. The system being built at MCC

[Tsur86] can be classified in this category.

(4) A logic programming system is used as a front-end to a database system. This is an obvious alterna-
tive, since logic programming systems and relational database systems are both based usually on first
order logic. There are, however, significant difficulties in coupling the two together. Certain aspects
of the one system have no counterpart in the other (e.g., there is a significant semantic content in the
order of clauses in Prolog, which is absent from database systems). Also, they have a different pro-
cessing paradigm, i.e., Prolog follows a tuple oriented algorithm, whereas database systems follow a
set (relation) oriented algorithm. This mismatch makes the task of integrating the two nontrivial.
This approach, however, has been tried out in many cases with noticeable success

[Jark84, Chang86, Ceri86, Morr86, Bocc86].

What makes a type-4 system attractive is that it makes use of existing systems with few or no
changes. Thus, the features offered by both kinds of systems, i.e., a logic programming system and a data-
base system, are available for free. In addition, the development effort for such a system is much smaller
than for a system of any other type, especially a type-3 one. Hence, although a type-3 system is expected
to have superior performance than a system of any other type, a type-4 system can be functional much
sooner. Efficiently interfacing the two components is the only issue that needs to be addressed in a type-4

system, since most of the remaining functionality is provided by one of the two components.

In this paper, we describe the design and implementation of BERMUDA (Brains Employed for
Rules, Muscles Used for Data Access), which is a type-4 system. BERMUDA interfaces Prolog and the
Briiton-Lee Intelligent Database Machine 500 (IDM) [Ubel84] under the Unix Operating system. The
naming of BERMUDA was inspired by the envisioned programming environment, where rules (and possi-
bly small sets of facts) are stored in Prolog and (large sets of) facts are stored in a database. This, in turn,
was motivated by the lack of any inferencing capability on the part of a database system as opposed to Pro-
log, and by the lack of any sophisticated secondary storage manipulation on the part of Prolog as opposed

to a database system.

The focus of this paper is on the particular architectural issues of building a type-4 system. Improve-
ments can be made to BERMUDA by addressing several other issues that arise in all types of systems.

This paper contains no discussion of such issues.

4~

For the rest of the paper, a database predicate is a Prolog predicate that is stored as a relation in a
database. Any other predicate is a nondatabase predicate. The arguments of database predicates are
assumed to be either constants or variables that can never be bound, directly or indirectly, to a list, since

database systems do not support lists.

The paper is organized as follows. Section 1 is an introduction. Section 2 contains a brief survey of
the previous work on interfacing logic programming systems with database systems that we are aware of.
It also compares that work with our work and highlights the salient aspects of our approach. In Section 3,
the design of BERMUDA is given. The key aspects of the system are discussed and the various design
decisions made are justified. Section 4 describes the current implementation of BERMUDA at the Univer-

sity of Wisconsin. Finally, Section 5 contains a summary of the paper and some directions for future work.

2. PREVIOUS WORK

Early on in the development of deductive database systems, interest was generated in interfacing
Prolog as a front-end to relational database systems. There are several such systems that have already been
designed and/or developed [Jark84, Chan86, Ceri86, Bocc86]. In this section, we briefly describe each one
of these systems, and we identify some of their weak points that BERMUDA has overcome. For unifor-
mity, if a system has not been given a name, we refer to it by the initials of the authors of the most

significant publication describing the system.

s JCV

One of the first reported attempts to interface Prolog to a database system, in particular one accessed
through SQL, was done at the Business School of NYU [Jark84]. The significant features of that system
were the introduction of an intermediate language between Prolog and SQL, called DBCL, and the incor-
poration of a series of optimizations of DBCL, in addition to the query optimization of SQL done by the
database system. DBCL is a variable-free subset of Prolog, similar to tableaux [Aho79]. A Prolog clause
was translated into a DBCL clause, which in turn was optimized according to any relevant integrity con-
straints satisfied by the database. The type of constraints supported by the system were the following:
value bounds (e.g., salary £ 100K), functional dependencies, and referential integrity constraints. After

these optimizations, DBCL. was translated into SQL in a straightforward way.

As useful and important as the above optimizations are, their application is not facilitated in any way
by the fact that the system is an interface between Prolog and a database system. They could be incor-
porated into any general database system as well. BERMUDA, being an exercise in interfacing two such
systems, does not attempt to apply such optimizations. The optimization focus of BERMUDA is on issues
that arise from the particular configuration. Also, the JCV system makes two simplifying assumptions:
query answers are small (and therefore caching them in an internal database in Prolog is adequate), and in
any Prolog clause, all of the database predicates are grouped together. Failure of the first assumption may
result in a memory overflow in Prolog. Failure of the second assumption will probably prevent the Prolog
program from running. Removing the second assumption, however, is discussed as an item of future work
[Jark84]. BERMUDA, on the other hand, both caches query answers externally and handles arbitrary Pro-
log clauses that may contain any number of sets of consecutive database predicates separated by nondata-

base ones. Thus, it avoids some potential problems of the JCV system.

