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ABSTRACT

This paper introduces a multistage shuffle/exchange network, called the
7ETA network, for processing all the pairs (X;X;) of a given string of inputs
X0 Xy, .+ .+ X5—1- By using known results from algebra, it is shown that it is possi-
ble to determine a repetitive exchange pattern for a p—1 stage ZETA network,
such that each pair (X;X;) is the output from some processor at some stage. The
main result is developed for values of p which are a power of 2. General sugges-
tions are made to handle arbitrary values of p.






ZETA Networks

1. Introduction

In this paper we consider a type of interconnection network for an array of
processors constructed so that the processors act on all possible pairs of p dis-
tinct input streams, Xo. X1, . . . . Xp-1. This type of network, the ZETA network, is
a p—1 stage shuffle/exchange [STON71, CHUAB1] where the pattern of exchanges

is identical in each column. The processors at one stage process g—-pairs and

"pipe" their data to the processors at the next stage. Therefore, if there are
several consecutive sets of p element input streams to be processed, the ZETA
network acts as a pipeline, with consecutive stages processing pairs of consecu-
tive input sets. All the processors will be executing the same operation but on

different pairs of data (that is an SIMD [FLYNGE] configuration).

The ZETA network was motivated by the need to evaluate the non-diagonal
elements of the matrix X'X where X is an nxp matrix of numerical values from a
large statistical database. In such databases, n would typically be in the tens or
hundreds of thousands while the p used in a particular problem would be much
smaller, say between two and one hundred. This calculation is used in one
method of analyzing the linear regression model

Y=Xb+e
There have been systolic array [MEADBO] designs proposed for the parallel
evaluation of the QR factorization of X [AHMEB2, GENT81, JOHNBZ, HELLB3] which
is another method of analyzing this regression model. Some discussion of the
relative advantages of the X' method and the QR factorization method of
analyzing a regression model can be found in [SEBE77] and [KENNBQ]. The ZETA



network, however, is not restricted to this one problem. Since it is based on a
shuffle /exchange it provides a simple and general interconnection method for

any problem that requires the processing of all pairs of some inputs streams.
We first consider the special case where p = 2™. The network can be pic-

tured as having P-(}-)ET“-Q—processcrs arranged as p—1 columns with g—processors

in each column. Each processor has two inputs and two outputs and the proces-
sors in one column are connected to the pfocessors in the next column through
a perfect shuffle. The exchange part of the shuffle /exchange comes from each
processor being able to switch its inputs or send them straight through to its
outputs. In a ZETA network, whether or not a processor switches its inputs is
determined only by the row in which the processor is. That is, all the processors

" in a row switch their inputs, or all the processors in a row send their inputs

straight through. This means that when p—(%g-processors are not available,

the network could be emulated by g—processor‘s where successive stages are

performed at successive times.
The foremost gquestion to be asked of any interconnection network is

whether all possible pairs of outputs are formed. There will certainly be EﬁP_z'_l_L

pairs formed but there may be repetitions and corresponding omissions. For
example, a ZETA network where every processor did not switch inputs would
repeat the entire pattern of pairings after m stages since it would be performing
a perfect shuffle. (We are assuming that p = 2m), The problem, therefore, is to

determine an exchange pattern where all possible pairs are formed.

In Section 2 we show that such patterns can be constructed for any m. The
formation of the patterns has an elegant algorithm which is related to error-
detection codes and pseudo-random number generation. The general case of p

not necessarily a power of 2 is considered in Section 3.

-2~



For the binary arithmetic operations, "." is binary multiplication (AND) and

"@®" is mod 2 addition (exclusive OR).

2. ZETA Networks

In this section we define ZETA networks and show that for a special class of
ZETA networks we will be able to generate all the (X X;) pairs. As indicated ear-
lier we assume that p = oM The more general case will be discussed in Section

3.

Definition 1: A ZETA network is a p-1 stage shuffle /exchange network where, at

each stage, the pattern of exchanges is the same.

Since the pattern of exchanges is the same at each stage, it is possible to

emulate a ZETA network with just one stage of shuffle/exchange. At each stage

of a ZETA network there are g—switching elements. We label these switching ele-
ments O, 1, ..., %—-— 1. Each switching element has two outputs. At each stage,
we label these outputs 0, 1, ..., p-1. Switching element P has outputs labeled 2P
and 2P+1. An output labeled j issues from a switching element labeled l%—]

Moreover, an output labeled j iy some element Xl of the set Xo, X3, **+ Xp-1. We
shall call i the indez of the output labeled j. At each stage of a ZETA network the
outputs from the switching elements will form some permutatior{ of this set or,

equivalently, of 0, 1, ... 27-1.

