WISCONSIN MODULA
Part III of the First Report on
THE CRYSTAL PROJECT

by

Raphael Finkel
Robert Cook
David DeWitt

Nancy Hall
Lawrence Landweber

Computer Sciences Technical Report # 501

April 1983

Wisconsin Modula
Part III of the First Report on
The Crystal Project

Raphael Finkel
Robert Cook
David DeWitt

Nancy Hall

Lawrence Landweber

1. Introduction te Crystal
1.1. Software Overview
1.2. Phases of the project ..

1.3. This report

CONTENTS

..

..

..

..

2. Differences from standard Modula ..o vt

3. Notation for syntactic descriptioncocoiiiii

4. Language vocabulary and representatlion ...,

5. Constant Declarations
6. Type declarations
6.1. Basic types
6.2. Enumerations
B8.3. Array structures
6.4. Record structures
7. Variable Declarations
8. Procedure declarations
8.1. Standard procedures ..
9. Process declarations
10. EXpressionso.cccoovveeinns
11. Statements ...
11.1. Assignments

11.2. Procedure calls

11.3. Staternent sequences

..

..

..

..

..

...

..

..

..

..

..

..

..

..

..

10

10

11

12

12

13

13

14

19

21

22

25

25

25

28

13.1. Signals

-14. Compilation units

..

...

...

..

..

..

14.1. Import and exXPort ...

14.2. Source File SWitching ...ooovvviriii e

156. Programs

..

16. Macros and conditional comnpilationcoccooeiiii

17. The compiler and runtime Hbraryccoooooi i

17.1.Files ...

..

ii

26

27

27

27

28

28

29

29

35

35

41

41

42

43

43

48

1. Introduction to Crystal

The University of Wisconsin Crystal project was funded starting in 1981 by the
National Science Foundation Experimental Computer Science Program to construct a
multicomputer with a large number of substantial processing nodes. The original pro-
posal called for the nodes to be interconnected using broadband, frequency-agile local
network interfaces. Fach node was to be a high performance 32 bit computer with a
approximately 1 megabyte of memory and floating-point hardware. The total com-

munications bandwidth was expected to be approximately 100 Mbits/ second.

During the first year of the project, these specifications have been refined. We
have decided to buy approximately 40 node machines, each a VAX-11/750. The inter-
connection hardware will be the Proteon ProNet. Currently, the ProNet is available in
a 10 Mbits/second version. We have contracted with Proteon to increase the effective

bandwidth to BO MBits/second.

1.1. Software Overview

The purpose of this hardware is to promote research in distributed algorithms for

a wide variety of applications. In order to provide different applications simultaneous

access to the network hardware, we have designed a software package called the nug-
get that resides on each node. In brief, the nugget provides the following facilities:

1. The nugget enforces allocation of the network among different applications

by virtualizing comrmunications within partitions of the network. These

partitions are established interactively through a host machine.

2. Backing store is shared among the nodes by nugget facilities to virtualize
disks.
3. Interaction between the user and individual machines is provided by the

nugget facility of virtual terrninals.

4, Initial loading, control, and debugging of programs on node machines is

controlled by nugget software.

The Charlotte operating system is designed to provide standard interactive

operating system support within a Crystal partition. The Charlotte kernel provides

1. processes

2 multiprocessing

3. inter-process communication that hides node boundaries

4 mechanisms for scheduling, store allocation, and migration.

All policies in Charlotte are concentrated in utility processes, They are designed so
that each such process controls a policy on its own set of machines. The set may
range in size from one machine to the entire partition. The processes that control the
same resource on different machine sets communicate with each other to achieve glo-
bal policy decisions. The utilities that have been designed so far include a switch-
board, a program starter, and the file server. In addition, there are non-policy utili-

ties for command interpretation and program connection.

We expect that Crystal will be used for a wide range of applications. Currently
research is underway in distributed operating systems, programimning languages for
distributed systems, tools for debugging distributed systems, multiprocessor database
machines, parallel algorithms for math programming, nurnerical analysis and com-
puter vision, and evaluating alternative protocols for high performance local network

communications.

All Crystal software is being written in a local extension to Modula. Our compiler,
which runs on a VAX running Berkeley 4.1 Unix, employs syntactic error correction
through the FMQ algorithm and is quite fast. The code it generates compares well with

that produced by the C compiler.

o

1.2. Phases of the project

The first phase of the project was dedicated to defining both the hardware and the
software. This phase ended in December 1982, Decisions were reached concerning
both the node machines and the interconnection devices. The node machine decision
was difficult. We had to balance our concerns for reliability, availability, speed, and
cost. The machine we chose, the VAX-11/ 750, although not as fast as others we investi-
gated, had the advantage of being a known architecture for which our Modula compiler
already generates code. The Proteon network is currently available. We have been
using this network to interconnect our Unix VAX machines and have found it to be

extremely reliable.

During the first phase, the nugget was specified and a prototype implementation
was completed on a network of eight Digital Equipment PDP-11/23 computers con-
nected by the Megalink CSMA broadband network manufactured by Computrol. Char-

lotte was also specified and the kernel debugged on this network.

The second phase of the project has just gotten underway. We are finalizing the
nugget specifications, which changed in minor ways when we decided that the node
machines would be VAXen. The nuggetmaster, which controls the partitions, has also
been specified. Charlotte is undergoing debugging of the utility processes. During this
phase, which lasts until July 1984, we will transfer the nugget and Charlotte to the
node machines and modify thern as necessary for the ProNet. Charlotte will be
modified to fit with the nugget. (Until now, they have been developed independently.)
The utility processes will be supplemented with login and authentication processes,
and the file system will be converted to use Crystal disks instead of a file system on
the host machine. We plan to have a production, stable operating system by the end of

this phase,

The third phase of the project will see large-scale applications actively pursued.
Some of this work will start during the second phase. We also expect to re-evaluate
the hardware decisions at some point during this phase. There is some reason to
expect that frequency-agile modems will be available that will make communication
within each partition truly independent of communication within other partitions.
Each partition will be able to use its own set of frequencies. Work with optical fiber
technology for computer interconnection is also underway at various laboratories
around the country. Within five years, impressive bandwidths should be available,
reaching into the gigabit/second range. We will continue to monitor progress in this

area.

1.3. This report

The purpose of this report is to describe the current state of the design and
implementation of the Crystal project. It is intended for readers who have no familiar-
ity with Crystal and wish to see the design decisions that have been made. It is also
intended for implementers who need a coherent and reasonably complete
specification in order to interface various parts of the project. This dual readership
requires us to repeat ideas, first presenting them in an overview fashion, and then div-
ing into tedious details. We urge the reader to skip over those parts of the document

that are not at the right level of detail. This report is divided into several documents.

This document describes the Modula language and its local implementation at the
University of Wisconsin. The language description is based heavily on "Modula: a
Language for Modular Multiprogramming", Software Practice and Pxperience 7, pp. 3-
85, 1977 by N. Wirth. Points of difference between the standard language and our

implementation are noted throughout.

The implementation is in C and was written by Keith Thompson during the first

half of 1982. It has been maintained and largely rewritten by Nancy Hall since July

19B82. It can generate code for either the VAX or the PDP-11 and can be retargeted for

other machines as well.
2. Differences from standard Modula

Our version of Medula provides:

separate compilation

constant expressions

qua (casting)

Interface module procedures may call any procedure,
not just standard ones.

