DATABASE CONCURRENCY CONTROL IN
LOCAL BROADCAST NETWORKS

by

David J. DeWitt
and
W. Kevin Wilkinson

Computer Sciences Technical Report #396

August 1980

Abstract

This paper proposes a scheme for "passive" concurrency control to
be implemented on a local broadcast network (e.g. Ethernet). It
is termed passive because no explicit synchronization messages
are required. Conflict analysis is done on-the-fly by a single
node which eavesdrops for database requests on the broadcast
medium. This approach is feasible for applications characterized
by a high volume of small, update-intensive transactions. We
believe this scheme can have better performance (fewer messages,
fewer transaction aborts, higher throughput) than previously pro-
posed distributed concurrency control algorithms.

1. Introduction

In this paper, we propose a passive concurrency control
scheme for use in a local, distributed database system or a data-
base machine with a broadcast capability. It is termed passive
because no explicit synchronization messages are required. A
dedicated node performs conflict analysis by eavesdropping on the
"ether" for read and write requests and actively controlling the
commit process. The first part of this paper discusses the
application environment for which this concurrency control
mechanism is intended. Next, we briefly review some existing
concurrency control algorithms and discuss performance problems
which might arise in an implementation of those schemes 1in our
environment. Then we present the passive concurrency control
scheme. Finally, we mention some problems with the scheme and
areas for future research.

Our recent work on database machines has concentrated on
improving the performance of very data-intensive applications
through the use of tightly-coupled multiprocessor systems with
massive parallelism and centralized control [DeWitt79, Boral8da,
Boral8@b]l. Such machines, however, do not appear to be the most
cost effective solution for those applications which are charac-
terized by a high volume of small transactions. We <classify a

transaction as "small" if it reads and writes only a few entities

corresponding to records or tuples (as opposed to scanning whole
relations). The set of transactions would be less retrieval
oriented and more update intensive. Examples of such applica-

tions are banking systems or airline reservation systems. In a

banking system, a large number of the transactions would simply
credit or debit a single account. Clearly, large transactions
would occur (such as monthly summary statements) but we assume
those are so infrequent as to constitute a negligible portion of
thé transactions run.

System D [Eswaran8@] appears to be the first multiprocessor
organization designed specifically for handling this type of
application. Our work in this area has certainly been motivated
by the goals of System D in addition to the recognition that
database machines such as DIRECT [DeWitt79] are not the best
organizations for this type of application. The organization of
our system is described briefly in Section 4. We feel that both
System D and our system can be viewed as either a local, distri-
buted database systems or as a loosely-coupled database machine.

Much of the work in distributed database systems has assumed
an ARPANET framework, i.e. the underlying network is widely geo-
graphically dispersed, connecting large, general-purpose
machines. Inter-processor messages may be forwarded from site to
site and take a relatively long time for delivery. An alterna-
tive architecture for distributed databases is a local broadcast
network, best exemplified by Ethernet [Metcalfe76]. Such net-
works have relatively high-speed, high bandwidth inter-processor
communication. In addition, they provide distributed control for
access to the common communications medium and the communications
medium (the "ether") is passive. These features increase the
reliability of the network and the failure of a single site does

not affect the rest of the network. The Ethernet has been shown

to be stable at high wutilization rates [Shoch88]. Thus,
throughput will not sharply decline during periods of high
activity on the network (in the case of bursty traffic). We feel
that for the applications we have in mind, a local broadcast net-
work is a more suitable architecture than a geographically
dispersed, site-to-site transmission network. The high volume of
transactions places a premium on fast communications. The
failure of a site on the ARPANET could significantly increase the
cost of communication if the failed node provides a critical link
between two distant processors. This is not true on the Ether-
net. Here, the cost of messages is independent of the reliabil-
ity of individual sites. Also, transactions are small, with mod-
est computing requirements that could easily be handled by
smaller machines attached to the broadcast medium. On a site-
to-site network, the computations might be performed faster, but
since transactions are short, most of the time the transaction
will be waiting on messages. The ratio of computing and message
requirements in our environment suggests that an Ethernet might

provide a better balance between the two than an ARPANET.

