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Abstract

In the past, a number of database machine designs have been advanced that propose using
hundreds of query processors to process a database query in parallel. In this paper, we argue that
the performance of these designs is severely limited by the I/O bandwidth provided by the disk
drives that store the database, and unless the problem of the I/O bandwidth is tackled, the use of

hundreds of query processors is not justified.



1. Introduction

During the past decade, database machines have been the subject of intense research activity, and a
number of database machine designs have been proposed (see the surveys in [10,18]). The basic
approach in a large class of these designs has been to use the conventional mass storage devices but
employ hundreds of processors to process a query in parallel in order to gain performance
improvements. Examples of database machines in this class'include DIRECT (8], RAP.2 [17],
INFOPLEX [14], RDBM [11], and DBMAC [15]. In [9], these designs have been classified as the
multiprocessor-cache class of database machines as all data to be processed is first moved from disk
to a cache, and once the data is there, it is processed by multiple processors in parallel.
Furthermore, intermediate results in pr(;cessing a query are placed in the cache from where they are

quickly accessible to the processors for subsequent operations in the query.

In this paper, we present the results of our simulation experiments that show that the performance
of the multiprocessor-cache class of database machines is severely limited by the I/O bandwidth
provided by the disk drives that store the database, and unless the problem of 1/0 bandwidth is

tackled, use of hundreds of processors is not justified.

The organization of the rest of the paper is as follows. In Section 2, we present the basic
architecture of the multiprocessor-cache class of database machines. Section 3 contains examples of
query processing that illustrate the motivation behind using a large number of processors in this
architecture. Section 4 describes the structure of our simulation model and Section 5 specifies the
characteristics of the simulation model. Section 6 presents the results of the first set of experiments
that assume that the conventional disks are the mass storage medium. Section 7 describes the
results of another set of experiments where the database is assumed to reside on parallel-readout
disks. Section 8 describes the sensitivity experiments. Section 9 contains our conclusions and

suggestions for future research.
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2. Multiprocessor-Cache Database Machine Architecture

The multiprocessor-cache database machine architecture (Figure 1) consists of a set of processors, a

multi-level memory hierarchy, and an interconnection device.

Some of the processors, designated query processors, execute user queries and operate
asynchronously with respect to each other. One of the processors, designated the back-end
‘controller, acts as an interface to the host processor (the processor with which a user interacts) and
coordinates the activities of the other processors. After a user submits a query for execution, the
host compiles the query and sends it to the back-end controller for execution on the database

machine.

We assume that the memory hierarchy consists of three levels. The top level consists of the internal
memories of the query processors. Each processor’s local memory is assumed to be large enough to
hold both a compiled query and several data pages. Mass storage devices (disks) make up the

bottom level and the middle level is a disk cache that is addressable by pages.

The bottom two levels of the memory hierarchy are connected in a way that allows for data
transfers between each of the disks and any page frame in the cache. A processor, designated the
I/0 processor, transfers pages between the disks and the cache. The top two levels of the hierarchy
are so connected that each processor can read and write a different page of the caghe simultaneously
and all processors can simultaneously read the same page of the cache. See [4] for a discussion of

the interconnection schemes that may satisfy these requirements.

3. Query Processing

In this section, we will describe the processing of some of the relational operators to motivate the
suggestion for using hundreds of query processors in a multiprocessor-cache database machine. This
section is in no way intended to be an exposition of the query processing algorithms in this class of

database machines. See [4] for such a discussion.



Selection

To perform selection on a relation R, a different page of R is provided to every query processor.
Each query processor then scans its page and extracts tuples that satisfy the search criteria. If there
are N query processors and [R| is the size of the relation R, then in the best case, this operation can
be performed in [R[/N time units, where one time unit is the time required to perform the operation
on one page. In particular, if N = [R| then the selection can be performed in 1 time unit, and hence

the need for large N.
Join

To join an outer relation R with an inner relation S, first a different page of R is provided to each
of the query processors. Then each page of S is broadcast one at a time to all of these query
processors. Query processors join different pages of R with the same page of S in parallel. Thus, in
the best case, the join can be performed in (RI/N) * S| time units. If N = [R} then the join will

need only [ time units.
A Pitfall

The realization of the parallelism described above is predicated on the assumption that a query
processor is never blocked because there are no data pages to process. We designed a set of

simulation experiments to test the validity of this assumption.