Definition 2: A ZETA network is O-preserving if the first switching element is not

set (that is, it does not switch its inputs). This results in 0 being the index of the
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output labeled 0 at each stage.

Definition 3: A ZETA network is i-complete if i (that is X; ) is paired with each j

(that is X;) in some switching element.

Since our goal is to form all the (i, j) pairs, we are interested in ZETA net-

works which are i-complete for all i.

Definition 4: A ZETA network is complete if it is i-complete for all i=0, 1, ..., p-1.

FEzample: In Fig. 1 we have a 7 stage ZETA network. Switching elements 2 and 3
_exchange their inputs. The ZETA network is O-preserving and complete. At each
stage we have labeled the switching elements, the outputs and indicated the
binary representation of the indices. Note that, at each stage, the output
indices constitute a permutation of 0, 1, ..., 7. For example, at stage 3 the out-
puts constitute the permutation Xg. X7, Xg. X1, Xa X4 X5, Xz of X0, X;, " X7
This ZETA network has a very interesting property. At the bottom of each
column of the switching elements we have given the binary representation of the
index of of the element which is paired with 0. For example at stage 3, 0 is
paired with 7 or 111. Now observe that if we take the exclusive OR of the binary
representations of any other pair of indices at this stage we also get 111. This
property is true for any stage of this ZETA network. In other words, at each
stage of this ZETA network the binary representations of the indices of the out-

puts from the switching elements differ in the same bit positions.

Definition 5: A ZETA network is bit difference preserving if at each stage the
binary representations of the indices of the outputs from the switching elements

differ in the same bit positions.
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Fig. 1



If a ZETA network is bit difference preserving then for any pair (i, j) the
binary representations of i and j will differ according to d;;=i@®j and all the
dij's at the same stage will be identical. But if the network is also 0-complete,
any m-bit number will be paired with 0 at some stage. Hence any (i, j) will be

the output of some switching element at some stage. Therefore:

Theorem 1: A bit difference preserving ZETA network is complete iff it is O-

complete.

Again consider the example in Fig.1. Note that the switching elements 0, 1,
2, 3 (or 00, 01, 10, 11) interchange their inputs iff 1.Py® 0.P; is 1 (PeP, is the
binary representation of the label). Therefore 10 (in binary) "determines” the
exchange pattern. Moreover, consider the binary representations of the output
indices from the switching elements, in any row of the network. It can be shown
that, in the same row, the least significant two bits of a binary representatioﬁ in
a stage are obtained from the binary representation of the previous stage
through a right shift. For example, at stage 3, 111 is paired with O and at stage
4, 011 is paired with 0. The least significant two bits of 011 are obtained from
111 through a right shift. The most significant bit of 011, however, is the com-
plement of the least significant bit of 111. In fact it can be shown that for this
ZETA network, the most significant bit of each output index is the exclusive OR
of the least significant bit of the previous output index with the “inner product”
of 10 (in binary) with the remaining bits of the previous output index. In our

example the most significant bit 0 of 011 isequalto 1 & 1.1 & 1.0.

Definition 6: Let t=tgt; ' 'ty be any fixed (m-1) bit number. Then if the

) zm"l

switching elements 0, .. -1 switch their inputs when



to.Po ) tl'Pl ® ;B tm_g.Pm..z =1 (21)

where P = PgP; * - - Pz is the binary representation of switching element P, the

7ZETA network is said to be t-determined.

In what follows we shall show that for t-determined ZETA networks the
binary representations of the permutation at stage k is determined from the
binary representations of the permutation at stage k-1 through a right shift and
the complementation of the most significant bit depending upon t and the
remaining bits (see (2.2)). We shall also show that t-determined ZETA networks

are bit difference preserving.