Send operations may be applied to imported signals.

panicsig

value parameters

forward declarations

second argument to low, high

bits and <enum> type transfer functions

printf

Unix interface procedures

otherwise in case statermnents

process statements anywhere a statement is legal

various sizes for integers

ficating point

variable list in with statements

compiler options inside meaningful comments

This version does not provide:
device modules

The syntax is different for:
initializations
process stack size
case statements

min, max (-maxint, maxint)
string literals

The following have been defined:

the maximum depth of procedure nesting
character set (Ascii)
compatibility of variables (weak name equivalence)

3. Notation for syntactic description

An extended Backus-Naur formalism is used to describe the syntax. It allows use
of syntax expressions as right-hand parts in a production. Syntactic entities are
denoted by English words expressing their intuitive meaning. Symbols of the language
are either enclosed by quote marks (") or are in boldface and appear as literals in the

right-hand parts of productions. Each production has the form

S=E.
where S is a syntactic entity and E a syntax expression denoting the set of sentential
forms (sequences of symbols) for which S stands. An expression E has the form

T, |Tg|.. | T, (n>0)
where the T;'s are the "terms" of E. Each T, stands for a set of sentential forms, and '|
denotes their union. Each term T has the form

F1 Fy ... Fn (n>0)

where the Fi's are the '"factors” of T. Bach Fi stands for a set of sentential forms, and
T denotes their product. The product of two sets of sentences is the set of sentences
consisting of all possible concatenations of a sentence from the first factor followed by
a sentence from the second factor. Each factor F has either the form

1 bt

X
reservedword

(x is a literal, and "x"' denotes the singleton set consisting of this single symbol, or the

literal is a reserved word), or

(E)

(denoting the expression E), or

[E]

(denoting the union of the set denoted by E and the empty sentence), or

{E

(denoting the set consisting of the union of the empty sequence and the sets E, EE,
EEE, and so on).

Examples:
The syntax expressions
("a" | "b") (b | "e)
"a" {"be"}
"a't ["b" | "e"] "
denote the following sets of sentences respectively:

ab ac bb be
a abc abcbe abebebe
ad abd acd

4. language vocabulary and representation

The language is a infinite set of sentences (programs), namely the sentences well
formed according to the syntax. Each sentence (program) is a finite sequence of sym-
bols from a finite vocabulary. The vocabulary consists of identifiers, (unsigned)
numbers, literals, operators and delimiters. They are called lexical symbols or tokens,
and in turn are composed of sequences of characters. Modula uses the Ascii character

set. (Standard Modula does not require Ascii.)

Identifiers are sequences of letters and digits. The first character must be a
letter. An underscore is considered a letter. For the PDP-11, identifiers should be dis-
tinguishable within their first 7 characters. (This restriction only applies to pro-

cedures and variables, and is not part of Standard Modula.)

ident = letter {letter | digit}.

Numbers (integers) are sequences of digits, possibly followed by the letter B (or
b) signifying 'octal’. (Standard modula does not allow 'b’.) Floating point numbers
have digits both before and after the decimal point. (Standard modula does not have

floating point numbers.)

number = integer | float.
integer = digit {digit} | octaldigit toctaldigit} ("B" | “b").
float = integer "." integer.
Character literals are single characters enclosed in single-quote marks. The sin-
gle character may itself be a single-quote mark. Special characters may be denoted

in several ways. For example, the newline character, number 12 (octal) in Ascii, may

be denoted as:

\n'
12c

12C

1\121
char(10);

The C or ¢ notation is used to turn any integer (expressed in octal) into a character.
(Standard Modula only allows 'C’.) The '\n' notation is useful for a few standard char-
acters, like newline (n), carriage-return (r), and tab (t). The character '\<num>' is
equivalent to <num>C; <num> is expressed in octal. (Standard Modula does not dis-
tinguish character literals from string literals, and does not allow the "char" or the "\"

notation.)

character literal = octalnumber ("C" | "e") |
m\" (character | octalnurmber) """ |
(1L character 1t ”.

String literals are sequences of characters enclosed in double-quote marks.
(Standard Modula uses single-quote marks.) If a double-quote mark itgelf iz to occur
within that sequence, then it is denoted by two consecutive double-quote marks.

1t

string = """ {character} .

The character string may contain characters in "\n" notation.

Operators and delimiters are special characters, character pairs, or reserved
words listed below. In this report, they are in boldface for clear distinction from
identifiers. These reserved words must not be used in the role of identifiers. (Stan-
dard Modula does not include some of these reserved words, and the Modula reserved

word device is not reserved in this version.)

Operators and delimiters

+-% /=, ,< ; <= > >= (*:= %
and array begin case
const define div do
else elsif end exit
external forward if interface
loop mod module not
of or otherwise procedure
Process qua record repeat
then type undtil use
value var when while
with Xor

Blank spaces {and line separation) are ignored unless they are essential to
separate two consecutive symbols. Hence, blanks cannot occur within symbols,

including identifiers and numbers.

Comments may be inserted between any two symbols in a program. They are
opened by the bracket (* and closed by *). Comments may be nested, and they do not
affect the meaning of a program. However, meaningful comments can be used to
affect the compiler state. For example, to turn listing on, one may insert a comment

of this formu
(* $s+ %)
These comments have this form:
meaningfulcomment = "(* $" character ("+" | "= | *=" number) " *¥)".

The character specifies the option (all options are described later). If "+'" follows the

10

character, the option is turned on; "~ turns the option off. Numeric-valued options

are set by "=". (Standard Modula does not have meaningful comments.)

5. Constant Declarations

A constant declaration associates an identifier with a constant value.

constantdeclaration = ident "=" constantexpression.
constantexpression = expression | constant.
constant = unsignedconstant | ("+" | "-") number.

unsignedconstant = ident | number | character | string | bitconstant.
bitconstant = "[" [bitlist] "]".

bitlist = bitlistelement {"," bitlistelement].

bitlistelement = constant [":" constant].

A constant expression may be any expression all of whose subparts are either con-
stants, constant expressions, or built-in functions of constant expressions. (Standard

Modula does not allow constant expressions.)

Numbers are constants of type integer or float. The variant of integer or float
chosen depends on the size of the constant (see "Basic types'"). A constant denoted by
a character literal (or constant character expression) is of type char (see "Basic
types"). Constants of type char are not equivalent to constants of type string that
happen to have length 1. A string consisting of n characters is of type "array 1 : n of

char' (see "Array structures").

A bit constant is a constant of type bits (see "Basic types”). The elements of the
bitlist are the indices of those bits that are "true". An element of the form mn
specifies that all bits with indices m through n are "true”. All other bits have the value

"false".

6. Type declarations

Every constant, variable and expression is of a certain type. In the case of
numbers and literals their type is implicitly defined, for variables it is specified by

their declaration, and for expressions it is derivable from the types of their

11

constituent operands and operators. A data type determines the set of values that a

variable of that type may assume; it also defines the structure of a variable. There are

five standard types, namely integer, float, Boolean, char and bits. (Standard Modula

does not have float.) Enumeration types and the types integer, float, Boolean and char

are unstructured, that is, their values are atomic. Structured types (structures) can

be declared in terms of these elernentary types and of structures.

typedeclaration = ident "=" type.
type = ident | enumeration | arraystructure | recordstructure.