2. Existing Solutions to Concurrency Control

There have been many proposals for concurrency controls in
distributed systems. The following list is representative and
not exhaustive. The centralized concurrency control algorithms
have a dedicated processor handling conflict analysis. In one
scenario, this site controls all accesses and resource requests

are directed to it [Menasce8@al. In another scenario, local con-

currency controllers monitor requests at individual sites. The
central site is only notified when the local controllers detect a
conflict involving non~local transactions [Stonebraker76],
[Gray78]. The Wound-Wait-Die concurrency control algorithms
[Rosenkrantz78] use transaction timestamps (globally unique) to
resolve conflicts. Their model assumes that transactions migrate
from site to site requesting resources from a local concurrency
controller at each site visited. Global deadlock and infinite
restart are avoided by having all the local concurrency controll-
ers resolve conflicts in a uniform way based on the timestamps of
the transactions involved.

The Majority Consensus algorithm proposed by [Thomas79] com-
bines a concurrency control algorithm with a scheme for keeping
copies of data consistent at all sites where they exist. Here,
data 1items are timestamped rather than transactions. When a
transactions begins, it first obtains the timestamps of all en£i—
ties it will access during execution (called the base set). Dur-
ing commit processing, those timestamps are compared with the
current entity timestamps. If any have changed, an update has
occurred during the life of the transaction. Therefore, the base
set is now obsolete and the transaction must abort and restart.

The SDD-1 approach to concurrency control [Rothnie79]
involves the notion of transaction classes. A transaction class
is defined by a set of entities read and a set of entities writ—
ten (i.e. a 1logical subset of the database). The classes are
specified at database design time by the database administrator.

When a transaction begins, its resource requirements are pre-

specified so it may be placed in a transaction class. Then, con-
flict analysis is simplified since transactions conflict only if
their respective classes conflict and class conflicts are pre-
determined at database design time. The concurrency controller,
since it knows the class of each transaction and how the classes
conflict, knows which transactions have to synchronize against
each other and how to synchronize them. Several conflict resolu-
tion strategies exist based on the nature of the conflict between
transaction classes.

System D is a local, distributed database management system
under development at IBM. Unlike the other systems, System D was
designed with a local broadcast network in mind. The system Iis
composed of two types of processing sites: transaction nodes and
data nodes. Transaction nodes provide a user interface and moni-
tor transaction execution. Data nodes manage a portion of the
database and perform concurrency control. Transaction nodes sub-
mit read and write requests to data nodes which process the
request. A read request returns the current value of an entity.
Write requests are applied to a temporary workspace for the tran-
saction until the transaction commits, when the writes are
applied to the database. The idea behind concurrency control in
System D may be motivated with the following example. Suppose we

have two transactions, Tl, T2 and the request sequence:

Tl: read x
T2: read vy
T2: write x
T2: commit

The correctness condition for concurrency controllers is that the
result of interleaving transactions be equivalent to executing
those transactions serially [Eswaran76]. In the above example,
the effective execution order 1is Tl, T2. The problem is that
transaction Tl is still active. If it subsequently makes a
request to write vy, we get a non-serializable request sequence
(since, if Tl really executed first, T2 would have read a dif-
ferent y value). System D would prevent this by prohibiting Tl
from writing anything read by T2. Therefore, when a transaction
commits, it may impose access constraints on other active tran-

sactions. These access constraints are the essence of System D

concurrency control. In a distributed system, these constraints
must be broadcast to all data nodes involved in the processing of
the conflicting transactions. A single request may trigger a
flurry of messages as data nodes communicate to update their
access constraints. When a non-serializable request sequence
occurs, the offending transaction is aborted. The advantage to
this scheme 1is that requests are never delayed for concurrency
control purposes (there are no locks). The disadvantage 1is the
increased message activity when conflicts occur. But, the
designers of System D are aiming at the same application environ-
ments we have described above (i.e. banking systems, airline
reservations). So, transactions are short and when conflicts
occur the number of "update constraint"™ messages would be lim-
ited. The broadcast capability of the network is what makes this
algorithm feasible since all relevant data nodes can be notified

of a conflict with the same message. On a site-to-site

transmission network, individual messages would need to be sent.
Thus, System D would probably not work well in an ARPANET

environment.

