o

S

e
.

-
.

<
-

-

SAC-1 IMPLEMENTATION GUIDE

by

George E. Collins
and

Stuart C. Schaller

Computer Sciences Technical Report #268

January 1976

.
-

-

Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

Receijved: January 22, 1976

SAC-1 IMPLEMENTATION GUIDE™

by

George E. Collins
and
Stuart C. Schaller

* :
This work has been supported by National Science Foundation
Grant DCR74-13278

SAC-1 Implementation Guide

I. Introduction o o oo 0w o
II. Implementation Outline
IT1. SAC-1 Primitives+« « « o v v o o 00 0.
A. Required Primitives.

B. Fortran Primitives « « « o o o . .

C. Recommended Machine Language Routines.

IV. SAC-1 Subsystem Notes. « .« « « o v o o
V. Test Programs. . « v v ¢ ¢ ¢ ¢ o o o e a e e e 0w
AppendicCesS. « v ¢« v« v v v v e e e e e e e e e e e e s
A. SAC-1 Source Tape Format

B. SAC-1 Source Tape Contents

C. Specifications for SAC-1 Fortran Primitives. . .

SAC-1 Technical Reports

10
10
11
12
16

I. Introduction

This report is meant to serve as a guide for the implementation
of the SAC-1 System for Symbolic and Algebraic Calculation. It
does not provide detailed implementation information, but rather
it discusses the main tasks and points out where further information
can be found.

It is recommended that the List Processing System Technical
Report (LP, see Appendix D) and at least the introductions to
the other SAC-1 Technical Reports be read in conjunction with this
Guide.

Section II of this report outlines the tasks involved in the
implementation. Section III discusses the primitives required.
Section IV covers information on the interrelations of the sub-
systems and Section V summarizes the test programs that are available.
A series of appendices covers the SAC-1 source tape format and
contents, and specifications for the SAC-1 Fortran primitives.

An index of SAC-1 algorithms, a summary of global variable
specifications, and other information on using the SAC-1 System can
be found in the SAC-1 Users' Guide.

II. Implementation Qutline

SAC-1 is composed of a hierarchically structured set of sub-
systems. Each subsystem consists of subprograms written in standard
(ANSI) Fortran and possibly specifications for several primitive
routines which, for efficiency, are intended to be written in
machine language.

The Fortran portions of each subsystem are supplied on the
SAC-1 source tape whose format and detailed contents are Tisted
in Appendices A and B. In addition the tape contains a Fortran
implementation of the SAC-1 primitives and several test programs
with their associated data.

The goal of the implementation procedure is to construct a library
of Fortran-callable subprograms which will be loaded only as needed
for user programs. This goal may be attained by proceeding as
follows:
(1) Write and debug the primitive routines required by the desired
SAC-1 subsystems and save the relocatable version of each
routine in a subroutine library.

(2) For each subsystem compile all the Fortran subprograms and save
the relocatable versions. '

(3) As each subsystem is completed run the associated test program
if it exists.

I1I. SAC-1 Primitives

A. Required Primitives

The heart of the SAC-1 system is a set of 20 primitive routines
which are to be written in machine language.

The SAC-1 subsystems requiring machine language primitives
are the List Processing System (LP), the Integer Arithmetic
System (IA), and the Polynomial Factorization System (PF).

The List Processing System contains 15 primitives which can
be divided into four groups. There are:

(1) Primitives used to insert and extract information from cells
(see LP, pp. 8-9): STYPE, SCOUNT, SSUCC, ALTER, TYPE, COUNT,
TAIL, and FIRST.

(2) Primitives used by BEGIN (LP, p. 9): NWPC and LOC.

(3) Primitives used for basic input and output (LP, p. 22):
READ and WRITE.

(4) Primitives used for list input and output (LP, pp. 25-26):
LSHIFT, RSHIFT and NBPW.

Note that (1) and (2) above require the implementer to specify
the cell formats (LP, pp. 4-6).

The Integer Arithmetic System requires three primitives (see
IA, pp. 7-11): ADD3, MPY and QR. The design of these primitives
depends on the choice of system parameters BETA and THETA (IA,
pp. 1,3,7-11). It is strongly recommended that BETA be made a
power of two. The Polynomial Factorization System assumes this
(PF, p. 47) as do several new subsystems currently under development.

The Polynomial Factorization System requires two primitives
(see PF, pp. 13-15): AND and OR.

B. Fortran Primitives

The SAC-1 Fortran primitives are a collection of 20 routines
programmed in ANSI Fortran which supplant the primitives described
above. The primary intention of the Fortran primitives is to allow
the implementer to test subsystems at the same time he is debugging
the machine language primitivés.