6.1. Basic types

integer

Values are whole numbers in the range -maxint to maxint, where
"maxint’ is a constant dependent on available implementations.
For the PDP-11, maxint = 32767; for the VAX: maxint = 2147483647.
(Standard Modula uses the constants "min" and "max".) There are
several variants of integer that specify precision: shortint, midint,

and longint. (Standard Modula does not have these variants.)

shortint This variant of integer occupies 8 bits. Its values are restricted to lie

midint

longint

float

between -128 and 127,

This variant of integer occupies 16 bits. Its values are restricted to
lie between -32768 and 32767,

This variant of integer occupies 32 bits, It is not available for the
PDP-11. Its values are restricted to lie between -2147483648 and
2147483647,

Values are real numbers in the 4ran,ge available on the target
machine. Floats are not available on the PDP-11. Floats use 32 bits
on the VAX. There are several variants of float that specify preci-

sion: filoat and dfioat. (Standard Modula does not have floating

12

point numbers.)

flloat This variant of float occupies 3R bits.

dfloat This variant of float occupies 64 bits.

Boolean Values are the truth values denoted by the predefined identifiers
"true" and "false”. The word "boolean" may be substituted for
"Boolean'' (but not in Standard Modula).

char Values are the characters belonging to the Ascii character set
(Standard Modula does not require Ascii.)

bits Values are arrays of w Boolean elements. This type is predefined as
"array 0 : w of Boolean” (see "Array structures”). The constant w is
the wordlength minus 1 of the computer on which Modula is imple-

mented. (For the PDP-11, w=15; for the VAX, w=31.)

6.2. Enumerations

An enumeration is a list of identifiers that denote the values that constitute a
data type. These identifiers are used as constants in a program. They, and no other
values, belong to this type. An ordering relation is defined on these values by their

sequence in the enumeration.

enumeration = "{"' identlist "")".
identlist = ident {"'," ident].

6.3. Array structures

An array structure consists of a number of components that are all of the same
component type. Bach component is identified by a number of indices. This number
is called the dimensionality of the array. The range of index values of each dimension
is specified in the declaration of the array structure. The types of the indices must

not be structured.

13

arraystructure = array indexrangelist of type.
indexrangelist = indexrange {"," indexrange}.
indexrange = constant "." constant.

6.4. Record structures

A record structure consists of a number of components, called record fields,
Fach component is identified by a unique field identifier. Field identifiers are known
only within the record structure definition and within field designators, that is, when
they are preceded by a qualifying record variable identifier. The data type of each

cornponent is specified in the field list.

recordstructure = record fieldlist {;" fieldlist] end
fieldlist = [identlist ":" type].

Examples of type declarations

color = (red, yellow, green, blue)
vector = array 1: 100 of color
matrix = array 1 : 20, 1: 10 of integer

account =
record X : integer;
y ; Boolean,
z: array 0 9 of char
end

7. Variable Declarations

Variable declarations serve to introduce variables and associate them with a
unique identifier and a fixed data type or structure. Variables whose identifier appear

in the same list all obtain the same type.
variabledeclaration = identlist " type.

Two variables are "cornpatible” if they have the same type, either because they are
declared in the same identlist, the type they are declared to be has the same name, or
the types they are declared to be has are declared equivalent (as in "type foo = bar").

(Standard Modula does not define compatibility of variables. The definition presented

14

here is weak name equivalence.) All integer variants (that is, shortint, midint, longint,
integer) and names defined equivalent to them are compatible with each other. Like-
wise, all float variants (that is, ffloat, dficat, float) and names defined equivalent to

them are compatible with each other. Examiples of variable declarations:

i,j.k: integer
n: dflioat
p.d : Boolean
ch : char
u: record
s bits
a : vector
end
5,t: bits
r: account
a: vector
m : maltrix
w: array 1: 10 of account

The syntactic construction of a designation of a variable is simply called "vari-
able". It either refers to a variable as a whole, namely when it consists of the identifier
of the variable, or to one of its components, when the identifier is followed by a selec-
tor. If a variable, say v, has a record structure with a field f, this component variable
is designated by "v.f'". If v has an array structure, its component with index i is desig-

nated by v[i].

variable = ident | variable "." ident | variable "[" indices "
indices = expression {","" expressionj.

Examples of variables (see declarations above):

i r.x ali] m[i+1,j-1] wli].x u.a[k]

B. Procedure declarations

Procedure declarations consist of a procedure heading and a block called the pro-
cedure body. The heading specifies the procedure identifier by which the procedure is

called, and its formal parameters. The block contains declarations and staternents.

15

There are two kinds of procedures, namely "proper procedures” and "function
procedures”. The latter are activated by a function call as a constituent of an expres-
sion and yield a result that acts as operand in the expression. The former are
activated by a procedure call. The function procedure is distinguished in the declara-
tion by the fact that the type of its result is indicated following the parameter list. Its
body must contain an assignment to the procedure identifier that defines the value of
the function procedure. The value of the function procedure must be of a simple type
or an enumeration type; it may not be an array or record structure. However, it may

not be dfioat.

There are three kinds of parameters, namely value, constant and variable param-
eters. The kind is indicated in the formal parameter list. Value parameters stand for
a value obtained through evaluation of the corresponding actual parameter (expres-
sion) when the procedure is called. The type of the actual parameter must be compa-
tible with the type of the formal parameter. (In particular, shortints and longints are
compatible.) Only simple types may be passed by value. (Value parameters do not
exist in Standard Modula.) Constant parameters are similar, except that assignments
cannot be made to a constant formal parameter. Variable parameters correspond to
actual variables, and assignment to them is permitted (see "Procedure calls'). Vari-
able parameters must match exactly; shortint and longint do not match. Formal
parameters are local to the procedure, that is, their scope is the program text that

constitutes the procedure declaration.

All constants, variables, types, modules and procedures declared within the block
that constitutes the procedure body are local to the procedure. The values of local
variables, including those defined within a local module, are not defined upon entry to
the procedure. Since procedures may be declared as local objects too, procedure

declarations may be nested. Every object is said to be declared at a certain level of

16

nesting. 1f it is declared local to a procedure (or process) at level k, it has itself level
k+1. Objects declared in the block that constitutes the main program are defined to

be at level O.

In addition to its formal parameters and local objects, objects declared in the
environment of the procedure are also known and accessible in the procedure, unless
the procedure declaration contains a use-list. In this case, only formal parameters,
local objects and identifiers occurring in the use-list are known inside the procedure

(see "Modules"). Standard objects are accessible in any case.

proceduredeclaration = procedure ident
["(" formalparameters "] [ident] ;" body.
formalparameters = section """ section].
section = [const | var] ident ¢ ident} ™" formaltype.
formaltype = [array indextypes of] ident.
indextypes = identlist.
body = [uselist] block ident | forward
uselist = use {identlist] "
block = {declarationpart} [staternentpart] end.
declarationpart = const {constantdeclaration v
type {typedeclaration Rl
var {variabledeclaration el
module ;" |
proceduredeclaration "
processdeclaration "
value {ident "=" initialvalue "
initialvalue = {constantexpression | "¢" finitialvalue} M)
[repetition].
repetition = g consta.ntexpressioni.
statermentpart = begin statementsequence.

The identifier ending the procedure declaration must be the same as the one fol-
lowing the symbol procedure, that ig, the procedure identifier. If the specifier const
or var is missing in a section of formal parameters, then its elements are assumed to

be value parameters.