3. Problems with Existing Solutions on Local Broadcast Net-

works

It is possible to distinguish two different philosophies of
concurrency control which might be termed optimistic and pes-
simistic [Menasce88b]. The optimistic philosophy is that con-
flicts practically never occur. When they do occur, relatively
simple conflict resolution strategies may be used to resolve
them. These strategies may not be the most efficient, but since
conflicts are rare, the impact on performance 1is negligible.
Concurrency control algorithms which seem to embrace this philo-
sophy are Wound-Wait-Die and to some extent Majority Consensus.
For example, the Wound-Wait-Die scheme is conservative and aborts
transactions unnecessarily. The Majority Consensus algorithm
will also abort transactions unnecessarily. And when an abort
~occurs, it is during the commit processing. All the work done to
execute the transaction is wasted. The designers of both schemes
have suggested some changes to improve performance but, of
course, they increase the cost.

The pessimistic philosophy of concurrency control is that
conflicts are not rare. SDD-1, System D, and centralized schemes
are examples. These schemes use much more efficient conflict
resolution strategies. Transactions are never aborted for con-

currency control reasons in SDD-1 (but they may be delayed).

System D aborts transactions only when necessary and does so as
soon as the request causing the conflict is processed (unlike
Majority Consensus, no extra work is wasted). The cost of more
efficient conflict resolution is more information in SDD-1 and
more messages in both the System D and centralized schemes.
SDD-1 needs to know the data requirements of each transaction
before it executes. The designers took advantage of non-uniform
data access patterns by defining transaction classes. However,
the classes place an additional burden on the processing sites as
they must either know all the class definitions (takes space) or
forward a transaction to another site which can process it (takes
time). System D requires many synchronization messages to ensure
that transactions are serialized. Note that SDD-1 also requires
some synchronization messages (NULLWRITE messages for inactive
transaction classes). Messages can significantly increase the
time needed to process a transaction because of the communica-
tions delay. Too many messages may degrade system performance if
the communications medium becomes a bottleneck.

What we desire, then, is the best of both worlds, i.e.
efficient conflict resolution at little or no expense to the sys-
tem. We only want to abort transactions when necessary (non-
serializable request sequence) and we want as few synchronization
messages as possible. And we do not want to make the system so
complex that the structures needed to implement it become a bur-
den on the processing sites. Our proposed solution addresses

these problems.

4. Passive Concurrency Control

4.1. Overview

In this section, we describe our "passive" concurrency con-
trol algorithm for distributed databases implemented on a local
broadcast network. As shown later, no explicit synchronization
messages are needed. To review, we assume that transactions are
small and access only a few entities during their 1lifetime (an
entity being a tuple or record). We also assume that data is not
duplicated. 1In our scheme, the network is composed of three
types of nodes: data nodes, transaction nodes and concurrency
control nodes (see Figure 1) Transaction nodes provide a user

interface and control execution of transactions. The general

user user
| |
| trans. node | | trans. node |
| [
{~~ ether -->
| |
| c.c. node | | data node |
|
/ /
/ data /
/ /

Figure 1. System Configuration

10

idea is that transactions execute concurrently at transaction
nodes and request data and send data as needed from and to data
nodes. Data nodes control access to a portion of the database
and maintain the necessary indices to insure efficient access to
individual records. They maintain a local workspace for each
transaction which keeps their working data private until after
commit. Entities are not locked and data nodes have no power to
reject a request. A read request returns the current value of an
entity. A write action updates the value of an entity 1in the
transaction's workspace. A commit action makes an entity's
workspace value the new current value for that entity. A con-
currency control node monitors the sequence of requests on the
ether, maintains conflict information for the transactions, and
periodically checks for non-serializable requests sequences (see
Figure 2). When found, one of the participating parties 1is
aborted. Otherwise, concurrency control takes place during the

transaction commit processing.