4. Structure of the Simulation Model

The structure of the database machine simulator is shown in Figure 2. When a transaction arrives
for processing, its size in terms of number of pages accessed and the reference string is generated.
For each page accessed by the transaction, it is determined whether the page will be updated,
whether the page will be found in the cache (e.g., a page of an intermediate result) or will have to

be read from a disk, and how much query-processor time will be required to process this page'.

1. These parameters are determined for each page at the time of the arrival of a transaction so that a page has identical
routing and processing time across different simulation experiments.
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Pages accessed by the transaction are put in the queue for the disk cache. When a page is allocated
a cache frame, it is put in the disk queue. After the page has been read from disk, the page can be
2

assigned to a free query processor and it is put in the query-processor queue”. If a page is

determined to be already in the cache, then it is immediately put in the query-processor queue.

When a processor becomes free, it is assigned the page which is first in the processor queue. The
processor reads this page into its local memory and releases the cache frame that was holding this
page. If the page is read-only, the processor becomes free after processing the page. If the page is
updated, the query processor requests a cache frame to output the updated page. The cache request
for sending an updated page from a processor’s local memory has priority over the request for
prepaging.data pages from disk. When a cache frame is allocated ta the updated page, the

processor writes the page to the cache. The processor is now available to process the next page.

The updated page is put in the disk queue for writing it to disk. In the disk queue, updated pages
have priority over the pages to be read. After all the pages of a transaction have been processed

and the updated pages have been written to disk, the transaction terminates.

Observe that the query execution in our simulation model is page driven which is similar to the
data-flow approach proposed in [5]. We also model anticipatory paging or prepaging [8] of data
pages.

5. Model Characteristics

Transactions

A transaction is modeled by the number of pages it accesses. The size of a transaction is a uniform

discrete random variable in the range 1 to 250. The size of a data page is 4096 bytes.

The reference string of a transaction can either be random or sequential. To generate a random

2. There is one queue for all the processors as all the query processors are identical and a page can be processed by any one
of them.



reference string, the page number and the disk on which it resides are randomly selected for each
page. The page number is between 1 and the maximum number of pages on the disk. For a
sequential reference string, the first page is randomly determined. Subsequent pages are determined
by incrementing the page number of the first page. All pages accessed by a sequential transaction
reside on one disk which is selected in round-robin fashion. In one simulation experiment, all the
transactions are assumed to be either random or sequential to isolate the effect of access pattern on

performance.

In database machines, all the pages processed in response to a query are not necessarily read from
disk. Some of the pages may be found in cache. For example, if a query consists of restricting a
relation followed by a join of the resulting relation with another relation, then it is likely that at the
time of the join operation some fraction of the pages produced by the selection operation will be
present in the disk cache. The size of a transaction is the total number of pages processed by the
transaction. To estimate the percentage of pages éf a transaction that will be found in the cache,
we instrumented the simulation of the database machine DIRECT [5], and found the average

cache-hit ratio to be 20%.

The write set of a transaction is a random subset of its read set. The percentage of pages updated

by a transaction was taken to be 20% of the total number of pages accessed by the transaction.

We used separate random number streams for generating different parameters to ensure that the

size and the reference string of a transaction were the same across different simulations.
Query Processors

Query execution in a database machine is characterized by a mix of simple operations like restrict
and complex operations like join. To estimate the average time to process a page, we again
instrumented the simulation of DIRECT [5], and determined the average times for the selection and
the join operations on a page. The average processing time for a page was then estimated by
weighting these timings with the corresponding number of pages for each operation. Thus, 36.65

ms. was determined to be the average time to process a page. In a recent benchmark of the



commercial version of INGRES running on a VAX 11/750 [3], the average cpu time per page for a
selection operation was measured to be 27 ms. and the time per page for a join operation was found
to be 46 ms. Thus, 36.65 ms. seems to be a reasonable estimate of the average time required to
process a page. The time taken by a query processor to process a particular page is assumed to be

normally distributed with the standard deviation equal to 1/3 of the average processing time.