An initialization part serves to assign values to variables declared in the same
block. Braces indicate the structure of the assigned value, which must correspond to

that of the initialized variable. Structured subparts of the value must be set oftf by

17
at is, in the main pro”
”Signals") is part

parts of

parts can only occur in plocks at 1evel O, th

lared in the main

o signal (see

es. Tnitializ ation
program. 1if

be 'mitialized Lo

d to O (Standard Modula diffe

brac
gram and in modules dec
0. Uninitia\ized

jalized, it must
rs in syntax with

of a gtructure that is peing initt
an ipitislized structure are jnitialize
dure identifier in a call within its declaration implies recur-

respect Lo {nitializations)

e of the proce
the procedure.
5 an array sty

s are speciﬁed. This formal LYy

The us
ut not the

y the Lypes b

then onl
s a genefm'c array.

sive activation: of
1t a formal LyPe indicate ucture,
pounds of the indice pe 18 Kknown &
Legal pounds types include Booled integer (and its var'xants). char, and enurneration
e must be declared again

n the procedur
owever, i may be

eclared again,

W mutually ree

er list must be omit-

types:
is forward, the
h

ursive pro-

orward declarations is o allo

'mvoked The

cedures. When the
the retur

es Ay Pe omitted. 1f it is not

n Lype for functiont procedur
with the type in the original

declaration- (Standard

ted. In addition,

pe must agree

omitted. the Uy
.ge forward declarations b}

does not provi
deep. UP to 7 le

ict the depth of

are a\.lowed inside &

WModula
vels on nesting

ay be nested B
procedure nesting.)

Proc edures I
(Standard Modul

dure de clarations:

process: s does not restr

Examples of proce

procedure readinteger(var x . integer);
var
i:integer;
ch : char;
begin
i:=0;
repeat
readcharacteréch)
until ('0’ <= ch) and (ch <="'9');
repeat
i:= 10 *i + (integer(ch) - integer('0"));
readcharacter(ch)
until (ch<’0’) or (9" < ch);
end readinteger,;

procedure writeinteger(x : integer);
var

i,q:integer; (*assume x >= 0%)

buf : array 1: 10 of integer;
begin

i:=0

Q=X

writecharacter(' ');

repeat
writecharacter(char(buf[i]+integer('0")));
i:=i-1
untili =0
end writeinteger,

procedure ged(x,y : integer) : integer;

var
a,b ; integer; (*assume x,y > 0%)
begin
a:= X,
b=y,
while a <> b do
if a < b then
b:= b-a
else
a:= ab
end
end;
ged = a

end ged;

19

g.1. Stendard procedures Standard procedures are predeclared and available

throughout every prograr.

Proper procedures
ine(x,n) =x: =X +n (nmust be a constant express'um)
dec(x,n) = X=X~ n (nmust be 2 constant expression)
ine(x) =X'F x+ 1
dec(x) =X =X~ 1
halt = terminates the entire prograrm
printf(format,argmnents) (see below)

Tunction procedures
Boolean := off %b 1)
Boolean := off b1,b2)

returns bl (and p2) =1 bL b2 of type bits
not yet implemented
Boolean ;= amons i,
returns bli]; b 18 of type bits
not yel implemented
integer \= low (&
integer := low (a.n
returns low index bound of array & (dimension n)
integer := high (a)
integer := high (a.1)
returns high index bound of array & (dirnension n)
integer := adr (v
returns address of variable Vi
implementation—dependent.
integer := size {v
returns size of variable Vi
implementation—dependent

procedures that interface with Unix
char .= getchar
returns & character from standard input
integer \= close(id)
closes a file

integer := creat(ﬁlename,modes)
integer = open(filename modes)
integer .= re ad (fd,buffer length)

integer := seek(fd.location,mode
integer i = write(fd,buﬁer,length)

integer : syscau(mlmber. argl, argd, -)

20

Type transfer functions
integer(x) = ordinal of x in the set of values defined
by the type of x, converted to standard integer.
shortint(x) = ordinal of x in the set of values defined
by the type of x, converted to an B-bit integer.
midint(x) = ordinal of x in the set of values defined
by the type of x, converted to a 16-bit integer.
longint(x) = ordinal of x in the set of values defined
by the type of %, converted to a 32-bit integer.
float(x) = floating point representation of the ordinal of
% in the set of values defined by the type of x.
flloat(x) = floating point representation of the ordinal of
% in the set of values defined by the type of x.
dfloat(x) = floating point representation of the ordinal of
x in the set of values defined by the type of x.
char (x) = character with ordinal x.
bits (x) = bits with bit-pattern x.
<enum> (x) = enumeration elernent with ordinal x
(<enum> may be any enumeration type).

(Standard Modula does not provide a second argument to low and high, nor does it pro-
vide the "bits"", "shortint”, or "<enum>'' type transfer functions, printf, nor any Unix

interface procedures.)

Printf is a predeclared procedure useful for output. It is similar to the printf
defined by the C language, and the following description is taken almost verbatim from

The C Programming Language by B. W. Kernighan and D. W. Ritchie.

Printf takes an arbitrary number of arguments. The first argument must be a
string (literal or array of char), specifying the desired output. Numeric, character, or
string fields to be printed are marked in the format by field marks, which are of the
form "%mn'’, where m is optional and may be:

- causes the converted argument to be left justified in its field

d.d a digit string specifying a minimum field width. The converted
nurmber will be printed in a field at least this wide, and wider if
necesary. If the converted argument has fewer characters than the
field width it will be padded on the left (or right, if a "-" preceded

this digit string). If this digit string has a leading zero, the padding

21

character will be a zero, otherwise it will be a blank.

separates the width field from the precision field (below)

d.d a digit string (the precision) that specifies the maximum nurmber of
characters to be printed.

and n may be:

d decimal output

o octal output

X hexadecimal output
s string output

¢ char output

The arguments that follow the format should correspond, in order, to the field

specifications in the format. Example:

printf("The value of £(%d) is %d, called from %s0,
i,f(i),caller);

Expressions of type "shortint", "midin " and 'longint" should be converted to

"integer" before being printed by printf.

The Unix interface procedures take arguments just as in C. These procedures
may only be used when Modula is generating code for the VAX and the output of the
compiler is linked with a Unix-commpatible runtime. Syscall takes as a first argument
the number of the system call. The "seek” call is the same as C's "lseek'. Its second

argument should be a longint.

9. Process declarations

A process declaration describes a sequential algorithrn, including its local objects,
that is intended to be executed concurrently with other processes. No assumption is
made about the speed of execution of processes except that this speed is greater than

zZero.

2R

A process declaralion has the form of a procedure declaration, and the same

rules about locality and accessibility of objects hold.

processdeclaration =
process ident ["("" formalparameters ")"'] ";" body.

(Standard Modula allows a stack size to be associated with the process by a special

syntax; our version uses a meaningful comment to adjust the compile-time parameter

S. See "Vocabulary' and "Invoking me'.)

Parameters to processes may be of mode value, variable, or constant. Only value
is safe, since variable parameters may be changed at any time by the caller or the
new process, interfering with the other, and consfant parameters may be changed by
the caller, interfering with the process. In fact, if the caller is a process itself, it could
terminate, leaving both constant and variable parameters pointing at deallocated

space. (Standard Modula forbids a process from calling a process, however.)