Transactions: Tl: set A,B=10 T2: set B,A=20

Requests A | B
Tl: write A 16 | --
T2: write B | 20
Tl: write B | 10
T2: write A 20 |

20 | 19

Figure 2. Non-serializable Request Sequence

11

The lifecycle of a transaction is, then, as follows. It
begins execution at a transaction node which broadcasts a "start
transaction" message. Data and concurrency nodes receive the
"start trans" message and set up workspaces for the new transac-
tion. The transaction submits read and write requests to various
data nodes during execution. It keeps track of which data nodes
are participating in the execution by noting who responds to its
read and write requests. Each data node scans all read and write
requests but processes only those which access part of the data-
base it <controls. Since data is not replicated, only one data
node will ever respond to a request. When the transaction |is
ready to commit, the transaction node broadcasts an "OK-commit?"
request. The concurrency control node overhears the commit
request and takes control of transaction execution at this point.
It implements the two-phase commit procedure [Gray78)]. The con-
currency control node must receive an acknowledgement (of the
"OK-commit?") from each data node participating in the transac-
tion before it may broadcast a "commit" message. When a data
node gets an "OK-commit?" request, it moves the workspace for the
transaction to stable storage [Lampson78], (which makes the tran-
saction recoverable) and acknowledges it. If a data node has
crashed, the transaction must abort or wait for the node to
recover.

After the concurrency control node has received a commit
acknowledgement from each data node participating in the transac-
tion, it must determine if the transaction may safely commit

according to the serialization constraints. For example, assume

12

transaction T2 writes some entity which transaction Tl has con-
currently read. The serialization order for these transactions
must be Tl, T2. Otherwise, Tl would read the entity value writ-
ten by T2. For now, let us assume that readers of an entity have
priority over writers. Then, a transaction may not commit wuntil
all readers of entities it has written are finished (Figure 3).
If no conflicting transactions (i.e. readers) are found, the
transaction may immediately commit. Otherwise, additional meas-
ures must be taken to ensure that the end result is the appear-
ance of a serial execution of transactions. These measures are
discussed below.

The object of concurrency control is to schedule transac-
tions 1in a way equivalent to some serial execution of the tran-
sactions. Most concurrency control schemes accomplish this by
controlling access to the data. But, in our scenario, con-
currency control is "passive" (there are no locks hence and
access to data is uncontrolled) so we cannot do this. Thus, as
in System D, we ensure serializability by controlling the commit

process. When a transaction tries to commit "out of order" (e.g.

Transactions: Tl: read x, write y T2: read w, write

Requests: .

Tl: read X
T2: write x
T2: OK-commit?

Figure 3. Read-Write Conflict

13

T2 in Figure 3) we must make it appear as though the transactions
committed 1in order. There are several ways of doing this. A
straightforward approach is to cause a transaction to wait until
those transactions which must serialize before it have completed.
Thus, transactions actually commit in their serialization order.
The problem with this approach is that a transaction may have to
wait forever to commit. For example, consider a transaction
which wants to write entity x. It must wait for all transactions
which have read x to finish (since a writer of an entity serial-
izes after readers of an entity). But, there may be an infinite
supply of transactions which read x (because data nodes have no
power to reject a read/write request). Thus, we have a classic
readers-writers problem and our algorithm corresponds to the
readers-writers solution which gives priority to readers and lets
writers starve. We will refer to this solution as the starvation
solution.