The Fortran primitives can be separated into three groups.

(1) Those primitives whose names correspond exactly with the names
of the associated machine language primitives: ADD3, ALTER,
AND, COUNT, FIRST, MPY, OR, QR, READ, SCOUNT, SSUCC, STYPE,
TAIL, TYPE, and WRITE.

(2) Those SAC-1 routines which are not considered to be primitives,
but which have been rewritten to be used with the Fortran
primitives: BEGIN and BORROW.

(3) Routines needed to support the Fortran primitives in (1) and
(2): DLREAD, DLWRIT, and INITIO.

The Fortran primitives use a fixed-size available space list
and require special initialization before doing input or output.
Complete specifications for using these primitives are contained in
Appendix C.

Note that the SAC-1 Users' Guide assumes that the machine language

versions of the SAC-1 primitives have been implemented.

C. Recommended Machine Language Routines

To improve performance once the SAC-1 System with machine language

primitives is running, it is recommended that the following sub-
programs also be written in machine language:

Subsystem Subprograms

List Processing ADV, BEGIN, BORROW, DECAP, ERLA,
INV, PFA, and PFL (LP, pp. 10-12)

Integer Arithmetic COMPAT (IA, p. 11)

Modular Arithmetic CDIF, CPROD, CRECIP, CSUM (MA, p. 5)

IV. SAC-1 Subsystem Notes

This section summarizes information on subsystem requirements
and interdependency. It also draws attention to differences
between the subsystem documentation in the technical reports and
the subsystems as distributed on the SAC-1 source tape.

Each SAC-1 subsystem is in a separate file on the distributed
tape. If the entire system is to be implemented, it is recommended
that the subsystems be implemented and tested in the order in
which they occur on the tape (see Appendix B).

The entire SAC-1 System need not be implemented. Figure 1
gives a schematic representation of how the subsystems are related.
This diagram applies only to the subsystems as distributed on tape.

The most significant difference between the distributed and
documented subsystems is that the Polynomial System (PO) as
distributed does not include the subprograms PGCD, PCONT, PCGCD,
and PGCDA. These routines are used to calculate polynomial greatest
common divisors and are documented in the associated technical
report. These routines have been superceded, however, by new
algorithms implemented in the GCD and Resultant System (see GR,
pp. 1-2). This means that routines PPP and PCPP of the Polynomial
System cannot be used until the GCD and Resultant System has been
implemented. Note that the Polynomial System test program FANDG
requires neither of these routines.

In the Polynomial Factorization System (PF), subprogram PFBI
has been deleted from the distributed SAC-1 system because a change
of PFZ1 has eliminated its need.

The Integer Arithmetic System (IA) subprograms IDTOH, IHTOD,
IREAD, and IWRITE as distributed do not correspond to the algorithm
descriptions in the associated technical report. The input and output
specifications for IREAD and IWRITE are unchanged.

The only other subsystem changes were to move several sub-
programs from the systems in which they are documented. This was done
to avoid duplication and to reduce subsystem dependencies. These
modifications are summarized in Table 1.

-6-

List
Processing

/N

Integer
Arithmetic*

/

Polynomial*

i

Modular
Arithmetic

/

GCD and
Resultant*

Linear Polynomial Rational Gaussian

Algebra* Factorization Function* Polynomial
/)?—_\
Rational Function Real

Integration Zero*
P g ——
Real Algebraic Complex
Number Zero*

FIGURE 1: SAC-1 Subsystem Dependencies
*Test programs exist for these subsystems.

Sub- Subsystem

program on tape Documentation
ADV2 List Processing (CZ, p. 28), (RA, p. 31)
DECAP2 List Processing (CZ, p. 28), (RA, p. 31)
FIRST2 List Processing (CZ, p. 29), (RA, p. 32)
SECOND List Processing (cz, p. 30)

ELPOF2 Integer Arithmetic (RI, p. 16), (RZ, p. 34)
IGCDCF Integer Arithmetic (CZ, p. 31), (RA, p. 34)
PNORMF Polynomial (RZ, p. 35)

PPOWER Polynomial (RZ, p. 36)

LEXORD GCD and Resultant (RA, p. 32)

RNINT1 Rational Function (CZ, p. 30), (RA, p. 38)
RNINT2 Rational Function (CZ, p. 32), (RA, p. 38)

Table 1: Changes in Distributed SAC-1 Subsystems

The only use of non-standard Fortran occurs in subprograms which
print error messages. These routines use a statement of the form
PRINT n where n s a FORMAT statement number. If the local Fortran
compiler will not accept the PRINT statement, these statements must
be changed. A Tist of SAC-1 routines which produce error messages
is given in Appendix A of the SAC-1 Users' Guide.