The identifier at the end of the declaration must be the same as the one following

the symbol process, narmely the process identifier.

Processes must be declared at level 0; they cannot be nested or be local to pro-

cedures. Objects local to a process are said to be at level 1.

10. Expressions

Expressions are composed of operands (constants, variables and functions),
operators and parentheses, They specify rules of computing values; evaluation of an

expression yields a value of the type of the expression.

There are four classes of operators with different precedence (binding strength).
Relational operators have the least precedence, then follow the adding operators, then
multiplying operators, and finally the negation operator with highest precedence.

Sequences of operators with equal precedence are executed from left to right.

23

Denotations of a variable in an expression refer to the current value of the vari-
able. Function calls denote activation of a function procedure declaration (that is,
execution of the statements that constitute its body). The result acts as an operand in
the expression. The same rules about parameter evaluation and substitution hold as

in the case of a procedure call (see "Procedure calls').

expression = simpleexpression [relation simpleexpression].

relation - l n<>u I u<:n l ll<” l u>u I Il>:H'
simpleexpression = ["+" | "-'"] term {addoperator term].
addoperator ="+" |"-" | or | xor.

term = factor {muloperator factor].

muloperator ="+ | "/" | div | mod | and

factor = unsignedconstant | variable | functioncall |
"(" expression)" | not factor

functioncall = ident parameterlist.

Arithmetic operators (+ - * / div mod) apply to operands of type integer or float (or
variants) and yield a result of the same type. Mixed float and integer arguments are
allowed; the result is then float. Mixed precisions are allowed; the result is always the
precision that the underlying machine provides for the operation. The operators + - *
and / denote addition, subtraction, multiplication, and division. Division of integers
leads to an integer result; the fraction is discarded. Division of floats leads to a float
result. The monadic operators + and - denote identity and sign inversion. The opera-
tors div and meod yield a quotient q = x divy and r = x mod y such that x = g*y+r,
O=r<y. The divisor (or modulus) y must be strictly positive. These two operators

require integer (or variant) operands.

Example:
x=-1b, y=4
x/y=-3, xdivy =-4, xmody = 1,

Boolean operators (or xor and not) apply to Boolean operands and yield a result of
type Boolean. The term a and b is evaluated as "if a then b else false”, and the expres-

sion "a or b" is evaluated as "if a then true else b.” Boolean operators can also be

24

applied to operands of type bits. The specified operation is then performed on all

corresponding elements of the operands.

Relations yield a result of type Boolean. (<> <= >= stand for # < = respectively).
They apply to operands of the standard types integer, shortint, char, Boolean and bits
(to the latter only = and <> apply), and of enumeration types. The two operands must

be of compatible types.

Type transfer. A variable of one type may be cast to a different type by means of the
qua operator. Thus one may write (see the declarations above) “w[2] qua vector [5]".
Qua has the same precedence as "." and "[", and associates to the left, Conversions
with qua are dangerous and should be used with care. Qua used to change from one
variant of integer to another or from one kind of float to another will give garbage
results. To convert an expression to a simple type (including an enumeration type), it
is safer to use the name of the target type as a function call: "integer(ch)” or
"color(3)". These conversions are checked for range. (Standard Modula only provides

"integer" and "char”, but not qua.)

Examples of factors:
_7 i (i+j+k) not p 13 qua bs

Examples of terms:
i*k is(i-1) idive (i<j) and (j>k) sandt

Examples of simple expressions:
i+j i+5%k -1 porg sort

Examples of expressions:
(1+i)*(j+k) i k+5 i=j t xor [0:}

(Given the variables declared in "Variable declarations”, the first three examples in

each line are of type integer, the fourth is of type Boolean and the fifth of type bits.)

25

gnment state-

11. Statements
ments are the assi

Flementary state

statements may b

e constructed out of ele-

s denote actions.
e call. Composite

mposite statements.

State ment

and the procedur

ments and other c©

ment

mentary state
rocesssta’cement |

whﬂestatement

nment |
| withstatement.

casestatement |

staterment = assig
nt | loopstatement

ifstatement |
repeatstateme

11.1. Assignments
ssion and of assigning the

evaluating arn exXpre

The symbol = is called the u,ssig'nment

An assignment denotes the action of

eltoa variable.

operato” and is

resulting valu

pronounced "pecomes' -

.= gxpression.

variable
ting the

assignment =
lue obtained by evalua

ariable has the va
must be type—oompat'lble with the type

xpression is some V

variable, which must

nt is executed, the v

After an assignme
lost. The variable

n. The old value is
ariant of

ekpressio
1f the type of the €
ch the type of the

int expressions are

of (the value of) the expression.
f necessary to mab
likewise, floaling PC

nt. Floaling point ©

t will be coerced i
coerced if

r or float type:
ant of floating pot

integer, 1
be some intege
annot be coerced to

Lo another vari

necessary
un-time range checks.

integer. All coercions jnvolve ¥

Examples of assignments:

=100

p = true
m{ij] = 10%i+]

of the

11.2. Procedure calls
prooedure, that is,

ution of the speciﬁed

must contain the same number of

A procedure call denotes the exec

art of its pody. The procedure call

statement P

26

parameters as the corresponding procedure declaration. An actual parameter
corresponding (by its position in the parameter list) to a constant or value formal
parameter may be an expression. The types of the actual and the formal parameters
must be compatible. In the case of a constant parameter, the formal parameter is
read-only, assignments to this parameter are prohibited. An actual parameter that
corresponds to a variable parameter must be a variable. That variable is substituted
for the formal parameter throughout the procedure body. Types must be identical,
and if the actual parameter is an indexed variable, the index expressions are

evaluated upon procedure call,

procedurecall = ident [parameterlist]

"o

parameterlist = "(" parameter {"," parameter})",
parameter = expression | variable.

Examples of procedure calls:

inc(i, 10)
sort(a, 100)

11.3. Statement sequences

A sequence of statements separated by semicolons is called a statement sequence
and specifies the sequential execution of the statements in the order of their
occurrence.

[ARY]

statementsequence = statement {"; statement).

11.4. If statements

If statements specify conditional execution of actions depending on the value of

Boolean expressions.

ifstatement = if expression then statementsequence
elsif expression then statementsequence]
else statementsequence] end

7

11.5. Case statementis

Case statements specify the selective execution of a statement sequence depend-
ing on the value of an expression. First the case expression is evaluated, then the
statement sequence with label equal to the resulting value is executed. The type of

the case expression must not be structured.

It is an error if none of the labels has a value equal to the value of the case
expression unless an otherwise clause is given. In that case, the statement list follow-
ing otherwise is executed if no label is appropriate. (Standard Modula does not have

an otherwise clause and differs in other minor ways from the syntax shown here.)

casestatement = case expression of case {case]
[otherwise statementsequence] end.

case = caselabels " begin statementsequence end ;"

caselabels = constantexpression g constantexpression].

11.6. While statements

While statements specify the repeated execution of a statement sequence
depending on the value of a Boolean expression. The expression is evaluated before
each execution of the statement sequence. The repetition stops as soon as this

evaluation yields the value false.
whilestatement = while expression do statementsequence end

The most common error in Modula programming is due to the lack of a "for loop"”. You
must use a while loop instead. The error is forgetting to increment the loop variable

after each iteration.

