WIS~-CS=~157-72

Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

THE SAC-1 POLYNOMIAL
FACTORIZATION SYSTEM*

by
G. E. Collins and D. R. Musserp

Technical Report #157@

March, 1972

Received: July 21, 1972

Research supported by National Science Foundation grants GJ-~239 and
GJ-30125X, the Mathematics Research Center, the Madison Academic Computing
Center, and the Wisconsin Alumni Research Foundation.

*

Present address: Department of Computer Science, University of Texas,
Austin, Texas 78732.

This report also appears as University of Wisconsin Madison Academic
Computing Center Technical Report No. 30.

TABLE OF CONTENTS

Introduction

1.1, Theoretical background . .,
1.2. Polynomial and list terminology
1.3. Computing time analysis terminology
Modular Arithmetic

Set Operations

Factor Coefficient Bounds

Main Algorithms

. . .

.

5.1. Algorithm PSFREE . . .
5.2. Algorithm PFH1 ., . . .
5.3. Algorithm PFCl . .

5.4. Algorithm PFP1 ., . .
5.5. Algorithm PFZ1 , . .
5.6. Algorithm PFACT1 . . .

Empirical Results . .

References .

Fortran Program Listings .

Index of Algorithms .

.20

.23

.23

.24

.26

.27

.30

.36

.37

s

.65

1. Introduction

The SAC-1 Polynomial Factorization System is a set of Fortran
subprograms for efficient factorization of ;nivariate polynomials
over the integers into polynomials which are irreducible over the
integers (an irreducible polynomial A over the integers is one
which has no factors besides 1,-1,A,-A). The algorithms employed
for this operation are based on the use of mod p factorizations
and constructions based on Hensel's Lemma as suggested by
Zassenhaus, and were originally presented in [MUS71].

The Polynomial Factorization System is a new subsystem of
SAC-1 (for Symbolic and Algebraic Calculation - version 1), a
Fortran-based system, for performing operations on multivariate
polynomials and rational functions with infinite-precision
coefficients. The capabilities of the SAC-1 system are surveyed
in [COL71a] and detailed manuals for previous subsystems appear in
[COL67,COL68a,COL68b,COL68c,COL69a,COL70a,COL70b,COL72]. The
present sybsystem uses subprograms from the List Processing,
Integer Arithmetic, Polynomial, Modular Arithmetic, and the
Polynomial G.C.D. and Resultant Calculation Systems. From the
latter subsystem only the new modular PGCD subprogram is used;
the older (reduced p.r.s.) PGCD subprogram of the Polynomial
System could be used, at a savings in memory requirements, but
at considerable expense in computing time for gcd calculations.

However, often only one gcd calculation will be required during

factorization of a polynomial (see Sections 5.1 and 5.6).

A new COMMON block, TR5, is required and is described in
Section 5.5.

Four of the subprograms included in the system, TAND, TOR,
ILS, and MEMBER, are machine-dependent; the Fortran versions which
are included may have to be revised or rewritten in machine
language for use on other machines, TFor a great many machines,
probably including all those on which SAC-1 has been implemented,
the changes required will be very minor; see Section 3.

1.1. Theoretical Background

The classical solution to the polynomial factoring problem is
Kronecker's algorithm [VDW49, Section 2.57, but this method is
known to be very inefficient. The algorithms used in the Polynomial

Factorization System are based on two recent breakthroughs:

(1) the development of an efficient algorithm for mod p factorization

by Berlekamp [BER68, Chapter 6] and (2) the suggestion by Zassenhaus

[7ZAS69] that one could combine Berlekamp's algorithm and Hensel's

p-adic construction [VDW49, Section 76] to obtain a practical

method of factoring polynomials with integer coefficients.
Berlekamp's algorithm, which is also discussed in [KNU69,

Section 4.6.2], opened the way to the design of factoring algorithms

for polynomials with integer coefficients based on mod p factor-

izations. However, Berlekamp's original algorithm is efficient

only for small primes, so that factorization modulo of a single

prime is generally not sufficient to determine factorizations over

the integers.

More recently, Berlekamp has proposed a new algorithm [BER70]
which appears to be reasonably efficient even for very large primes.
However, while his original algorithm has been implemented in
the SAC-1 Modular Arithmetic System [COL69, Section 3.8], the new
algorithm is quite complicated, and, to date, no implementation
has been published.

Zassenhaus showed, however, that under certain conditions a
construction based on "Hensel's Lemma' could be used to progress

from a mod p factorization to a corresponding factorization modulo

any power of p., Taking pJ

sufficiently large, we can determine
from consideration of all mod pj factorizations all true factor-
izations. The number of mod pj factorizations is the same as the
number of mod p factorizations.