e PROSQL

PROSQL is a system developed at IBM Yorktown and involves interfacing Prolog to SQL/DS
[Chan&6]. In PROSQL, Prolog is enhanced with one predicate, called SQI., which takes one argument. Its
argument can be any SQL statement for defining or manipulating the database. All data retrieved from a
database is loaded into Prolog, which then uses them as if they were assert-ed in the program or loaded by

consult-ing a file. ¥

A major weakness of PROSQL is that it leaves the responsibility of the interaction between Prolog
and SQL/DS to the user; the use of the database system is not at all transparent. The PROSQL programmer
must be familiar with both Prolog and SQL and must use the SQL predicate every time a database access is
needed. Another weakness of PROSQL is that data brought from the database is simply asserted into the
virtual memory of Prolog. This defeats part of the purpose of interfacing Prolog to a database system,
which is to overcome the inadequacies of the virtual memory of Prolog for data-intensive applications, as
the programmer is still responsible for avoiding an overflow of the memory of Prolog. The design of BER-

MUDA overcomes both the above problems.

t assertisa Prolog predicate that adds a specific clause into the program. consult does the same for a set of clauses written in a
file.

s CGW

Another effort to interface Prolog to a database system has taken place at Stanford University
[Ceri86]. This design is the one closest to the design of BERMUDA. Its basic characteristic is a loading
mechanism by which, as Prolog asks for access to database predicates, query answers are asserted into the
Prolog program. After that, I;rolog keeps track of how much of the query answer has been consumed at
any time. An important feature of the loading mechanism is that it keeps track of all the query answers that
have been retrieved from the database, so that it may identify query subsumption, i.e., the answer of a
query being a subset of the answer of another query [Fink82]. Thus, when a query comes in, the system
checks whether the answer to the query can be found from results that have been asserted in Prolog

already. It accesses the database only if this is impossible.

The CGW design achieves its goals by changing the Prolog interpreter, giving it opportunities to
search for facts directly in secondary storage. In that respect, it is not truly an interface of Prolog to a data-
base system; it could have been classified as a type-1 deductive database system, i.., one that extends Pro-
log with database capabilities. We refer to it as a type-4 system, however, because it was claimed to be

such by the designers [Ceri86], and because of some similarities it has with BERMUDA.

Query subsumption, which is one of the key aspects of the above design, is again a general optimiza-
tion technique that can be incorporated into any general database system. The current version of BER-
MUDA does not employ such optimizations. On the other hand, the CGW design faces three problems.
First, some optimization decisions are based on dictionary information that is stored in Prolog. This infor-
mation is stored in the database system as well, thus introducing some redundancy in the system. Second,
like PROSQL, the data is loaded into the Prolog address space, which may create an overflow for large
databases. The authors do discuss overflow problems, and they do propose solutions for them, but the solu-
tions involve more changes to Prolog [Ceri86]. Third, all the queries sent to the database are single relation
queries. Joins are processed by Prolog, which may not always provide the fastest available algorithm.

Each of these problems is successfully addressed by BERMUDA.

1.

o EDUCE

Educe is a system developed at the European Community Research Center (ECRC) [BoccB6]. It
provides an interface between Prolog and Ingres [Ston76]. In Educe, the user is able to use several new
Prolog predicates that take QUEL commands in various forms as arguments. The implementation of these
predicates involves some communication with INGRES, namely sending commands to it and receiving
answers. The communication is done with a pair of pipes between two processes, a Prolog process
enhanced with some database access methods and an INGRES process. The pipe conveniently acts as a
queue for query answers, thus achieving an elegant transition from the page-at-a-time processing of

INGRES to the tuple-at-a-time processing of Prolog.

Like most of the other systems above, Educe has changed Prolog significantly. This has implications
at the user interface level, since transparency is lost. The user has to know both Prolog and QUEL and has
the responsibility of directing commands to the database. Also, by relying on a single pair of pipes for
buffering and communication between the two systems, the opportunities for caching query answers is lost.
Thus, queries that are generated again because of backtracking must be reexecuted by INGRES. BER-
MUDA makes the database system completely transparent to the user, and by using an explicit buffering
mechanism, it is able to cache and reuse query answers. Also, BERMUDA avoids several potential prob-
lems that have been attributed to systems with the same design philosophy, and which led to the design of
Educe [Bocc86]. Such problems include operating systems limitations on the number of open files, the
number of pipes, and the number of concurrent child processes, and also performance degradation due to

unconirolled use of system resources.

3. THE DESIGN OF BERMUDA
The current design of BERMUDA makes two assumptions:
. The order of access to tuples of database predicates is not important.
. There are no updates to database predicates, at least not during the execution of Prolog programs.

The first assumption is needed so that execution can be sped up by using different indices on data-
base predicates for different queries. Presumably, database predicates are large, so the Prolog programmer

does not know the order of the tuples and does not rely on that. The second assumption is motivated by

8-

simplicity. Combining the semantics of Prolog with the semantics of database updates generates several
difficult problems, which are not discussed here since they are outside the scope of this paper. In addition,
the initial focus of the development of BERMUDA is on providing deductive capabilities over large data-

bases. We intend to incorporate updates in a future design of BERMUDA.
Assuming the above, BERMUDA has been designed with the following goals in mind:

® Although the semantics of Prolog sometimes have undesirable effects, programming in BER-
MUDA should be the same as programming in Prolog. Hence, independent of how BER-

MUDA is implemented, the impression given to the user should be that of Prolog.

. The existence of a database system underneath Prolog should be transparent to the user.
Whether something is stored in the virtual memory of Prolog or on disk should not affect any

Prolog programs.

° BERMUDA should be executed as efficiently as possible. This is most important when the
amount of data that Prolog has to handle is very large, where its virtual memory mechanism

is inadequate to provide good performance.
. The system should allow sharing of data in the database among multiple Prolog programs.