The starvation solution suggests another solution: the non-
starvation solution. This corresponds to the readers-writers
solution in which writers have priority, i.e. an incoming writer
only waits for existing readers to finish. Readers arriving
after the writer must wait. On our architecture, this algorithm
would be implemented similarly to the starvation solution. But,
when a transaction wants to commit it is tagged as "golden" and
the serialization order is fixed. Then, if subsequent requests
cause conflicts which result in a new transaction being serial-
ized before the golden one, that transaction must be aborted.

There are several problems with this approach. First 1is the

14

additional bookkeeping required by the concurrency node. But
since we assume that concurrency control is handled by a dedi-
cated node the cost can perhaps be ignored. A second problem is
that this scheme unnecessarily aborts transactions. For example,
suppose a transaction writes entity x and tries to commit but
must wait for a few readers to finish. Then along comes a short
transaction which only reads x and tries to commit. The short
transaction would be aborted because it must serialize before the
golden transaction. But a transaction which does not produce any
output (i.e. does not modify the database) should be able to com-
mit at any time and not affect the serializability of the
schedule. Unfortunately, since transactions do not pre-claim
their resources we do not know if a transaction will subsequently
touch something read or written by a golden transaction. To be
safe, we must abort it. A similar problem occurs with the
Wound-Wait-Die algorithms.

A third apprpach to controlling the commit process might be

called the restrictions list solution. Recall the original prob-

lem. A transaction wants to commit but there are other active
transactions which serialize before it. The difficulty is that
we can not allow the transaction to commit immediately because
subsequent requests from active transactions may result in a
cycle., For example, suppose a transaction reads entity x and
writes entity y and tries to commit. And, suppose there is
another active transaction which has read y. Then that transac-
tion must serialize before the one to commit. But what happens

if we let the first transaction immediately commit? We <can get

15

into trouble if the active transaction subsequently tries to
write x. This would cause a cycle in the conflict graph which is
non-serializable. So, 1if we allow transactions to immediately
commit, we need a way of detecting when 1later requests cause
cycles in the conflict graph. The solution is to include "res-
triction" lists in the workspace of each transaction. This 1list
restricts what the transaction may access. In the above example,
we would allow the transaction to commit but restrict the active
transaction from reading x. If the transaction later tried to
read x it would be aborted. This 1idea was proposed by the
designers of System D and this would be a non-distributed imple-
mentation of it. It is more complex than the previous solutions
and would require additional workspace for each transaction. How-
ever, since we assumed that transactions are short, the restric-
tion 1lists should not become unmanageable. This solution is
optimal in the sense that committing transactions never have to
wait during the commit process for other transactions as in the
starvation solution. Also, transactions are never unnecessarily
aborted as in the non-starvation solution. Transactions are only
aborted when they cause cycles in the serialization graph.

To review, suppose we have the following sequence of

requests from three transactions, A, B and C:

A: read x

B: read y

A: write y

A: OK-commit?
C: read y

The differences between the three algorithms can be summarized in

16
the way they handle the commit request from A.
starvation: transaction A may not commit until all readers of y
have finished: it must wait for B and C to terminate.
non-starvation: transaction A only waits for readers which exist
before it tries to commit: it waits for B but C is aborted

when it tries to read y.

restrictions list: transaction A may immediately commit, but B
and C are prohibited from writing y or writing x.

In all the solutions mentioned above, there is a glitch
period between the time the concurrency node decides to commit a
transaction and the time it finally broadcasts the commit mes-
sage. Consider the starvation solution. Suppose a transaction
requests a commit and the concurrency controller finds no con-
flicts. But before it can broadcast a commit message, another
read message is overheard which conflicts with the committing
transaction. We can no longer commit the transaction since the
new reader has priority and should serialize first. We must wait
for the new reader to finish. Similar problems occur with the
non-starvation and restrictions lists algorithms. The difficulty
is that the message input buffer of the concurrency controller is

a history of accesses, not a queue of requests. One possible

solution is to require the concurrency controller to completely
empty its input message buffer before broadcasting a commit mes-
sage. By doing this, it guarantees that its conflict information
is current.