11.7. Repeat statements

Repeat statements specify the repeated execution of a statement sequence
depending on the value of a Boolean expression. The expression is evaluated after

each execution of the statement sequence, and the repetition stops as soon as it yields

28

the value true. Hence, the statement sequence is executed at least once.

repeatstatermment = repeat statementsequence until expression.

11.8. Loop statements

Loop staterments specify the repeated execution of statement sequences. The

repetition can be terminated depending on the values of possibly several Boolean

expressions, called exif condilions,

loopstatement = loop stalementsequence
{when expression [do statementsequence]
exit statementsequence} end

Hence, the general form is

loop
S1 when Bl do X1 exit,;
SR when B2 do X2 exit;
Sn when Bn do Xn exit;
S

end

First, S1 is executed, then Bl is evaluated. If it yields the value true, X1 is executed
and thereupon execution of the loop statermnent is terminated. Otherwise it continues

with S2, ete. After S, execution continues unconditionally with S1.

All repetitions can be expressed by loop statements alone; the while and repeat

statements express simple and frequently occurring cases,

11.9. With statements

The with statement specifies a list of record variables and a statement sequence
to be executed. In these statements field identifiers of those record variables may
occur without preceding qualification, and refer to the fields of the variable specified.
Variables later in the list may refer to field identifiers of variables earlier in the list

without qualification, (Standard Modula only allows a single variable, not a variable

29

list.)

withstatement = with variablelist do statementsequence end

11.10. Process stalements

A process statement expresses the initiation of a new process. Syntactically it
corresponds to the procedure call. However, in the case of a procedure call, the cal-
ling program can be thought to be suspended until the procedure execution has been
completed, whereas a program starting a new process is not suspended. Rather the
execution of the started process may proceed concurrently with the continuation of

the starting program.

processstatement = ident [parameterlist].

Whereas a process declaration defines a pattern of behavior, a process statement
initiates the execution of actions according to this pattern. Reference to the same
process declaration in several process statements initiates the concurrent execution
of several processes according to the same pattern (usually according to different

parameters).

Process statements may occur anywhere a statement is legal. (Standard Modula

confines thern to the body of the main program.)

12. Modules

A module constitutes a collection of declarations and a sequence of statements.
They are enclosed in the brackets module and end. The module heading contains the
module identifier, and possibly a use-list and a define-list. The former specifies all
identifiers of objects that are used within the module and declared outside it. The
latter specifies all identifiers of objects declare within the module that are to be used

outside it. A module constitutes a wall around its local objects whose transparency is

30

strictly under control of the programmer. Objects local to a module are at the same

level as the module.

module = moduleheading [definelist] [uselist] block ident.
moduleheading = [interface] module ident ;"
definelist = define identlist ";".

The identifier at the end of the module must be the same as the one following the
symbol module, that is, the module identifier. For an explanation of the prefix inter-
face, see "Interface modules’. (Standard Modula allows "device" modules as well.)
Identifiers that occur in the module's use-list are said to be imported, and those in the

define-list are said to be exported.

If a type is defined local to a module and its identifier occurs in the define-list of
the module, then only the type's identity, but none of its structural details becomes
known outside the module. If it is a record type, the field names remain unknown; if it
is an array type, index range and element types remain unknown outside. Hence, vari-
ables declared of a type that was exported in this way from a module can be used only
by procedures declared within and exported from the same module. This restriction
implies that if a module defines a type, it also must include the definition of all opera-

tors belonging to this type.

If a local variable occurs in the define-list of a module, it cannot be changed out-
side the module, that is, it appears as a read-only variable. (However, this restriction

is relaxed across cormpilation units. See "Compilation Units".)

The statement sequence that constitutes the module body is executed when the
procedure to which the module is local is called. 1f several modules are declared, then
these bodies are executed in the sequence in which the modules occur. The bodies

serve to initialize local variables. Example:

31

procedure P,
module M1;
define F'1,n1;
var nl : integer;
procedure F1(x . integer) : integer;
begin
ii"lc(nl)
F1:=
end F1;
begin

nl:=0
end M1;

module M2;
define F2,n2;
var ne : integer;
procedure F2(x : integer) : integer;
begin
inc (n2)
F2 =
end F2;
begin
n2:=0
end M2,
begin (* use procedures F1 and F2; n1 and n2 count

their calls and cannot be changed here *¥)
end P

In this example, the two statements "nl ;= 0" and "nR := 0" can be considered as
prefixed to the body of procedure P. Within this body, assignments to these variables
are prohibited.

Examples:

The following sample module scans a text and copies it onto an output character
sequence. Input is obtained characterwise by a procedure "InChr" and delivered by a
procedure "OutChr". Control characters are ignored with the exception of "\n" (new-

line) and FileSeparator. They are both translated into a blank and cause the Boolean

32

variables "EndOfLine” and "EndOfFile” to be set respectively. Occurrences of

FileSeparator are assumed to follow "\n" immediately.

module Linelnput;
define
Read, NewLine, NewFile, EndOfLine, EndOfFile, LineNumber;
use
InChr, OutChr;
const
FileSeparator = 34C;
var

LineNumber . integer;
ch : char; (* last character Read *)
EndOfFile, EndOfLine : Boolean;

procedure NewTile;
begin
if not EndOfFile then
repeat
InChr(ch)
until ch = FileSeparator;
end;
EndOfFile := false;
LineNumber := 0
end Newlile;

procedure NewLine;
begin
if not EndOflLine then
repeat
InChr(ch)
until ch = '0;
OutChr('0);
end,
FEndOfline : = false;
inc(LineNumber)
end NewlLine;

33

procedure Read(var x : char);
(* Assume not EndOfLine and not EndOfFile *)
begin
while not EndOfLine do
InChr(ch);
OutChr(ch);
case ch of
O
begin
x:=""
EndOfLine ;= true;
end;
FileSeparator:
begin

[N

X:="'"
EndOfLine := true;
EndOfFile := true;
end,;
otherwise
x:=ch
end (* case *)
end (* while *)
end Read,;

begin (* Linelnput *)
EndOfFile := true;
EndOfline := true
end Linelnput
The next example is a module that operates a disk-track reservation table and
protects it from unauthorized access. A function procedure "NewTrack" yields the

number of a free track that is being reserved. Tracks can be released by calling pro-

cedure "ReturnTrack’,

module TrackReservation;
define NewTrack, ReturnTrack;

const
TableLength = 64,
WordlLength = 16;
(* There are TableLength * WordLength tracks. *)

var
Reserved: array O : TableLength-1 of bits;

procedure NewTrack : integer,;
(* Reserves a new track, yields its index as function
result, if a free track is Found, and -1 otherwise *)
var
Tablelndex, Bitindex : integer;
Found : Boolean;
begin
Found := false;
TableIndex := TableLength,;
repeat
dec(Tablelndex);
Bitlndex := WordLength;
repeat
dec(BitIndex);
Found := not Reserved|[Tablelndex,BitIndex];
until Found or (Bitindex=0);
until Found or (TableIndex=0);
if Found then
NewTrack := TableIndex*WordLength+Bitlndex;
Reserved [Tablelndex,Bitindex] := true

else
NewTrack = -1
end
end NewTrack;

procedure ReturnTrack(TrackNurmmber : integer);
(* Assume 0 <= TrackNumber < TableLength * WordLength. *)
begin
Reserved| TrackNumber div WordLength,
TrackNumber mod WordLength] := false
end ReturnTrack;

procedure TrackInit;

var
TrackNumber : integer;,
begin
TrackNumber := TableLength; (*mark all tracks free*)
repeat
dec(TrackNumber);
Reserved|[TrackNumber] ;= []
until TrackNumber = 0
end Tracklnit;

begin (* TrackReservation *)
Tracklnit;
end TrackReservation

34

35

13. Interface modules

The interface module is the facility that provides exclusion of simultaneous
access from several processes to common objects. Variables that are to establish
communication or data transfers between processes are declared local to an interface
module, They are accessed via interfoce procedures also declared locally. and
exported from the interface module. If any process has called any such procedure,
another process calling the same or another one of these procedures in the same
interface module is delayed until the first process has completed its procedure or

starts waiting for a signal (see "Signals").