. Both Prolog and the database system should be used unchanged, or else with minimal

changes that in no way alter their basic features or the philosophy of their design.

The process structure of BERMUDA, as motivated by the above goals, is shown in Figure 3.1. Mul-
tiple Prolog processes communicate with one process called the BERMUDA Agent. The BERMUDA
Agent in turn, communicates with a fixed number of Loaders. Finally, the Loaders communicate with

IDM, passing queries to it and collecting the answers.

The flow of data in BERMUDA is the following. Whenever Prolog sees a sequence of database
predicates, it sends the appropriate query to the BERMUDA Agent. The BERMUDA Agent formulates the
appropriate SQL query and sends it to an idle Loader, if there is any, or puts it on a queue to wait until a
Loader becomes free. The Loader passes the query on to IDM and collects the answer, which is stored in a
Unix file. The BERMUDA Agent reads the file and starts providing Prolog with tuples at the pace at which

Prolog asks for them. There can be multiple queries being manipulated by the BERMUDA Agent at the

Tt =l
I 1:
{l] |
PROLOG
H E’O;- LOADER-1 ::
I 8 i
I}l PROLOG LOADER 2]~
i BERMUDA]
AGENT o | DM
PROLOG [~ 5 ”
y ::
LOADER-N
PROLOG I} H
|
==c========- Machine Boundary

Figure 3.1: The process structure of BERMUDA.

same time, coming either from the same Prolog process or from different ones.

The most significant aspects of the design of BERMUDA are analyzed in the following subsections.
These are the following: separating rules from facts, sending to the database system as few queries as pos-
sible (i.e., by transforming a sequence of database predicates into a single query), caching query answers
by the BERMUDA Agent, prefetching query answers for Prolog, supporting multiple Prolog processes,
employing multiple Loaders, and handling the special, extralogical constructs of Prolog, like the cut (1)

symbol.

3.1. Separating Rules from Data

Motivated by the goal of keeping Prolog and IDM unchanged, the separation of rules and data was
natural. IDM cannot support any form of rules (with the exceptions of view definitions and integrity con-
straints, which are very simplified and restricted forms of rules supported by most relational database sys-
tems). Hence, any non-ground clause of a Prolog program has to remain under the control of and be stored
within Prolog. On the other hand, whenever a huge number of ground clauses is associated with a predi-
cate, it is wise to have the predicate stored as a relation under a database system. Thus, one can take

advantage of the sophisticated manipulation of secondary storage offered by the database system and

-10-

escape the generalities and performance deficiencies of Prolog’s virtual memory. Another advantage of
storing large predicates in the database is that this makes the predicates persistent, without needing to be
reasserted every time a Prolog program is using them. Of course, the BERMUDA programmer is not con-
strained to put all large predicates in the database or to put all small predicates in Prolog. We believe, how-
ever, that it is mostly the large predicates that both will tend to be persistent and will improve performance

when stored in a database.

3.2. Minimizing the Number of Database Queries

Crossing the boundaries of two machines, i.e., going from a Loader to IDM, is expensive. Hence,
minimizing the number of times the system has to cross these boundaries is one of BERMUDA’s goals.
This is achieved by collecting together all the database predicates that appear consecutively in a Prolog
clause and sending them as a single query to the database system. This, in turn, has the additional and even
more significant benefit that the query optimizer of the database system is used. Most relational database
systems [Ston76, Astr76], support several query processing algorithms, as opposed to Prolog, which sup-
ports a fixed one, and they employ sophisticated optimization techniqugs to choose the most efficient algo-
rithm for each query. Therefore, assigning as much processing as possible to the database system has
important benefits for overall performance. Two examples of transforming a sequence of database predi-
cates into a single query are given below, one for a join and one for a selection. In all the forthcoming
examples of Prolog programs, all database predicates are denoted by d; and all nondatabase predicates are
denoted by p;, where i is an integer. Also, for simplicity, we omit the arguments of the predicates when-

ever they play no role in the discussion.

Assume that some Prolog program has to evaluate the following clause:
pii— " p2didaps, ccc.
If "d;,d," involves a join between d; and d,, BERMUDA sends "d,,d," as a single query to the database
system, as opposed to sending two separate queries "d;" and "d,". IDM has the capability to both consider
the use of more join algorithms than Prolog, e.g., merge scan [Seli79], and to take advantage of any possi-
ble indices on d; and/or d,. On the other hand, if "d,,d," does not involve a join between d, and d, (ie.,

it represents a cross product of the two predicates), BERMUDA sends two separate queries, "d;" and "d,".

11-

Similarly, assume that a Prolog program has to evaluate the following clause:
P1i o padi(,X,..),X>10ps, t
BERMUDA will again choose to send "d(....X,...,X>10" as a single query to the database system. Any
indices existing on the column of d; where X appears can thus be used to apply the selection "X>10" and

minimize processing time.

Clearly, the more database predicates are collected together and transformed into a single query, the
more performance will benefit from the query processing and optimization techniques of the database sys-
tem. With this goal in mind, the question arises as to whether or not it is possible to make a single query
out of a set of database predicates, even if they do not appear consecutively in a Prolog clause. As an
example, consider the following clause:

P1i= - p2dyupadaps,
It would be nice if we could still group together "d,d," as a single query to the database system. The
semantics of Prolog, however, have to be retained, since this was one of our original goals. More
specificly, this means that, the original Prolog query should have the same set of answers (even if indivi-
dual answers appear in a different order), and all the external files should have the same contents. The
problem can also be formulated as a question of whether two consecutive predicates in a Prolog clause can
be swapped (i.e., changing the order of access) yielding an equivalent program (i.e., retaining the program
semantics) or not. There are several cases where swapping does preserve the semantics of a Prolog pro-
gram, and can thus be safely applied to group more database predicates into fewer database queries. The

current design and implementation of BERMUDA, however, do not support such swapping of predicates.