In more detail, let Z denote the ring of integers, and Z/(m)
denote the ring of integers modulo m. Assuming the elements of
z/(m) are represented by the integers 0,1,...,m-1, with addition
and multiplication performed modulo m, there is a unique homomorphism
hm of Z onto Z/(m) such that hm(i) =i for 0 £ i< m. hm induces

a unique homomorphism h; of Z[x] onto (Z/(m))[x] such that h;(a) =

h (a) for a ¢ Z and hw(x) = Xx. hﬁ will also be denoted by h .
m m m m

Given a polynomial C(x) over Z to be factored, is not difficult
to compute a bound b for the coefficients of any factor of C.

(Interestingly, the coefficients of a factor can be larger than

those of C itself. However, bounds can be obtained without

actually factoring C; such bounds are discussed in Section 4).
Let m be an odd integer > 2b and R be the set of integers in the
range - % < n< % .

Then the coefficients of every factor of C lie in R, and
corresponding to any polynomial G in Z/(m)[x] is a unique polynomial
F with coefficients in R such that hm(F) = G. Thus we know that
each factor G of hm(C) uniquely determines a polynomial F with
coefficients in R such that hm(F) = G, Suppose C = AB; then
hm(C) = hm(A)hm(B), and thus if we have some way of enumerating

all of the factors of hm(C), then when we consider the factor

G = hm(A) we obtain F = A. The factors of C can therefore be

determined by considering each factor G of hm(C) over Z/(m) and
testing, by division, whether the corresponding polynomial F 1is
a factor of C.

If m = p, a prime, then Z/(p) is a field called the Galois

field of order p and also denoted by GF(p). 1In this case, hP(C)

has a unique factorization into prime polymomials in GF(p)[x]
from which the set of all factors of hp(C) may be computed. The
complete factorization of polynomials in GF(p)[x] may be accomplished
by means of one of Berlekamp's algorithms, as mentioned above.

If m is not prime, then (Z/(m))[x] is not a unique factor-
ization domain. (Z/(m) is not even an integral domain.)
k|

However, if m = p~, a power of a prime, then certain polynomials

in (Z/(m))[x] do have a '"complete factorization' (see Section 5.3).

A complete factorization mod p'j may be determined from a complete
factorization mod p by means of the Hensel algorithms which are
described in Section 5. Thus m may be taken as a power of a small
prime p, and Berlekamp's original algorithm may be used for the
factorizations over GF(p).

Before describing the details of the algorithms which are
based on these ideas, we define the terminology used in the description
and computing time analyses of algorithms in Sections 1.2 and 1.3,
and describe a number of algorithms for basic operations in
Sections 2, 3 and 4.

1.2. Polynomial and List Terminology

A polynomial over the integers,

n n-1
A(x) = a X + an_lx + ...+ a x + a,

with a # 0 is said to have degree n, leading coefficient a_, and

trailing coefficient (or constant term) ay; we write

deg A = n, 1ldef A a s tlef A = a

0"
By convention, we define

deg 0 = -=0 1ldcf O

0, tlef 0 = 0.

We say A(x) is monic if 1dcf A = 1, positive if 1dcf A > 0,

primitive if the greatest common divisor of agr8ys---na is unity,

and squarefree if it is the product of distinct irreducible factors.
Polynomials are assumed to be represented by list structures

as specified in [COL68b], although little direct use is made of

this fact in the algorithm descriptions given in this report.

However, a number of the algorithms perform some list processing
operations, so we shall define here the notation used to describe
these operations.

A list can be defined simply as a finite sequence, with the

understanding that some of the elements in the sequence may be

other lists. Let A be the list (al,az,...,an); we define
first(A) = ars second(A) = a,, last(A) = a
tail(A) = (az,...,an)
prefix(a,A) = (a,al,...,an)
inverse(A) = (an,...,al)

length(A) = n.
If A = (), the empty list, we define prefix(a,A) = (a), inverse(A) =
(), length(A) = 0.
When the elements of A are integers or polynomials over the
integers, (or their list representations), we define
A =a +a, + ...+ a

1 2 n’
TA = ap ca, ... a.
We define x() = 0 and TQ) = 1. ‘
The following two subprograms provide basic operations on lists

and polynomials.

Algorithm M = LAST(L). L is an arbitrary list. The output is

M = last(L) if L is nonempty, M = 0 if L is empty. (If last(L) is a

list then its reference count is not increased.)