Theorem 2 Let t=tgt; - ' tm-z and consider the t-determined ZETA network, If
s = sfsfl - - - S, is the binary representation of the index of the output
labeled j at stage k, then:

s = sP fori=1,..m-1

and | (2.2)

5§90 = sERe s tee sy @ - @50 tne

Proof: We shall prove by induction. Clearly in the first stage of the shufile

exchange network we have:

S{P = 8{9; fori=1,..m-1 (2.3)
and in fact (2.3) holds for any exchange pattern. We need to show the second

equality of (2.2) holds for k=1. First note that S{Js{% - - S{9), . is switching ele-
q 4 PL b

ment

é—‘ and, since the network is t-determined, it is switched iff (2.1) holds.

But switching corresponds to complementing S{,;. Therefore (2.2) holds for

k=1.



Assume (2.2) holds for k < (n—1). Now there exists a r such that S{™ and
Sf) are equal to S{*™?) and S{n-2) pespectively: r is the index which, when
shuffled and exchanged, gets mapped inte j. But then, by the induction
hypothesis, S is obtained from S{*~? through (2.).

Q.E.D.

Theorem. 3: The t-determined ZETA networks are bit difference preserving.

Proof: Again we shall prove our contention by induction. Now for k=1 (that is at
the first stage), no matter what the exchange pattern is, the binary represenia-
tions of the output indices from the switching elements differ only in the most
significant bit position. Next assume for k=n-1 ‘the output indices from the
switching elements have the bit difference given by Sf9. That is assumne for the

two outputs S{ and S{ from any switching element ]

Si(j? ® Si(,]j{z) = 5% fori=0,..m-1 (2.4)
holds for k=1....,n-1. That (2.4) holds for k=n follows from the fact that S{®, s{m

and S{¥ are obtained from Sj(ln_l), Sj(:"l) and S{*~1 through (.2).

Q.ED.

Since t-determined ZETA networks are obviously O-preserving and, as shown
above, also bit difference preserving, to show that a t-determined ZETA network
is complete we need to show it is O-Q'omplete (Theorem 1). It is easy to see that
not all t-determined ZETA net’worksj:jare O-complete. For example if t=00...0 we
get the perfect shuffle (without aﬁy exchanges) at each stage and 0 will be
paired, repeatedly, with 2K for k=(m-1), (m-2)....0. To find t-determined ZETA
networks which are O-completé we need to determine the t's which, starting with

om-1 "generate” through (2.2) all the 2.1 non-zero m-bit numbers. This
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problem has been solved algebraically and 2.1 corresponds to the maximum
period possible for a linear feedback shift register of m stages [GOLO67]. It has
applications in generating m-bit pseudo random numbers with maximum period-
icity [KNUTB1].

In what follows we assume our reader has some familiarity with Galois fields
GF(2™) and the algebra of polynomials over a field (see [BIRK70, PETE7R]).
Below we give some preliminary definitions and two theorems which will guaran-
tee the existence of O-complete ZETA networks for any m. Since these results
are well known in algebra and in the literature of error generating codes we just

state them without proof.

Definition 7: The order of a nonzero element « of a multiplicative group G is the
smallest positive integer r such that o = . Note that of*T = ¥ for all k and the

sequence § aX {2 is periodic of period r, with the first r elements all distinct.

Definition 8: An element a of GF(Zm) is called primitive if its order is oMMg,
Every non-zero element of GF(2™) can be expressed as a power of a and the

multiplicative group of the non-zero element of GF(2™) is eyclic.

Definition 9: An irreducible polynomial of degree m over GF(2) is called a primi-

tive polynomial if it has a primitive element of GF(2™) as a root.

m— 1

Theorem 4 [KNUT81, BIRK70]: Over. GF(R) there are 2'm primitive polyno-

mials of degree m, where ¢ is Euler's ¢ function.

Theorem 5 [BIRK70, PETE72]: Let

TX) =1+t X+t X+ -+t X™ (2.5)



be a primitive polynomial of degree m over GF(2) (note that t,_, =1). Then
starting with any initial non-zero m-bit number S©@=S{IS{® ... s{), the

sequence § SO }2, generated by

s = s fori=1,..m-1

and (2.8)
s§d = sk @ 'Ezsj(k—l).ti

i=0
is periodic of period M.,

Thearem. 6: For any m we can always find a ZETA network of 2.1 stages which is

complete,

Proof: For any m we can always find a primitive polynomial of degree m over
GF(2) (Theorem 4). Let T(x) given by (2.5) be such a primitive polynomial. Con-
sider the t-determined ZETA network, where t = tot; - - - ty—2. By Theorem 3, any
t-determined ZETA network is bit difference preserving. Moreover, Theorem 5
implies this t-determined ZETA network is also O-complete. We are done by

Theorem 1.