To review, then, a transaction begins life at a transaction
node which submits read and write requests on its behalf to data

nodes. A concurrency node monitors requests and aborts transac-

17

tions which have non-serializable conflicts. The data nodes
maintain separate workspaces for each transaction until the com-
mit point when the entity values in the workspace become the
current values for the entity. When it is ready to finish, a
transaction node broadcasts a commit request. A concurrency node
hears the commit request and waits for affirmative responses from
all the data nodes of the transaction. Then the concurrency node
decides to commit the transaction or cause it to wait depending
on which of the commit procedures described above {starvation,
non-starvation, restrictions list) is used. The transaction node

waits for a commit or abort from the concurrency node and ter-

minates the transaction.

4.2. Feasibility

In order to determine if this approach to concurrency con-
trol 1is feasible (with respect to performance requirements), the
following simple analysis was made. One important question is
whether or not the concurrency control node can keep pace with
the amount of message traffic on the ether. If not, no transac-
tion could ever commit. Suppose we require a transaction
throughput rate of 100 transactions per second. Also assume that
a typical transaction requires n messages to execute. This
includes all read, write and acknowledgement messages as well as
the commit processing. The concurrency control node would then
have to process 10@0*n messages per second. The message interar-
rival time 1is then .01/n seconds. For n=15, this is an inter-

arrival time of 666 microsec., or about 666 instructions on a 1

18

MIP processor. We need to know the processing requirements for
the messages of a transaction. Consider a "typical" transaction

which does two reads, two writes and visits two data sites. Such

a transaction requires the following messages:

msgs description

1 initiate transaction

4 2 read requests and acknowledgements
4 2 write requests and acknowledgements
1 commit request

2

1

commit acknowledgements from data sites
commit

13 total number of messages required

The start transaction message, the read and write acknowledge-
ments and the commit request and commit acknowledgement messages
are processed very quickly. This accounts for 8 messages. The
read and write requests themselves take longer to process because
the serialization graph must be updated which is a closure opera-
tion. The more conflicts, the longer this takes, since, for each
conflict, you must perform a separate closure operation to find
all the serialization constraints it implies. The commit message
is sent by the concurrency controller itself but, before sending
it, the serialization graph must first be checked. This requires
some processing, especially if the graph must be checked several
times before the transaction may commit. Also, the conflict
matrix and the serialization graph must be updated when the tran-
saction terminates. Thus, 8/13 or about 60 percent of the mes-
sages have very modest computing requirements. It 1is possible

they could be handled within 666 instructions. It is not clear

19

that the remaining messages could be processed that quickly but
the numbers are not outside the realm of possibility. Also note
that 1increasing the transaction size (more read and write
requests) should not substantially change this since each such
request requires an acknowledgement which is processed quickly.
So, changing the size of transactions does not substantially
change the pattern of message traffic on the ether. Over 50 per-
cent of the messages will be processed quickly. However, more
requests from a transaction does increase the chances of a con-
flict which increases the processing time. 1In the case of a
transaction abort, the serialization graph must be completely
rebuilt, which requires much work. It is hoped that aborts will
be infrequent enough to not have a detrimental effect.