3.3. Caching Query Answers

In trying to minimize the number of queries sent to the database system, BERMUDA has to face
another problem besides the one mentioned in the previous section: due to the backtracking of Prolog, the
same query may be sent to the BERMUDA Agent multiple times. For example, consider the following
Prolog program:

pi(X.Y) = paX,2),d1(Z.Y).
p2(2.D).

p2(3=])

-12-

pi(X,Y)?
Following the execution of Prolog, the query "d;(1,Y)" will be generated after p, is resolved with its first
ground clause, and the same query will be generated again after p, is resolved with its second ground
clause. To avoid sending the same query to the database system again, the BERMUDA Agent caches
query answers. These answers are stored in flat files that are accessible to the BERMUDA Agent. The
BERMUDA Agent keeps track of the queries that have been executed in IDM and where their answers
reside. When a duplicate query is sent to the BERMUDA Agent, the answer is ready to be retrieved from
the file and sent back to the requesting Prolog process. Garbage collection is applied to remove old query

answers.

3.4. Prefetching Query Answers

Due to the differences in speed and processing model of the various modules of BERMUDA, atten-
tion has to be paid to their correct synchronization so that they are not unnecessarily blocked waiting for
responses from other modules. This is especially crucial at the interface between Prolog and the BER-
MUDA Agent, since Prolog accesses virtual memory, whereas the BERMUDA Agent retrieves query
answers from disk. The speed difference between virtual memory and disk may make the BERMUDA
Agent a potential performance bottleneck, forcing Prolog processes to block. As an example, consider the
following Prolog program:

PiX,Y) = di(X,Z),p2AZ,Y).

p2(2,1).

p2(3.1).

pi(X.Y)?
Assuming that d is a large predicate, the file containing the answer to the query "d(X,Y)", i.., the con-
tents of d;, will span several pages. After all the tuples of one page have been sent to and examined by
Prolog, the next page has to be retrieved. Unless some provision is taken, Prolog will have to block wait-
ing for an 1/O to happen. To avoid this, the BERMUDA Agent uses prefetching. As Prolog reaches a tuple
in a query answer that is close to the end of the current page, the BERMUDA Agent asks for the next page
of the query answer to be brought into its buffers. Thus, the 1/O happens while Prolog manipulates the

remaining tuples of the previous page. Then, when the first tuple in the new page is requested, it is already

-13-

in the buffer of the BERMUDA Agent, and Prolog does not have to block.

Ideally, the timing of prefetching (i.e., when prefetching actually happens) should depend on the
specifics of the Prolog program. In particular, the more work the Prolog program has to do between two
consecutive requests for tuples from a database query answer, the more the prefetching should be delayed

so that valuable buffers are not unnecessarily occupied.

3.5. Supporting Multiple Prolog Processes

As described earlier and shown in Figure 3.1, BERMUDA supports multiple Prolog processes run-
ning concurrently, accessing the same database. The Prolog processes may run on the same machine as the
BERMUDA Agent or on different machines. Since all database queries are sent to the database by the
BERMUDA Agent, and not directly by the Prolog processes issuing them, the BERMUDA Agent should
protect the database from any unauthorized access. Not having database protection as a goal (see begin-
ning of Section 3), the current design of BERMUDA does not check for user authorization. This is

intended to be part of a future version of the system.

3.6. Employing Multiple L.oaders

The decision to use IDM as our database system was made primarily for performance and availabil-
ity reasons. The unfortunate aspect of this decision was that there is no asynchronous interface to IDM.
Whenever a query is sent to IDM, the sender has to block and wait for the complete answer to be prepared
before running again and collecting it. Interfacing the BERMUDA Agent directly to IDM would thus
require the BERMUDA Agent to block every time a query was sent to the database system. This, in turn,
would cause all the Prolog processes with database queries to wait until the BERMUDA Agent came back
again to accept the next query. This would effectively serialize the database accesses of the Prolog

processes, providing no concurrency.,

To avoid the above problem, we have placed Loader processes between the BERMUDA Agent and
IDM. Their sole purpose is to free the BERMUDA Agent from blocking every time a query is sent to
IDM. Instead, the query is sent to a Loader, and it is the Loader that blocks when the query is passed to
IDM. At the same time, the BERMUDA Agent remains available for both accepting more queries from

and sending data back to other Prolog processes. When the Loader starts collecting the query answer, it

-14-

notifies the BERMUDA Agent, which in turn starts feeding the appropriate Prolog process with tuples from
the answer. This creates a pipeline between Prolog and IDM, with Prolog manipulating the first tuples
from the query answer before the complete answer is formed. With respect to the Loader configuration,
two questions had to be answered: Should there be multiple Loaders, or only one? And, should a Loader
be created and destroyed for each database query, or should Loaders live for the duration of the program?
Our decision was that there should be multiple Loaders that live for the duration of the program, and it is

justified in the next two paragraphs.