Q.E.D.

3. The General Case

In the previous section we showed that we can always find a ZETA network
which will generate all the pairs (X;, X;) of Xq, X;, -+, Xp-y, Where p = 2™ There
are two basic problems in constructing a ZETA network for an arbitrary p: (1) it
is not realistic to assume that the number of inputs will always be a power of

two; (2) for large p it might be unreasonable to construct a ZETA network of p-1

stages (which requires E%:—ll— processors). In this section we propose a



number of solutions for these two problems.

(a) Introducing null elements: perhaps the easiest way to handle the first case
is through the introduction of null elements to the original input. That is find the

smallest m such that p=2™ and append 2™ — p null elements to the original
g

meom, —
input. Note that with this scheme there are 2 (22 D _ p(pz 1) null opera-

tions. If p is 2¥ + s for a relatively small s (for example s=1) this could degrade

the throughput considerably.

(b) Emulation (for large p): if p is slightly less than a power of 2 but still very
large, it might be unreasonable to construct the ZETA network. We mentioned
earlier that the repetition of the exchange patterns allows us to emulate the
ZETA network through just one stage of shuffle/exchange (by piping the data

back to the switching elements a total of p-2 times).

Ji g—-is still very large, it is possible to use quotient networks [FISHB2] and

emulate a shuffle/exchange of 2m*%"! switching elements with a
shuffle/exchange of 2! switching elerments. Each switching element will have
29*1 jnputs /outputs and must process 29 pairs at each stage (for a total of 2™*27!

stages).

(c) Partitioning: another way to handle the general case is by partitioning. Sup-

ose p = q.2%. There are two methods for partitioning:
p

(1) we can partition the p inputs into q subsets of 2* elements each. Then a
2k—1 stage ZETA network can be used to process the input pairs within each
subset. The pairs across the subsets might be processed serially, through
broadcasting etc.. The latter gives maximum efficiency if the ZETA network
is emulated through a one stage shuffle/exchange. In this case if the

switching elements contain blocks from one subset, the corresponding
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blocks from another subset can be broadcast to all the switching elements,
one by one. Each switching element will process two pairs across subsets

and all the switching elements will be operating in parallel.

(2) we can partition the p inputs into ok subsets of q elements each. With this
scheme, the ZETA network is used to process the pairs across the subsels
and each switching element will process ¢° pairs at each stage. As with the
previous scheme, there are several choices for processing the pairs within
each subset. Unlike (1), however, the ZETA network is accessing all the

input. Therefore, it is conceivable to uniformly distribute the armount of

computation within each subset (that is processing gﬁ%g:l—l-pairs), across

the 2k—1 stages of the network.

4. Summary and Conclusion

We have shown that we can determine a pattern of exchanges for a ZETA
network, such that all the (X; X;) pairs of a given set of inputs Xo, X1, - ) Xp-1
are processed. We defined 7ETA networks with this property ""complete”. We saw

that primitive polynomials can determine complete ZETA networks, and since
M.

there are ip—(—z—n-l—ll-primitive polynomials (over GF(R)) for any m, it is always

possible to construct a complete ZETA network for any m.

7ETA networks can be used very efficiently to evaluate the nondiagonal ele-
ments of XTX. In the types of applications we are currently investigating, X is
very large. In particular, X is much larger than the primary memory of the
underlying system. Therefore, with a p—1 stage ZETA network, it is possible to
process the matrix X in horizontal stripes. As we mentioned in Section 1, the
7ETA network acts as a pipeline, with consecutive stages processing consecutive

stripes of X. Therefore, if X is divided into N horizontal stripes and the time to
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access a horizontal stripe from secondary store is synchronized with the pro-
cessing time needed at a stage of the ZETA network, X™X can be evaluated in p+N

time steps .
Finally, the repetitive exchange pattern allows the ZETA network to be emu-
lated through just one stage of shuffle/exchange. This requires only g—proces—

sors. This emulation is one way to handle a large p. Emulation through quotient
networks, introduction of null values and partitioning are some of the other
methods that can be used to efficiently handle an arbitrary p (either very large

or not equal to a power of two).
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