Another question to be addressed is whether or not the mes-—
sage traffic required for the transactions will exceed the capa-
city of the ether. Again, we assume a transaction rate of 100
transactions per second with an average of 15 messages per tran-
saction. The majority of messages will be short since they con-
vey 1little information (read requests, write and commit ack-
nowledgements, commit requests and aborts). The read ack-
nowledgement and write request messages should also be short
since we assumed that transactions access record or tuple size
entities. Thus, it seems reasonable to assume an average message
size of 256 bits (32 bytes), including network header and check-
sum overhead. An ether with a capacity of 3 Megabits/sec. can
handle a maximum of (3 Megabits/sec) / (256 bits/message) =

11.7 messages per msec. So an Ethernet operating optimally could

20

transmit 11.7 messages per millisecond. We require 1500 messages
per second (100 trans * 15 msgs/trans) or a rate of 1.5 messages
per msec. This amounts to a utilization of 1.5 / 11.7 or 12.8
percent. On an actual Ethernet, measurement of channel utiliza-
tion as a function of artificial offered 1load (percentage of
channel capacity) found that channel utilization matched offered
load up to 97% of channel capacity [Shoch84]. In other words,
contention of the ether did not significantly affect throughput
until messages were being sent at a rate equal to 97% of the
channel capacity. Thus, an average utilization of 13% seems well
within the capability of existing systems and would not result in
an extraordinarily heavy load with many collisions. Even if we
assume an average message length of 1024 bits, we get a channel

utilization of 51% which is acceptable.

5. Research Plans

The first step of our future research is to find concurrency
control and recovery algorithms which perform well on local
broadcast networks. A subsidiary problem is then to develop
evaluation methods which can be used to compare the existing
algorithms. Measures of interest include transaction throughput,
number of synchronization messages, number of aborts for con-
currency control reasons. We have proposed three algorithms:
starvation, non-starvation and restrictions list. We propose to
compare the algorithms directly by implementing them on an emu-
lated Ethernet which has been implemented in Modula. We also

hope to evaluate other concurrency control algorithms proposed

21

for local broadcast networks (e.g. System D) by emulation on the
emulated ethernet in order to compare the performance of our
scheme.

When the concurrency control algorithms have been investi-
gated, the next step will be to make the system more robust by
incorporating a recovery scheme and specifying protocols to han-
dle lost and garbled messages. For example, an alternative to
having the data nodes maintain separate workspaces for each tran-
saction and performing backout on their own is to keep their
Structure relatively simple. Their only atomic actions would be
read and write an entity and they would have no concept of tran-
saction. A read action returns the current value of an entity
while a write action creates a new current value of an entity.
Thus, the data nodes become little more than intelligent disk
controllers. Logging and recovery would be handled by a dedi-
cated node which monitors requests on the ether 1like the con-
currency control node. When a transaction aborts, the node would
be responsible for backing out the transaction by sending write
messages to restore any entity values written by the transaction.
This scheme complicates the work of the concurrency controller.
For example, repeatable reads are no longer guaranteed by the
data nodes. Also, we cannot simply undo a transaction by blindly
undoing all its writes. Suppose transaction T4 writes entity y,
then T5 comes along and writes y. Then T4 aborts. We cannot
just restore y to its "pre-T4" value because T5 has already writ-

ten it and may successfully commit. It seems that some communi-

cation between the concurrency control node and the recovery node

22

is needed to correctly back out a transaction.

The problem of lost messages cannot be ignored, especially
since the Ethernet was not designed to be a reliable network.
Higher level protocols are needed to guarantee that messages are
delivered. For example, if a write request is missed by the con-
currency control node but heard by the data node, important con-
flict information is lost. One possibility is to have the con-
currency controller acknowledge all read and write requests. But
this increases the message traffic. Another possibility is to
have the transaction include a message count in its commit
request. If the concurrency controller did not have the same
count for the transaction, presumably, it missed a message.
There may be other protocols worth investigating as well.

An obvious criticism of our approach is that concurrency
control is <centralized. A failure of the concurrency control
node would crash the entire system. However, the approach is no
more subject to failure than a single processor running a multi-
user database management system or a tightly-coupled multiproces-
sor database machine with centralized control.