An interface module is syntactically distinguished from regular modules by the

prefix symbol interface.

Interface procedures may call procedures declared outside the interface module.
(Standard Modula only allows such calls on standard procedures.) Exclusion on the
interface module is maintained during the invocation of such procedures. If the called
procedure is in a different interface module, then that interface module also becomes
locked. It is possible for the procedure to invoke another procedure, either directly
or indirectly, within an interface module already locked by the same process; such
invocation is legal. If a process in an interface procedure invokes another interface
procedure that then executes a "send" or "wait" (see "Signals"), only the last-acquired
lock is released. Deadlock can therefore easily result from invocation of interface pro-

cedures from interface procedures.

Examples of interface modules are given below.

13.1. Signals

In general, processes comrnunicate via common variables, usually declared within

interface modules. However, it is not recommended that synchronization be achieved

36

by means of such common, shared variables. A delay of a process could in this way be

realized only by a "busy waiting" statement, that is, by polling. Instead, a facility
called a signal should be used.

Signals are introduced in a program (usually within interface modules) like other
objects. In particular, the syntactic form of their declaration is like that of variables,
although the signal is not a variable in the sense of having a value and being assign-
able. (A signal is more like a constant than a variable.) Signals must be declared at
static level 0, but need not be inside interface modules, Signals may only be passed as
parameters in variable mode. There are only two operations and a test that can be
applied to signals, represented by three standard procedures.

1. The procedure call "wait(s,r)" delays the process until it receives the signal
s. The process is given delay rank r, where r must be a positive-valued
integer expression. The abbreviation "wait(s)" may be used for "wait(s,1)".

2. The procedure call "send(s)”" sends the signal s to that process that has
been waiting for s with least delay rank. If several processes are waiting for
s with same delay rank, the process that has been waiting longest receives
s. If no process is waiting for s, the statement "send(s)" has no effect.

3. The Boolean function procedure "awaited(s)" yields the value "true' if there

is at least one process waiting for signal s, "false" otherwise.

If a process executes a call on wait within an interface procedure, then other
processes are allowed to execute other such procedures, although the waiting process
has not completed its interface procedure. If a send statement is executed within an
interface procedure, and if the signal is sent to a process waiting within the same
interface module, then the receiving process obtains control over the module and the
sending process is delayed until the other process has completed its interface pro-

cedure. (A send statement outside the interface procedure does not pre-empt a pro-

37

cess executing within the interface procedure, on the other hand.) Hence, both the
wait and send operations must be considered as singular points or enclaves in the

interface module, and are exempted from the mutual exclusion rule.

Send operations may be applied to imported signals. (Standard Modula forbids

such uses of "send".)

There is a predeclared signal "panicsig”. If all processes are blocked waiting for
signals, the runtime will execute "send(panicsig)”. If all processes are still blocked,
debugging output is displayed and the program ended abnormally. (Standard Modula

does not include "panicsig".)

Signals may be declared and used outside interface modules, but good program-

ming practice limits the number of such unbound signals.

Examples of interface modules with signal operations:

interface module ResourceReservation:

define Semaphore, P, V, Init:

type
Semaphore =
record
Taken : Boolean;
Free : signal
end;

procedure P (var s : Semaphore);
begin
if s Taken then
wait (s.Free)
end;
s.Taken : = true
end P,

procedure V (var s : Semaphore);
begin

s.Taken := false;

send (s.Free)
endV,

procedure Init (var s : Semaphore);
begin

s.Taken := false
end Init;

end ResourceReservation;

39

interface module BufferHandling;
define Get, Put, Empty;

const
BufferMax = 256,

var
BufferCount, Inlndex, Outindex : integer;
NonEmpty, NonFull : signhal;
Buffer : array 1 : BufferMax of char;

procedure Empty : Boolean;
begin

Empty := BufferCount = 0
end Empty,

procedure Put (ch : char);
begin
if BufferCount = BufferMax then
wait (NonFull)
end;
ine(BufferCount);
Buffer[Inlndex] := ch;
Inindex ;= (Inlndex miod BufferMax) + 1;
send{NonEmpty)
end Put;

procedure Get(var ch: char);
begin
if BufferCount = 0 then
wait{NonEmpty)
end;
dec(BufferCount);
ch := Buffer[Outindex];
Outlndex := (Outlndex mod BufferMax) + 1;
send(NonFull)
end Get;

begin (* BufferHandling *)
BufferCount .=
Inlndex := 1;
Outlndex ;=1

end BufferHandling,

interface module DiskHeadScheduler,
define Request, Release,
use CylinderMax; (* Number of cylinders *)
var

HeadPosition : integer;

Up, Busy : Boolean;

UpSweep, DownSweep : signal;

procedure Request(Destination : integer);

begin
if Busy then
if HeadPosition < Destination then
wait(UpSweep, Destination)
else
wait{DownSweep, CylinderMax-Destination)
end
end,

Busy := true;
HeadPosition := Destination
end Request;

procedure Release;
begin
Busy := false;
if Up then
if awaited(UpSweep) then
send(UpSweep)
else
Up := false;
send(DownSweep)
end
else
if awaited(DownSweep) then
send(DownSweep)
else
Up := true;
send(UpSweep)
end
end
end Release;

begin
HeadPosition := 0;
Up = true,
Busy := false

end DiskHeadScheduler

40

41

14. Compilation units

Large programs may be divided into individual compilation units and compiled
separately. (Standard Modula does not support separate compilation.) Fach compila-
tion unit must consist of exactly one module, although that module may contain other

modules within it.

s

compilation unit = module ".

14.1. Import and export

All variables, types, procedures, and processes that are imported into a compila-
tion unit must also be declared in that compilation unit. No checking is performed to

insure that the declarations are accurate (but see "Source File Switching", below).

Types imported from another compilation unit do not suffer the visibility restric-
tions that apply to types imported into modules; all subparts of structured types are
visible. It is therefore unnecessary to list imported types in the use-list; just declaring

them is adequate.

Variables imported from another compilation unit do not suffer the read-only res-

triction that applies to variables imported into modules.

Procedures and processes imported from another compilation unit should be
declared with the same header as in their home compilation unit. The body of the pro-

cedure or process should be replaced by the reserved word external.

A process or procedure exported from a compilation unit may also have an exter-
nal declaration in that compilation unit. In this case, the word external is treated
identically to forward (The purpose of this feature is explained below, under "Source

File Switching'".)

42

14.2. Source File Switching

Our implementation of Modula uses the C pre-processor, which makes it is very
convenient to create files of external declarations that are shared among all the

modules that might use them.
To include "otherfile" within a compilation unit, insert the following line:
#include "otherfile" (* the double-quotes are required *)
This line must start at the left margin.