Using only one Loader process is not enough to avoid the blocking problem completely. Blocking of
the BERMUDA Agent is avoided, but the problem arises again if another database query is sent to the
BERMUDA Agent before the answer to the first one is collected. The Loader process is blocked, so the
BERMUDA Agent has to wait for it to unblock before sending the new query. Moreover, with one Loader,
only one query can be sent to IDM at any one time, thus taking no advantage of IDM’s ability to con-
currently handle multiple users and multiple queries. For this reason, we have chosen to have multiple

Loader processes in BERMUDA. Each one handles at most one query at a time.

Creating a new Loader process for every query and destroying the process at the end is an expensive
operation. This becomes significant if we take into account that a Prolog program, due to backtracking,
may issue a huge number of database queries. Therefore, BERMUDA has a fixed number of Loaders that
are created at system invocation time and remain alive until the session is ended. With this scheme, it is
conceivable that at some point there will be more queries issued to the BERMUDA Agent than there are
Loaders. These queries are put in a priority queue in the BERMUDA Agent and are served by the Loaders
using a First-Come-First-Served policy. If a query is queued, it will be serviced by the first Loader that

becomes available after the query reaches the front of the queue.

Notice that a single Prolog process may have multiple database queries active at the same time. This
situation can be created by two types of clauses: recursive clauses and clauses with multiple clusters of
database predicates, each separated from the next by at least one nondatabase predicate. We will give an
example of the second type of clauses; recursive clauses behave similarly. Consider a Prolog process run-

ning a program containing the following clause:

-15-

Pii— - ,p2’d1’p3:d2’p4’ e
The Prolog process will first issue "d;" as a database query (possibly with some of the variables of d;

instantiated). As soon as it gets its first d; tuple back, and after it evaluates p 3, it will issue another query,
"d,". This may happen while the answer to the first query "d," is still being formed, thus leading to two
simultaneously active queries issued by the same Prolog process. Hence, the ability to queue up database

queries is essential even if we disallow multiple Prolog processes accessing the database concurrently.

3.7. Handling Extralogical Constructs of Prolog

In addition to "data" predicates, Prolog supports various extralogical predicates that are used to con-
trol the flow of data in a program. The most significant of those extralogical constructs of Prolog is the cut
predicate (!). The appearance of ! in a Prolog program presents an important optimization challenge to
BERMUDA. The first instantiation of the variables that makes the partial clause before the ! evaluate to
"true" is the only one needed. When this happens, part of the Prolog stack is thrown away, and the pro-
gram never backtracks before the !. Hence, if there are database predicates before the !, it is highly prob-
able that a large portion of the corresponding query answers will never be used. To minimize unnecessary
extra work, Prolog processes send !’s to the BERMUDA Agent. The BERMUDA Agent, in turn, notifies
the appropriate Loader to stop collecting further answers if the complete answer has not already been

formed, as they are not going to be used.

4. THEIMPLEMENTATION OF BERMUDA

BERMUDA has been implemented at the University of Wisconsin. The BERMUDA Agent and the
Loaders together with any Prolog application run on machines supporting Unix and communicate among
themselves and with IDM over a 10mb/sec local area network. Following a client/server model, communi-
cation between the BERMUDA Agent (the server) and any other process (the client) is completely asyn-
chronous; the BERMUDA Agent never blocks to wait for another process. As we mentioned before, this
does not apply to the communication between the Loaders and IDM, since no asynchronous interface to
IDM exist. The Loaders have to block whenever they send a query to IDM. Otherwise, the Loaders would

not be necessary.

-16-

There are three aspects of the design of BERMUDA described above that are not included in the

current implementation:
° No garbage collection is applied for cached query answers.

. The timing of prefetching does not depend on the Prolog program. It currently depends only on the
value of a system parameter that specifies when the next page should be prefeiched in terms of the

number of remaining tuples in the current page.

® In the case of a !, the BERMUDA Agent does not interrupt the collection of the answers of database

queries that appear before the !.
In the future, all of these features will be included in the system.

In the implementation of BERMUDA, several decisions were forced on us by the computational
environment we were using. Peculiarities of Unix and IDM were the main causes of such forced decisions.
These are discussed in the following subsections, where we give the implementation details of the various

parts of the system.

4.1. Prolog

For the implementation of BERMUDA we used C-Prolog, since it was the only one available to us.
This immediately created a major problem: C-Prolog cannot communicate with other processes. This has
been identified as a problem in other similar projects as well [Bocc86, Ghos87]. We took the straightfor-
ward approach to solving the problem, minimally betraying the fifth design goal of Section 3. We
enhanced C-Prolog so that it can communicate with other processes running on the same or different
machines. Communication is achieved using Unix domain sockets for processes on the same machine and
TCP sockets for processes on different machines. This enhancement involves a slight change to the Prolog
predicates see and tell, so that they can recognize a socket as a valid I/O port, but it does not affect any pre-

viously running Prolog program.

With the exception of some necessary declarations in the beginning, Prolog programs written for
BERMUDA do not explicitly refer to the underlying database system. BERMUDA takes care of the neces-
sary database accesses. This is achieved by having every incoming Prolog program pass through a Prepro-

cessor, before it is sent to the Prolog interpreter. This is shown in Figure 4.1.

-17-

Prolog

Transformed Prolog ‘ » Bermuda Agent
Program

Program Interpreter Calls and Replies

Preprocessor

Figure 4.1: Preprocessing a Prolog program.