There are several possible solutions which we propose to
investigate. First, reliability could be increased by running
several concurrency nodes in parallel. Another approach 1is to
have the remaining sites nominate a new concurrency control node
in the event of a concurrency control node failure as is done in
[Menasce8@a]l. The conflict information could be reconstructed by

examing the workspaces at the data nodes. The passive con-

currency control scheme might be used in a database machine where

23

the components are connected by an Ethernet [Boral79a]. Another
use of this approach might be a network of Ethernets connected by
Gateways. The individual ethers might each have their own pas-
sive concurrency controller. Here, a concurrency control node
can only crash one Ethernet, not the entire system. 0f course,
concurrency control would be complicated for transactions which
execute across a Gateway. At any rate, more work must be done in
order to determine if the passive concurrency control scheme is a

practical idea.

6. References

[Boral79a] Boral, H., and D.J. DeWitt, "Design Considerations
for Data-flow Database Machines," Proceedings of the ACM-
SIGMOD 1980 International Conference of Management of Data,
May 1988.

[Boral79b] Boral, H., and D.J. DeWitt, "Processor Allocation
Strategies for Multiprocessor Database Machines," To appear:
ACM Transactions on Database Systems. Also Computer Sci-
ences Technical Report No. 368, University of Wisconsin,
October 1979.

[DeWitt79] D. J. DeWitt, "DIRECT -~ A Multiprocessor Organization
for Supporting Relational Data Base Management Systems,"
IEEE Transactions on Computers, Vol. C-28, No. 6, June 1979,

[Eswaran76] Eswaran, K.P., Gray, J.N., Lorie, R.A., and I.L.
Traiger, "The Notions of Consistency and Predicate Locks in
a Database System," CACM, Vol. 19, No. 11, November 1976.

[Eswaran80] Eswaran, K.P., Personal communication, April 1988.

[Gray78] Gray, J.N., "Notes on Data Base Operating Systems,”
IBM Research Report, RJ2188 (300081), February 1978.

[Lampson78] Lampson, B. and H. Sturgis, "Crash Recovery 1in a
Distributed System," Xerox Palo Alto Research Center Techni-
cal Report, 1978.

[Menasce88a] Menasce, D., Popek, G., and R. Muntz, "A Locking
Protocol for Resource Coordination 1in Distributed Data-
bases,"” ACM Transactions on Database Systems, Vol. 5, No. 2,
June 1984.

24

[Menasce8@b] Menasce, D.A., and T. Nakanishi, "Optimistic vs.
Pessimistic Concurrency Control in Database Management Sys-
tems," To appear in the Proceedings of 1980 Internationl
Conference on Very Large Databases, 1984.

[Metcalfe76] Metcalfe, R.M., and D.R. Boggs, "Ethernet: Distri-
buted Packet Switching for Local Computer Networks," CACM,
Vol. 19, No. 7, July 1976.

[Rosenkrantz78] Rosenkrantz, D.J., Stearns, R.E., and P.M.
Lewis, "System Level Concurrency Control for Distributed
Database Systems," ACM Transactions on Database Systems,
Vol. 3, No. 2, June 1978.

[Rothnie79] Rothnie, J.B., Bernstein, P.A., Fox, S.A., Goodman,
N., Hammer, M.M., Landers, T.A., Shipman, D.W., Reeve, C.L.,
and E. Wong, "SDD-1: A System for Distributed Databases,"
Computer Corporation of America Technical Report CCA-§2-79,
January 1979.

[Shoch8#] Shoch, J.F., and J.A. Hupp, "Performance of an Ether-
net Local Network —-- A Preliminary Report," Proceedings of
IEEE COMPCON Conference, 19840.

[Stonebraker76] Stonebraker, M., and E. Neuhold, "A Distributed
Database Version of Ingres," Univ. Calif. -~ Berkeley
Memorandum No. ERL-M612, September 1976.

[Thomas79] Thomas, R.H., "A Majority Consensus Approach to Con-
currency Control for Multiple Copy Databases," ACM Transac-
tions on Database Systems, Vol. 4, No. 2, June 1979.