Modula allows const, type, var, value, procedure and process declarations to
appear in any order, so long as every identifier is declared before it is first used. In
addition, the keywords const, var, etc. may appear several times in the same module.
Therefore, included files may intersperse various sorts of definitions. On the other

hand, the define and use clauses must appear only once and in that order.

The following examples use the convention that if a module is called "foo", "foo.m"
contains its code, "foo.h" contains all declarations that it exports (types, variables,
procedures and processes, with the latter two containing the body "external"), and
"foo.d" contains a list of exported identifiers, separated by commas. Then the file

"foo.m' will start like this:

43

module foo:
define
#include "foo.d"

;élinclude "foo.h"
< other included declarations used by foo >

and module "bar" that uses those declarations will start like this:
module bar;
define
#include "bar.d"
use
#include "foo.d"

'#include "bar.h"
#include "foo.h"

15. Programs

A Modula program is a set of compilation units. Exactly one compilation must
contain a module named "main", which is the module that begins executing (as a pro-
cess) when the program starts, All module bodies in "main" are executed (in the
order they appear), but the bodies of the other modules are not executed. In order to
invoke the body of a module in another compilation unit, the name of that module
must be imported and declared to be a procedure with no parameters. Invoking that

procedure causes the body of that module to be executed.

If you want a process to wait before proceeding until all initialization is finished,

the process should wait on a go-ahead signal as its first action.

A program terminates when either all processes have terminated or when the pro-

gram execules a halt statement.

16. Macros and conditional compilation The compiler uses the C compiler's pre-
processor, which supports macros and conditional compilation. The conditional com-
pilation facility is useful for selectively including debugging code. Various levels of

debugging can also be supported. For exarnple:

#if DEBUG

(* here are some debugging statements *)
#f DEBUG > 2

(* here are some more verbose debugging statements *)
#if DEBUG == 5

(* here are some very specific debugging statements *)
#endif

#endif
f#endif

When you are debugging, the file might start with the line
#define DEBUG 3

Alternately, one may pass a debug flag to the pre-processor:
vine -DDEBUG=3

(See "Invoking Modula'.)

17. The compiler and runtime library

The compiler and runtime are in a state of flux as bugs are reported and fixed.
The information in this section is therefore likely to change. In what follows, the local

computers are referred to as "crystal”, "uwvax”, "slovax", and "dbvax".

17.1. Files

The most recent (that is, experimental) version of the compiler may be found on

crystal in the directory
/usr/crystal/mce/test

The compilers for the VAX and PDP-11 are called "vaxmod" and "pdpmod"”, respec-

tively. Previous released versions of the compiler may be found on crystal in
/usr2/stafi/nhall /keith/pr/versx.y
where x is the rnajor release number, and y is the minor release number.

The currently released versions of the compilers and libraries are in the files

45

compilers:

dbvax: directory /usr/crystal/mec/bin

crystal: directory /usr/crystal/me/bin

slovax: directory /usr/lib/me /bin
vaxmod VAX)
pdpmod PDP-11)
vaxmod.old §previous; VAX)
pdpmod.old (previous; PDP-11)

runtime libraries:
dbvax: directory /usr/crystal/mec/lib
cerystal: directory /usr/crystal/me/lib
also, directory /compat/v7/usr/crystal/mec/lib
slovax: directory /usr/lib/mec/lib
pdpblib.a (bare PDP-11)
pdpulib.a V7 Unix PDP-11)
pdpclib.a Charlotte PDP-11)
vaxulib.a (VAX)

startup files, to be loaded first:
dbvax: directory /usr/crystal/mec/lib
crystal: directory /usr/crystal/me/lib
also, directory /compat/v7/usr/crystal/me/lib
slovax: directory /usr/lib/mec/lib
vaxustart.o (VAX)
pdpustart.o (V7 Unix PDP-11)
pdpbstart.o (bare PDP-11)
pdpestart.o (Charlotte PDP-11)

The Charlotte version of the runtime does not allow processes or all consequences of

processes, including interface modules and signals.

Experimental runtime libraries and startup routines are on crystal in the files

/usr/crystal/me/test
libmseqP.a (PDP library without processes)

libmiP.a bare PDP library with processes)

libmP. a PDP under Unix library with processes)
(similar libraries for the VAX are forthcoming)

startPB.o (startup for bare PDP)

startPBL.o (startup for bare PDP with interrupts)

startPU.o (startup for PDP under Unix)

(similar startups for the VAX are forthcoming)
putcharPB.o (putchar routine for bare PDP)
putcharPU.o (putchar routine for the PDP under Unix)

The naming convention for the experimental versions of the libraries will replace that

for the released versions when the experimental versions are complete and debugged.

46

On machines other than crystal, replacement will wait until the end of the Spring 1983

semester,

17.2. Invoking Modula To use either the VAX or PDP-11 versions of the Modula com-
piler, one may invoke the compiler directly. In order to compile a single compilation

unit, the invocation is:

/lib/cpp <source.m> <source.cpp>

<compiler> <source.cpp> <source.s> <compile options>
<assernbler> <flags> -o <source.o> <source.s>

<load> <startup file> <source.o fileg> <library> -lc
(runnable program is in a.out)

The first line calls the standard C macro pass. The second line invokes the compiler,
The third line assembles the output of the compiler. If the VAX is the target machine,
<assembler> is "as", and <flags> is "-". If the PDP-11 is the target machine, <assem-
bler> is "v7run -/compat/v7 /bin/as”, and <flags> is "-u". The fourth line is the load-
ing step; it should be invoked after all the source files have been compiled. If the VAX
is the target machine, <load> is "1d". If the PDP-11 is the target machine, <load> is
"v7run -/compat/v7 /bin/1d". In this case, the startup file and the library file must be
expressed as an absolute pathname starting from the directory / compat/v7? or a rela-

tive pathname starting from the current working directory.
The available <compile options> are:

s: produce source listing
w: produce banner identifying the compiler
a: comment assembler code

In addition, the following options are set by default:

R: generate runtime checks (on)
B: generate calls to process switching in each loop (on)
S: stack size for each process (in bytes for PDP, default=510;
in longwords for VAX under Unix, minimum=default=1000)
0: improve code by recognizing common subexpressions (off)
u: improve code by using better register allocation scheme (off)

Any of these eight options may be changed at compile time by meaningful cornments.

47

(See "Vocabulary".) (Turning the "w" option on or off at compile-time has no effect.)
A much simpler invocation, without quite the same power, is available:

vme [flags] [files] (for VAX version)
pme [flags] [files] (for PDP-11 version)

All the ".m" files in the list will be compiled to the equivalent ".0" files, and all the ".0"
files will be linked together into "a.out".

Available flags:

h: print a help message

c: don't remove .o file(s)

o: next argument is to be used for the output of 1d

3. do not remove intermediate .s files

t: just compile - don't assemble or link

v: be verbose

L: produce source listing

A: comment assembler code

j: don't strip load module

T: use test version of the compiler (only for crystal)

R: next argument is an alternative runtime support package
D: remainder of string Euntil blank% defined to preprocessor
U: remainder of string {(until blank) undefined to preprocessor
I: rernainder of string is a directory searched for "includes"
0: improve code by recognizing common subexpressions

w improve code by using better register allocation scheme