The transfer rate between a processor’s memory and the disk cache was assumed to be 1/2

megabyte per second [6].
We assumed a database machine configuration consisting of 25 query processors.
Mass Storage Devices

The mass storage devices were modeled after the IBM 3350 disk [12]. This disk has 30 recording
surfaces, 555 cylinders and 4 blocks of 4096 bytes each on every track. The revolution time is 16.7

ms. and it takes 10 + 0.0772*N ms. to move the head by N cylinders.

To determine the access time for a disk page, the cylinder number on which the page resides is first
computed. The access time is then computed by accounting for the seek from the current head
position to this cylinder plus latency and the transfer time. Disk requests were serviced on first-

come first-serve basis. We assumed 2 disk drives for our experiments.
Disk Cache

The disk cache is addressable at page boundaries of 4096 bytes pages. The unit of access is a full
page. We assumed a disk cache of 100 page frames. We further assumed that the transfer rate
between the cache and the processors, and the rate between the cache and the disk drives are limited
only by the bandwidth of the processor’s bus and the disk transfer rates respectively. Thus, the disk
cache has been modeled as a passive resource [16]. The disk cache d~085 not have any service time

associated with it; the size of the disk cache limits the number of pages that may be active in the

database machine.



6. Experiments with Conventional Disks

In the first set of simulation experiments, we assumed that the database resides on conventional
disks and the access pattern of all the transactions is either random or sequential. Each simulation
run was stopped after executing 500 transactions. (See [1] for a discussion on the stability of the

simulation results).

Table 1 shows the average execution times per page® for the two types of access patterns. The
execution time per page is defined to be the time taken by the database machine to execute a given
transaction load divided by the total number of pages processed by the machine, and is a measure of
the throughput of the machine. Total pages processed is given by Eﬂ"il where [TII is the size of the

transaction Ti in pages.

Tables 2 and 3 contain performance statistics related to the disk drives and the query processors
respectively. In Table 2, Q-length is the sum of the average number of disk requests pending at the
two disk drives, and Q-time is the average waiting time before a disic request is taken up for
servicing. Access time is the average time for transferring a page between the disk and the cache
and consists of seek, latency and transfer times. Total I/Os is the total number of disk requests

serviced by the disk drives.

In Table 3, Q-length is the average number of data pages resident in the disk cache waiting to be
assigned to a query processor, and Q-time is the average time that a page stays in cache before it is
assigned to a free processor. Max QPs Used is the maximum number of query processors in use at
any time. Max Utilization is the maximum utilization of any one of the query processors. For
computing the utilization of a query processor, in addition to the time a query processor is
performing an operation on a page of data, the time during which a query processor reads a page
into its local memory or writes a page to cache, the processor is also considered to be in use.

Effective QPs is the sum of the utilizations of all the query processors.

3. unit of time throughout this paper is milliseconds



Access Pattern Execution Time per Page
Random 18.00
Sequential 11.01

Table 1. Execution Time per Page (Conventional Disks)

Access Utili- Q Q Total Access
Pattern zation length time 1/0s time

Random .99 95.80 1711.22 59170 35.53
Sequential 75 94.98 1043.40 59170 16.52

Table 2. Disk Characteristics (Conventional Disks)

Access Max Max Effec- Q Q
QPs Utili- tive .
Pattern Used sation QPs length time
Random 9 A5 Sl 0 0
Sequential 17 .16 .82 0 0

Table 3. Processor Characteristics (Conventional Disks)

It may be observed that the parallelism in the database machine is severely constrained by the 1/0
bandwidth. Although there were 25 processors, 16 of them were never used when the access pattern
was random. Out of the 9 processors that were used, none of them was in use for more than 15% of
the time and the sum of the utilization of these processors was only 51% of a single processor.
When the accesses were sequential, 8 processors were never used, none of the processors was used
more than 16% of the time, and the sum of the utilization of the 17 processors was only 81% of a
single processor. There was never an instance when a data page was available in the disk cache and

no query processor was available to process it.

In contrast to processor utilization, the disk utilization was nearly 100% for random accesses, and
there were long disk queues with large waiting times. For sequential transactions, the disk

utilizations were also very high®.