V. Test Programs

The subsystems for which test programs are available are
indicated by an asterisk in Figure 1. A complete T1ist of the test
programs and the related subsystem references are given in Table 2.

The test programs are on the SAC-1 source tape as subsystem
TP. The test data follow as subsystem TD.

The test programs supplied on tape do not correspond exactly
to those referenced in the technical reports. The following

changes to the test programs have been made where needed.

(1) The variable THETA has been added to common block TR3 in several
test programs to bring them into conformance with version III
of the Integer Arithmetic System.

(2) The common block TR4 has been introduced and initialized where
needed to allow the use of the modular polynomial GCD algorithm
implemented in the GCD and Resultant (GR) System.

(3) The test programs have been modified to use the SAC-1 Fortran
Primitives. The required changes are listed in Appendix C.

(4) Minor changes include changing PRINT n to WRITE(OUT,n), removing
extraneous output, and removing calls to timing routines.

Each deck of test data begins with a character code card as
required by the routine INITIO of the SAC-1 Fortran Primitives.
The test program output should agree with the SAC-1 technical reports
with the exception of available space Tist lengths and the contents
of the 1list PRIME.

To use these test programs with machine language primitives,
the following changes must be made to each main program:

(1) Declare the available space array;

(2) Change the call to BEGIN to CALL BEGIN(SPACE,n) where SPACE is
the name of the available space array and n is its size;

(3) Change the global variable initialization to reflect the local
implementation requirements (see the SAC-1 Users' Guide);

(4) Remove the call to INITIO;

(5) Remove the character code card from each deck of test data.

-9-

Test Program

Subsystem (Subroutines)
Integer Arithmetic IATEST
Polynomial FANDG
GCD and Resultant GRTEST
Rational Function HILB

(INVERT)
Rational Function GHILB
(INVERT)
Real Zero RZTEST
Linear Algebra LATEST
(MREAD,
MWRITE)
Complex Zero CZTEST

Table 2: SAC-1 Test Programs

Reference Test Data Deck
(IA, p. 55) IATEST

(PO, p. 28) FANDG

(GR, p. 86) GRTEST

(RF, p. 7) HILB

(RF, p. 7) GHILB

(RZ, p. 45) RZTEST

(LA, p. 67) LATEST

(CZ, p. 299) CZTEST

-10-
APPENDICES

A. SAC-1 Source Tape Format

The SAC-1 source tape is written with one of the three following
sets of physical characteristics:

1 2 3
Character Code: BCD EBCDIC ASCII
Characters/Record: 84 84 81
Tracks: 7 9 9
Density (BPI): 800 800 800
Parity: even odd odd

The tape is written as a series of files, each followed by
a file mark. The last file is followed by two file marks.

Fach file is a sequence of unblocked card images. Each card
image contains a two-letter subsystem code in columns 73 and 74 and
a sequence number in columns 75 through 80. The sequence numbers
begin for each file with 10 and are incremented by 10.

Within files containing Fortran source images, each subprogram
is proceded by a header card with the following information in
columns 1 through 24:

Col 1 Co1¢13
Ca=k=n =% =%-x XXXXXXbDBDDD

where XXXXXX is the left justified subprogram name and b represents
a blank character.

-11-

B. SAC-1 Source Tape Contents

A complete SAC-1 source tape contains the following 18 files.

Approx. Approx.
File Subsystem # Card # Sub-

Code Images programs File Contents

1 AA 1 0 One card image containing the
SAC-1 version number
and date.

2 BB 1 0 Character code file. One card

image containing in columns 1
through 47 the SAC-1 character
set in SAC-1 collating sequence.

3 TP 734 11 Test program file.

D 115 8 Test data file. The various data
decks are preceeded by header
cards as described in Appendix A.
These header cards carry the

name of the associated test pro-

gram.
5 FP 399 20 Fortran primitives.
6 LP 388 23 List Processing System.
7 IA 834 26 Integer Arithmetic System.
8 PO 1147 35 Polynomial System.
9 MA 1144 35 Modular Arithmetic System.
10 GR 1652 42 Polynomial GCD and Resultant System.
11 RF 495 17 Rational Function System.
12 RI 649 15 Partial Fraction Decomposition and
Rational Function Integration System.
13 RZ 915 24 Polynomial Real Zero System.
14 LA 1238 33 Polynomial Linear Algebra System.
15 PF 813 21 Univariate Polynomial Factorization
System,
16 GP 4337 123 Gaussian Integer and Gaussian
Polynomial System.
17 CZ 2779 98 Gaussian Polynomial Complex Zero
System.