The preprocessor is written in Prolog, and its sole purpose is to transform the original Prolog program at
consult-ing time by inserting the appropriate calls to the BERMUDA Agent into it. The preprocessor

achieves this by performing the following tasks:

(1) identifying database predicates and replacing them with a pseudo definition that just calls the proper

database access routine,
(2) marking database predicates that appear before any existing !,

(3) detecting joins and selections in sets of consecutive database predicates and encoding them into mes-

sages for the BERMUDA Agent.
The transformed program is then processed by the Prolog interpreter.

Prolog processes a given program in a top-down, tuple-at-a-time fashion, employing unification and
backtracking. Whenever a set of consecutive database predicates (possibly with attached selections) is
reached, a scan is opened and sent to the BERMUDA Agent to collect the answer. When the answer has
been (at least partially) collected, the BERMUDA Agent notifies the appropriate Prolog process, which
starts asking for tuples, one at a time, following the canonical Prolog algorithm. The responsibility for

caching query answers and prefetching tuples from the disk lies with the BERMUDA Agent.

4.2, The BERMUDA Agent
The BERMUDA Agent is the heart of the entire system. It performs the following tasks:
° It directs queries to Loaders, queueing them up when all of them are busy.

. It collects query answers a page at a time from IDM (via the Loaders), passing them a tuple at a time

to the Prolog processes.

. It caches query answers so that when a query is generated for a second time it is not sent to IDM

again.

-18-

e It prefetches pages of query answers from disk to a buffer pool so that Prolog processes do not have

to block waiting for tuples, and it manages the buffer pool.

The BERMUDA Agent in the current implementation together with its data structures is shown in

Figure 4.2.
QUERY
QUEUE
BUFFER
POOL —
PROLOG ., , SQL
QUERIES QUERIES
OPEN PAST BUSY
SCANS QUERIES ILOADERS

Figure 4.2: Data structures of the BERMUDA Agent.

In the following subsections we elaborate on how the BERMUDA Agent achieves the functionality we

described above.

4.2.1. Connecting Prolog and IDM

The BERMUDA Agent primarily serves the role of "postman” between IDM and Prolog. It collects
query answers from IDM and then passes individual tuples to the requesting Prolog process at Prolog’s

pace.

Query answers are communicated between the Loaders and the BERMUDA Agent through Unix
files. This is somewhat unfortunate, because the Loader has to write into the file, and the BERMUDA
Agent has to read from the file into its own buffer pool to send data back to Prolog. This solution, how-
ever, is forced on the implementation, because Unix does not support shared memory between processes.

If this were not the case, the Loaders and the BERMUDA Agent would communicate via shared memory.

When a Prolog process issues a database query to the BERMUDA Agent, the latter makes an entry
into the Open Scans data structure, where it keeps information about the query and the originating Prolog

process. The BERMUDA Agent then looks into the Past Queries structure to see if the query has been

-19.

answered before. If it has, the appropriate file is opened, and tuples are retrieved to be passed to Prolog
(unless the first page of the file is already in the buffer pool, in which case tuples may be immediately
returned to Prolog). If the query has not been answered before, but it appears in the query queue already or
is currently being processed by a Loader, a note of this fact is made so that the query is not sent to IDM
again. Otherwise, the query is put at the end of the query queue to wait for a Loader to become available.
Information about which Loaders are busy with which query is stored in the Busy Loaders structure. When
the Loader has collected a page’s worth of the answer, it stores it into a Unix file and then notifies the BER-
MUDA Agent, which in turn takes the first tuple and passes it to Prolog. After that, whenever Prolog asks
for a tuple, the BERMUDA Agent passes it on. While this is happening, the Loader may still be appending
more of the query answer to the Unix file. When the complete answer has been written out, the Loader

notifies the BERMUDA Agent that it has become available and is removed from Busy Loaders.

4.2.2. Queuning up Queries for the Loaders

As we mentioned above, whenever a query is given to the BERMUDA Agent and all of the Loaders
are busy, the BERMUDA Agent puts the query at the end of a queue. The queue is served on a First-
Come-First-Served basis and is shared by all of the Loaders. Our choice of this scheduling policy has been
motivated by simplicity. We also expect that it is the optimal and most fair policy in most cases. There are
some cases, however, where a more sophisticated policy is more appropriate. For example, consider the
following clause:

pri= - padupsdaps,
This will generate two queries, namely "d;" and "d,". It is conceivable that at some point the answer for
"d," is partially computed, a d; tuple has been passed to Prolog, the query "d," has been sent, and all of
the Loaders are busy. In this case, it makes more sense for "d," to preempt the processing of "d;" and take
over its Loader, as all of its tuples will be requested by Prolog before any other tuple of "d;" is requested.
In future versions of BERMUDA, we plan to include more sophisticated scheduling policies that take into

account this sort of available knowledge about the system’s behavior.

-20-

4.2.3. Managing the Buffer Pool

The BERMUDA Agent maintains a buffer pool with pages of various query answers that are
requested from Prolog processes. Scans from Open Scans point into these buffers, keeping track of the
next tuple to be sent to Prolog. Several scans may point to the same buffer. As described earlier, the BER-
MUDA Agent prefetches pages from a query answer so that Prolog does not have to wait for I/O. Due to
the particular semantics of Prolog clauses and the processing algorithm Prolog uses, the page replacement
policy used for the buffer pool is somewhat unconventional. We define the least recently used query 10 be
the query with the least recently used page in the buffer pool. Then, when a page needs to be brought in
and all of the pages in the buffer pool are occupied, the page chosen to be replaced is determined as fol-

lows:

(1) if there is at least one page in the buffer pool that has no active scans referencing it, then the most
recently used such page of the least recently used query is chosen (this is motivated by the nested-

loops referencing pattern of Prolog); otherwise,
(2) if there is at least one prefetched page in the buffer pool, i.e., one for which no Prolog has requested

any tuples from it yet (but it probably will in the future), then the prefetched page of the least

recently used query is chosen; otherwise, i
(3) (i) the (sole) page belonging to the least recently used query is chosen.