4. The lower numbers for disk utilization in the case of sequential access compared to the random access is explained by the
following. We assumed that a sequential transaction accesses all the pages from the same disk and the cache frames are
allocated to the transactions on first-come first-serve basis. Thus, if there is a sequence of large transactions that all
access, say, Disk | interspersed with small transactions that access Disk 2, then Disk 2 becomes idle whereas there is a
queue at Disk 1. -



Table 4 shows the results of another expériment. This experiment was designed to investigate the
number of query processors that will bé required to achieve the same performance as 25 query
processors, while the other parameters (number of cache frames, number of data disks etc.)
remained invariant. When the access pattern of the transactions was random, the same average
execution time per page was achieved using only 3 query processors. Even when all the accesses
were sequential, performance gains from using more than 6 query processors were marginal. This
experiment clearly demonstrates that if the conventional disk drives are used for storing the
détabase, then a few rather than hundreds of query processors are adequate in a multiprocessor-

cache class of database machine.

Access Number of Processors

Pattern 25 1 2 3 4 5 6 7 8
Random 18.00 47.18 23.59 17.99

Seq. 11.01 47.18 23.60 16.13 13.20 11.97 11.38 11.11 11.02

Table 4. Execution Time per Page (Conventional Disks)

7. Experiments with Parallel-Readout Disks

One way of increasing the 1/0 bandwidth is to use parallel-readout disks as proposed by the SURE
[13] and DBC [2] database machine projects. On a parallel-readout disk, pages on different tracks

of the same cylinder may be read and written in parallel in one disk access.

Another set of experiments were designed to investigate the effect of using parallel-readout disks on
database machine performance. To simulate the parallel-readout disks, disk requests were serviced
by determining the cylinder number of the page that was first in the disk queue and then examining
the whole queue to find if there was another page in the queue belonging to the same cylinder. All
such pages were then accessed in parallel. The rest of the simulation model and the simulation
parameters were kept identical to the conventional disk experiments. The simulation results are

summarized in Tables 5 through 7.

Even the parallel-readout disks did not alleviate the I/0O bandwidth problem when the accesses were
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Access Pattern Execution Time per Page
Random 16.62
Sequential 1.92

Table 5. Execution Time per Page (Parallel-Readout Disks)

Access Utili- Q Q Total Access
Pattern zation length time 1/0s time
Random 1.00 95.90 1580.80 55236 35.49
Sequential 0.92 27.42 52.65 13991 15.01

Table 6. Disk Characteristics (Parallel-Readout Disks)

Access Max Max Effec- Q Q
QPs Utili- tive .
Pattern Used sation QPs length 5 time
Random 10 15 0.56 0 0
Sequential 25 91 22.38 54.47 104.77

Table 7. Processor Characteristics (Parallel-Readout Disks)

random. 15 processors remain unused, the maximﬁm utilization of any one of these processors was
15%, and the sum of the utilization of the 10 processors was 56%. On the other hand, disk
utilization continued to be 100%. The slight reduction in the average execution time per page when
compared to the conventional disk case is due to the reduction in the number of disk 1/0s. A total
of 55,236 disk I/Os are made with the parallel-readout disks compared to 59,170 1/Os required with
the conventional disks. Table 8 shows that even with the parallel-readout disks, 3 processors were
adequate to process data at the rate provided by the disk drives, and there was no further

improvement in the performance if a larger number of processors were used.

Number of Processors
25 1 2 3

16.62 47.18 23.59 16.61

Table 8. Execution Time per Page (Random Access, Parallel Disks)

The execution time, however, improves dramatically when parallel-readout disks are used for

sequential accesses. The improvement is mainly the result of significantly fewer total 1/Os (only
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13,991 I/Os were required). Not only all the 25 query processors were used, utilization of all the
processors was also very high. Consequently, there were instances when the data pages were
available in the cache for processing but no processor was free. Ultilization of the disk drives was
also very high. Table 9 shows that the performance of the database machine can be further

improved by using even a higher number of query processors and a larger disk cache in this

configuration.
QPs= 25 25 75 75 75 100 250
Cache= 100 150 150 200 250 250 500

1.92 1.92 91 81 14 .70 .60

Table 9. Execution Time per Page (Sequential Access, Parallel Disks)

8. Sensitivity Experiments

We performed two sets of sensitivity experiments. First, the cache hit ratio was increased to 50%
from 20% keeping the other parameters invariant (25 query processors, 100 cache frames, 2 data
disks). Next, the size of a transaction was randomly determined from the range 1 to 10 instead of 1
to 250 (cache hit = 20%). The average execution time per page for these experiments is

summarized in Table 10.