18 RA 1397 53 Real Algebraic Number System.

-12-

C. Specifications for SAC-1 Fortran Promitives

We describe in the following a SAC-1 implementation written
entirely in standard (ANSI) Fortran. By changing a very few pa-
rameters, which appear as constants in the subprograms,
the implementation is usable on any computer. In the following
these parameters are chosen to be nearly optimal for a computer
with a 32-bit word length (such as the IBM 360 and 370). This pa-
rameter choice is indeed permissible for any computer with73‘231
(so every integer less than 231 in absolute value is a Fortran
integer), although it will not be optimal for longer word lengths.
The changeable constants are associated with the widths of the
count and successor fields and with the radix B in an obvious

manner and will not be made explicit.

This implementation is intended to be used primarily for the
initial installation of SAC-1 on a new computer and for its appli-
cation to small problems. For serious use of SAC-1, more efficient
assembly-language subprograms should be substituted for the eight
list-processing field primitives, the three integer arithmetic

primitives, and the two polynomial factorization primitives.

1. Cell Structure and List Processing Primitives

In this implementation, each cell consists of two consecutive
elements of a large array called SPACE, which is in labelled
common block S. In the Fortran subprograms, SPACE is declared to
have 20,000 elements, but this number can be changed as desired.
The location of a cell is its index in the array SPACE. Thus the

various cell locations are 1,3,5,7,....

Following is a cell structure diagram:

= type (1 bit)
count (10 bits)

= guccessor (20 bits)

T C S

= nn QA
i

= element (1 word)

-13-

In the first cell word, the sign bit (the leftmost bit) is un-
used, and will always be "+". Arithmetically, the Fortran integer

stored in the first cell word is given by the mixed radix formula

(1) N= T-23%¢-2%%sg
with 0<T<2, O_<_C<210 and Ois<22o. Conversely, T,C and S in these
ranges are uniquely determined by N, if OiN<231. The Fortran

subprograms for the eight list-processing field primitives are

based directly on equation (1) and the constants

(2) 21°=1,024, 22°=1,048,576, 2°°=1,073,741,824.
Note that this implementation allows a maximum of 219: 524,288
cells.

The primitives LOC and NWPC are used only hy BEGIN. Instead
of implementing these two primitives, BEGIN has been written as
a primitive. Note that if the number of elements in SPACE is
changed, then the two occurrences of the constant "19999" in

BEGIN must also be changed accordingly.

Since the maximum possible reference count with this imple-
mentation is 1023, there is a possibility of "overflow". To pre-
vent such overflow, a recursive algorithm for BORROW is provided.
Whenever necessary to prevent count field overflow, this algo-
rithm obtains a new cell from AVAIL, applies itself recursively
to the successor and element (if a list) of the given cell, and
returns as value the location of the new cell. Since count over-
flow will be rare, average computing times are not significantly
affected.

2. Integer Arithmetic Primitives

For the integer arithmetic implementation, we choose B=215=

32,576, and accordingly @=1O4=1O,OOO. We then have 82<Y so the
Fortran programs are straightforward, using divisions and multi-
plications by B. In an assembly language implementation one

might set B=230, so these primitives are quite inefficient in time

-14-

and space utilization, and should be the first to be re-implemen-

ted in essembly language.

3. Input-Output Pramitives

The primitives READ and WRITE, written in standard Fortran,
are computer-independent. They are also very efficient and could
well be used permanently. However, certain restrictions and re-

servations need to be stated. ’

(a) The input deck for each SAC-1 program must begin with
a special "character code card" which is punched in columns 1-47

with the 47 characters of the Fortran character set as follows:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXY Z+-%/ () , -b= ¥

This card is read in by INITIO, a subroutine of READ and WRITE,

to establish the correspondence between the SAC-1 internal codes
and the computer internal codes. This feature can be eliminated
however, if desired, by using a DATA statement in INITIO to achieve
the effect of the READ statement between the statements labelled

2 and 3.

(b) In the DATA statements in READ, WRITE and INITIO, an
appropriate unit number must be assigned to the variable PRINT,
the desired unit number for all SAC-1 printed output.

(c) There is a very remote possibility that, on some com-
puters, the internal machine codes for the 47 Fortran characters,
considered as Fortran integers, are not all distinct. Should this
occur, however, it will be detected by INITIO upon reading the
character code card, and the message "incorrect code card" will be

printed.