The above algorithm takes into account the semantics of Prolog to guarantees that, for queries that
come from the same Prolog clause, there will never be a replacement of a page of a query by a page of

another query to the right of the first query.

As an example of the replacement algorithm, consider evaluating the following clause:
pii— o padipadapads,
Suppose that Prolog has requested several answers from the database queries "d;", "d,", and "d3", and the
BERMUDA Agent has filled the buffer pool with the first 3 pages of the file of "d,", the first 2 pages of the
file of "d,", and the first four pages of the file of "d,". Furthermore, suppose that the BERMUDA Agent
has prefetched page 4 for "d;" and page 3 for "d,". Then, the buffer pool looks as follows (d;.j means

page j from query "d;"):

21-

Query | Resident Pages in Most Recently Used Order
"dy" d,.3 (active), d,.4 (prefetched), d,.2, d;.1
"dy" d,.2 (active), d,.3 (prefetched), d,.1
"dy" ds.4 (active), ds.3, d3.2, da.l

Table 4.1. Buffer pool contents. '

Assume that, due to Prolog backtracking on d ;, the BERMUDA Agent prefetches d3.5. Then, according to
step (1), d;.2 is selected for replacement. If several new active pages were brought into the buffer pool,
due to additional database predicates to the right of dj, the order of selection of pages for replacement

would be dl.l, dz.l, d3.3, d3.2, d3.1, d1.4, d2.3, d1.3, d2.2, etc.

4.3. The Loaders

As we have described earlier, the purpose of the Loaders is to cope with the lack of an asynchronous
interface to IDM, and to take advantage of the capabilities of IDM to handle multiple concurrent users. An
idle Loader receives an SQL. query [Astr76] from the BERMUDA Agent, sends it to IDM, and then blocks.
When IDM is ready with the answer, it notifies the Loader, which wakes up and starts collecting it. The
answer can be given out by IDM only one tuple at a time. To speed up the service of other parts of the sys-
tem, the Loader continuously asks for tuples until it fills a page. It then writes the page in a specified file,
notifies the BERMUDA Agent that the answer is partially ready and tuples can be sent to the appropriate
Prolog, and turns back to IDM to continue collecting the query answer. When the complete query has been
written into the file, it notifies the BERMUDA' Agent and receives the next query for processing (if there is

one waiting in the queue).

5. SUMMARY AND FUTURE WORK

We have described the design and implementation of BERMUDA, which is a system interfacing
Prolog to the Britton-Lee Intelligent Database Machine (IDM). BERMUDA introduces the BERMUDA
Agent and a set of Loaders between possibly several Prolog processes and IDM. The role of the BER-
MUDA Agent is to receive database queries from Prolog, send them via the Loaders to IDM, and after the
answer is collected, send the tuples of the answer back to Prolog one at a time. In addition, the BER-
MUDA Agent caches query answers for future use, prefetches query answers from disk to avoid delaying

Prolog, manipulates a common buffer pool storing query answers requested by the various Prolog

2.

processes, and manipulates the queue of queries waiting to be serviced by the Loaders. The role of the
Loaders is to directly communicate with IDM, sending queries and receiving answers. They are introduced
to free the BERMUDA Agent from having to block for every query sent to IDM, since the latter lacks an

asynchronous interface.

In addition to several small-scale enhancements and improvements of the design and implementation
of BERMUDA, we are currently working on two major aspects of the system. First, we are investigating
the effects to the semantics of a Prolog clause caused by changing the position of predicates in the clause.
We are mostly interested in identifying cases where database predicates can "move over” nondatabase
predicates without affecting the semantics of the clause. This should allow more database predicates to be
grouped together in a single database query (see Section 3.2). Second, we are now comparing the perfor-
mance of BERMUDA with the performance of Prolog and the performance of IDM. We use the Wiscon-
sin benchmark [Bitt83] as the core of our experiments, enhanced with some additional queries that involve
nondatabase predicates as well. We hope that the results of these experiments will shed some light on the
validity of the design and implementation decisions of BERMUDA, and also on the effectiveness of type-4

deductive database systems in general.

Acknowledgments: We would like to thank Mike Carey and Timos Sellis for valuable comments on ear-

lier drafts of the paper.

6. REFERENCES

[Aho79]
Aho, A., Y. Sagiv, and J. Ullman, "Equivalences Among Relational Expressions", SIAM Computing
Journal 8, 2 (May 1979), pages 218-246.

[Astr76]
Astrahan, M. et al., "System R: Relational Approach to Database Management", ACM Transac-
tions on Database Systems 1,2 (June 1976), pages 97-137.

[Bitt83]
Bitton, D., D. J. DeWitt, and C. Turbyfill, "Benchmarking Database Systems: A Systematic
Approach", in Proc. 9th International VLDB Conference , Florence, Italy, August 1983, pages 8-19.