Configuration Cache Hit Transaction Size
50% ‘ 1-10

Conventional disks-

Random access 17.94 12.55

Parallel disks-

Random access 11.57 16.70

Conventional disks- '

Sequential access 6.98 11.20

Parallel disks-

Sequential access 1.89 5.52

Table 10. Average Execution Time per Page

As expected, for 50% cache hit, the average execution time per page decreased when compared to
20% cache hit. However, the performance continued to be limited by the I/O bandwidth provided

by the disk drives except when the access pattern was sequential and the parallel-readout disks were
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used. In this configuration, even with 20% cache hits, all the processors were almost fully utilized.

With 50% cache hits, the processors became the bottleneck.

For small transactions (access to 1-10 pages), simulation results exhibited the same pattern as with
the mix of transactions of size 1 to 250 pages. However, for sequential access pattern, the
improvement in performance with the parallel-readout disks was less dramatic. With a shorter
sequential reference string, fewer pages were accessed from the parallel-readout disk in one disk

170, and consequently, there was less reduction in the total number of disk 1/0Os.

9. Conclusions

We have.shown that the performance of the multiprocessor-cache class of database machines is
severely limited by the I/O bandwidth provided by the disk drives. It has been suggested that in
such machines hundreds query processors may be used to process a database query in parallel. We
demonstrated that if the current state-of-art disk drives (like IBM 3350 disks) are used for storing
the database, then for 2 disk drives, not even 10 query processors are adequately utilized even when
the access pattern of all the transactions is assumed to be sequential. Highly parallel database

machines will become viable only if the problem of I/O bandwidth is solved.

One way of increasing the I/O bandwidth is to ‘use parallel-readout disks. For sequential
transactions, when parallel-readout disks were used, the throughput of the Adatabase machine
increased considerably. However, parallel-readout disks do not necessarily solve the I/0O bandwidth
problem. If the accesses are random or the transactions access small number of pages, so that there
are not many pages belonging to the same cylinder in the disk queue, the parallel accessing
capability of a parallel-readout disk becomes redundant. Similar results are expected if the disk
controller is augmented with a large internal cache so that it reads the whole cylinder at a time
instead of reading one block at a time. Currently, there is no empirical evidence that real life

databases exhibit temporal locality.

What then is the solution to the I/O bandwidth problem? One solution may be to construct a

database machine so that the whole database, or a very large part of it, is always memory resident.
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A primary issue in such an architecture would be how to make updates to the database permanent.
In [1], a parallel logging algorithm has been proposed to log changes to the database. As many log
disks as necessary may be used to avoid degradation in the throughput due to the logging activity.
This will, in addition, require efficient algorithms for incrementally saving the image of the database
on stable storage while the database is in operation so that the database may be reconstructed in
acceptable time after a system crash. The feasibility and the details of the architecture, the
incremental dumping and the database reconstruction algorithms, the query processing strategies in

such an architecture, all appear to be promising subjects for future research.

The conventional wisdom is that, for best results, if a device is free and there is a task to be
performed, let the device start working on the task immediately. With parallel-readout disks, there
are situations where the forced idleness may be a better choice. For example, suppose vthat two
adjacent pages P1 and P2 are to be read from the same cylinder of a parallel-readout disk. Further,
suppose that two cache frames become free at time t and t+ At respectively where At is very small
compared to the disk access time, and the disk becomes free at time t. If the disk begins accessing
P1 at time t, then a separate access will be required to access P2. However, if the disk is kept idle
for At time units, then both P1 and P2 may be read in one disk access. It will be interesting to

explore further the scheduling of parallel-readout disks from this point of view.

In our experiments, for servicing the disk requests, the service discipline was always assumed to be

first-come first-serve. It will be worth investigating the effect of other disk-scheduling strategies on

database machine performance.
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