-15-

(d) READ has no provision for detecting an end-of-file since
none is provided in standard Fortran. This causes no problem unless
one writes a SAC-1 main program which expects an end-of-file indi-
cation from some SAC-1 input subprogram. If a computer is used whose
Fortran compilér provides for end-of-file detection, READ can be

easily modified to meet its end-of-file specifications.

The primitive subprograms LSHIFT, RSHIFT and NBPW are used
only by LREAD and LWRITE. These three primitives should be deleted
and DLREAD and DLWRIT.should be substituted for LREAD and LWRITE.
The specifications for DLREAD and DLWRIT are identical with those
of LREAD and LWRITE except that, in the external canonical form
of a list, atoms appear in decimal form (a sign followed by a
sequence of decimal digits, where a plus sign or leading zeros

may be omitted).

4, Using the Fortran Primitive

The following points summarize the changes required
to a SAC-1 main program in order to use the SAC-1 Fortran

Primitives.

(a) . Remove the available space array declaration.
This is not strictly necessary but will save a large
amount of memory since the Fortran Primitives have a large

available space array declared locally.

(b) Remove the parameters in the call to BEGIN. This
is because the available space array is local to the Fortran

Primitives.

(c) Insert CALL INITIO(IN) before any SAC-1 input or
output is attempted. 1IN is the Fortran unit number of the

i/o device containing the input data.

(d) Make sure that a character code card (see above)

is the first card in the data deck.

-16-

(e) Initialize the global variables to values
assumed by the Fortran Primitives. For the implementation
discussed here § = 215 and 0 = 104. The affected global

variables are as follows:

Common Block Initialization
TR3 BETA = 2%*15

THETA = 10%*4
TR4 PEXP = 13

PRIME = GENPR(PR,500,2*%*13+1)
where PR 1is a 500 word array.

TR3 ZETA = 15

TRY9 GPRIME = GIGNPR (GPR,500,2**13+3)
where GPR is a 500 word array.

—-17 -

D. SAC-1 Technical Reports

System
(LP)

(IA)

Report

The SAC-1 List Processing System, by G. E. Collins. U.W.
Comp. Sci. Dept. Report No. 129, July 1971, 34 pages.

The SAC-1 Integer Arithmetic System - Version III, by
G. E. Collins. U.W. Comp. Sci. Dept. Report No. 156,
March 1973, 63 pages.

The SAC-1 Polynomial System, by G. E. Collins, U.W. Comp.
Sci. Dept. Report No. 115, March 1971, 66 pages.

The SAC-1 Modular Arithmetic System, by G. E. Collins,
L. E. Heindel, E. Horowitz, M. T. McClellan and D. R. Musser.
U.W. Comp. Sci. Dept. Report No. 165, Nov. 1972, 50 pages.

The SAC-1 Polynomial GCD and Resultant System, by G. E.
Collins. U.W. Comp. Sci. Dept. Report No. 145, Feb. 1972,
94 pages.

The SAC-1 Rational Function System, by G. E. Collins. U.W.
Comp. Sci. Dept. Report No. 135, Sept. 1971, 31 pages.

The SAC-1 Partial Fraction Decomposition and Rational
Function Integration System, by G. E. Collins and E. Horowitz.
U.W. Comp. Sci. Dept. Report No. 80, Feb. 1970, 47 pages.

The SAC-1 Polynomial Real Zero System, by G. E. Collins
and L. E. Heindel. U.W. Comp. Sci. Dept. Report No. 93,
Aug. 1970, 72 pages.

The SAC-1 Polynomial Linear Algebra System, by G. E. Collins
and M. T. McClellan. U.W. Comp. Sci. Dept. Report No. 154,
April 1972, 107 pages.

The SAC-1 Polynomial Factor1zat1on System, by G E. Collins
and D. R. Musser. U.W. Comp. Sci. Dept. Report No. 157,
March 1972, 65 pages.

The SAC-1 Gaussian Integer and Gauss1an Polynomial System,
by B. F. Caviness, G. E. Collins, H. I. Epstein, M. Rothstein,
and S. C. Schaller. (In Preparation.)

Algebraic Algorithms for Computing the Complex Zeros of
Guassian Polynomials, by J. R. Pinkert. U.W. Comp. Sci.
Dept. Report No. 188, July 1973, 322 pages.

Algorithms for Polynomials Over a Real Algebraic Number
Field, by C. M. Rubald. U.W. Comp. Sci. Dept. Report No.
206, Jan. 1974, 224 pages.

SAC-1 User's Guide, by G. E. Collins and S. C. Schaller.
U.W. Comp. Sci. Dept. Report No. 269, Jan. 1976.