[Bocc86]
Bocca, J., "EDUCE - A Marriage of Convenience: Prolog and a Relational DBMS", in Proc. of the
1986 Symposium on Logic Programming, Salt Lake City, UT, September 1986, pages 36-45.

23

[Ceri86]
Ceri, S., G. Gottlob, and G. Wiederhold, "Interfacing Relational Databases and Prolog Efficiently”,
in Proceedings of the 1st International Conference on Expert Database Systems, Charleston, SC,
April 1986, pages 141-153.

[Chan86]
Chang, C. L. and A. Walker, "PROSQL: A Prolog Programming Interface with SQL/DS", in Expert
Database Systems, Proceedings from the First International Workshop, edited by L. Kerschberg,
Benjamin/Cummings, Inc., Menlo Park, CA, 1986, pages 233-246.

[Cloc81]
Clocksin, W. F. and C. S. Mellish, Programming in Prolog, Springer Verlag, New York, N.Y., 1981.

[Dahl82]
Dahl, V., "On Database Systems Development through Logic", ACM TODS 7, 1 (March 1982),
pages 102-123.

[Daya84]
Dayal, U. et al., "Knowledge-Oriented Database Management”, Technical Report, CCA-84-02,
Computer Corporation of America, Cambridge, MA, 1984.

[Fink82]
Finkelstein, S., "Common Expression Analysis in Database Applications”, in Proceedings of the
1982 ACM-SIGMOD Conference on the Management of Data, Orlando, FL, June 1982, pages 235-
245.

[Gall78]
Gallaire, H. and J. Minker, Logic and Data Bases, Plenum Press, New York, N.Y., 1978.

[Gall81a]
Gallaire, H., "Impacts of Logic on Data Bases", Proc. 7th International VLDB Conference, Cannes,
France, August 1981, pages 248-259.

[Gall84]
Gallaire, H., J. Minker, and J. M. Nicolas, "Logic and Databases: A Deductive Approach”, ACM
Computing Surveys 16,2 (June 1984), pages 153-185.

[Ghos87]
Ghosh, S., C. C. Lin, and T. Sellis, Implementation of a Prolog-INGRES Interface, Unpublished
Manuscript, University of Maryland, College Park, MD, September 1987.

[Toang4]
Toannidis, Y. E., L. D. Shinkle, and E. Wong, "Enhancing INGRES with Deductive Power" (Position
Paper), in Proceedings of the 1st International Workshop on Expert Database Systems, Kiawah Isl,,
SC, October 1984, pages 847-850.

[Jark84]
Jarke, M., J. Clifford, and Y. Vassiliou, "An Optimizing Prolog Front-End to a Relational Query Sys-
tem", in Proceedings of the 1984 ACM-SIGMOD Conference on the Management of Data, Boston,
MA, June 1984, pages 296-306.

-24-

[Kowa84]
Kowalski, R. A., "Logic as a Database Language", in Proc. 3rd British National Conference on
Databases, edited by J. Longstaff, Leeds, U.K., July84, pages 103-132.

[Morr86]
Morris, K., J. D. Ullman, and A. VanGelder, "NAIL! System Design Overview", in Proc. of the 3rd
International Conference on Logic Programming, London, England, July 1986, pages 554-568.

[Nais83]
Naish, L. and J. A. Thom, "The MU-Prolog Deductive Database”, Technical Report 83/10, Com-
puter Science Dept., University of Melburne, November 1983.

[Nico&3]
Nicolas, J. M. and K. Yazdanian, "An Outline of BDGEN: A Deductive DBMS", in Information
Processing 83, edited by R. E. Mason, North Holland, 1983, pages 711-717.

[Park86]
Parker, R. et al., "Logic Programming and Databases”, in Expert Database Systems, Proceedings
from the First International Workshop, edited by L. Kerschberg, Benjamin/Cummings, Inc., Menlo
Park, CA, 1986, pages 35-48.

[Scio84]
Sciore, E. and D. Warren, "Towards an Integrated Database-Prolog System", in Proceedings of the
1st International Workshop on Expert Database Systems, Kiawah Isl., SC, October 1984, pages
801-815.

[Seli79]
Selinger, P. et al., "Access Path Selection in a Relational Data Base System", in Proceedings of the
1979 ACM-SIGMOD Conference on the Management of Data, Boston, MA, June 1979, pages 23-34.

[Ston76]
Stonebraker, M., E. Wong, P. Kreps, and G. Held, "The Design and Implementation of INGRES",
ACM Transactions on Database Systems 1, 3 (September 1976), pages 189-222.

[Stong&1]
Stonebraker, M., R. Johnson, and S. Rosenberg, "Extending INGRES with a Rules System",
Memorandum No. UCB/ERL M81/93, University of California, Berkeley, December 1981.

[Ston85]
Stonebraker, M., "Triggers and Inference in Data Base Systems", in Proceedings of the Islamorada
Workshop on Large Scale Knowledge Base and Reasoning Systems, Islamorada, FL,, February 1985.

[Tsur86]
Tsur, S. and C. Zaniolo, "LDL: A Logic-Based Data-Language", Proc. 12th International VLDB
Conference, Kyoto, Japan, August 1986, pages 33-41.

[Ubel84]
Ubell, M., "The Intelligent Database Machine (IDM)", in Query Processing in Database Systems,
edited by W. Kim, D. Reiner, and D. Batory, Springer-Verlag, New York, N.Y., 1984.