Algorithm T = PTLCF(P). P is an arbitrary polynomial. The output

is T = tlcf(P). (If tlcf(P) # 0, the reference count of the list for

tlef(P) is increased by one.)

1.3. Computing Time Analysis Terminology

The results of computing time analyses of the various algorithms
given in this report are stated in terms of the dominance relation,
instead of the traditional O-notation.

The dominance relation is defined as follows ([COL71]). Let
f and g be real-valued functions defined on some set S. We write
f4 g in case there is a positive real number c such that

f(x) £ c.g(x) for all x ¢ S and we say that f is dominated by g

(or that g dominates f). If £ g and g= f we write f + g and
say that f and g are codominant. Codominance is clearly an
equivalence relation. Note that this definition encompasses functions
of several variables since the elements of S may be n-tuples.

As most of the algorithms to be discussed involve operations
on large integers, computing times are dependent on the size of
these integers. We shall assume that integers are represented in
radix notation with some arbitrary integer base ¢ > 1. By the length
of an integer n we then mean the number of f-digits in its
representation. We shall use L(n) consistently to denote the
length of n, with respect to some implicit base ﬂ. In the SAC-1
Integer Arithmetic System [COL68a], an integer is represented as a
list of its P—digits, where P is generally chosen to be near the
largest machine integer for the particular machine on which the
system is implemented.

For the expression of bounds on the time for operations on

-8 -

polynomials it is convenient to define two norms for polynomials,

as follows. Let A(x) =;Z]?=O aix1 be a polynomial over the integers.
Define
=,
iAjl = 7, {ai], lAJw = max ,ai].
i=0 Ozism

2. Modular Arithmetic

The SAC-1 Modular Arithmetic System [COL69] can perform arithmetic
on polynomials modulo any positive integer m which is a Fortran
integer (single-precision integer). 1In the factoring algorithms to
be described in Section 5 we have need of some operations modulo
an integer m which can be much larger than the bound on Fortran
integers. Thus in this section we describe algorithms for these
operations which take as input an L-integer modulus. ("L-integer"
abbreviates '"list-integer", reflecting the fact that large integers
are represented in SAC-1 by lists of digits.)

Besides the L-integer modulus m, which is assumed to be odd
and > 1, the inputs and outputs for each algorithm are other L-integers
or univariate polynomials with L-integer coefficients. These
polynomials are assumed to have the same list representation as in
the SAC-1 Polynomial System [COL68b]. The inputs and outputs have,
however, the additional property that their coefficients are bounded
by m/2 (except, of course for the inputs to the algorithms which

perform a reduction modulo m.)

Algorithm b = MIMOD(m,a) (Modular algorithm, reduction of an

integer mod m). The inputs are L-integers m and a, where m is

odd and > 1. The output is the unique L-integer b such that b = a (mod m)

and }b[fﬂ m/2. Computing time: 4 L(m)L(a).

Algorithm B = MPMOD(m,A) (Modular algorithm, reduction of a

polynomial mod m). m is an L-integer which is odd and > 1, and A

is an L-integer or a univariate polynomial with L-integer coefficients.
The output is the unique polynomial B with L-integer coefficients
bounded by m/2 and satisfying B = A (mod m). (B is an L-integer if

A is.)

Computing time: 4 (l4+deg A)L(m)L(IA'w).

Algorithm B = MPLPR(m,A) (Modular polynomial list product).

The inputs are m, an odd L-integer > 1, and a list A = (A "’Ar)

-
of polynomials over Z with lAi|m,4 m/2 for each i. The output is
a polynomial B = A (mod m) with (B!ufi m/2.

(1) 1If A is empty set B < | and exit; otherwise, set B<- first(A).
(2) Set A« tail(A). 1If A is empty, exit.

(3) Set B« MPMOD(m,B-first(A)) and go to (2).

Theorem MPLPR(m,A). Assume r > 0, n, = deg Ai’ n = n1+...+nr.

Then the computing time for MPLPR(m,A) is -j(n+1)(n+r)L(m)2.
Remarks: If n, > 0 for all i then n 2 r, hence the time 1is < (n+1)2L(m)2.
If n, = 0 for all i then the time is = rL(m)z.

The proof of Theorem MPLPR, and of other computing time theorems

to follow, is given in [MUS71].

- 10 -

The algorithm given here is superior to the alternative of
applying MPMOD only once to the product /\l . A2 “e Ar’ which has a
total computing time £ r(n+1)(n+r)L(m)2.

Algorithm b = MRECIP(m,a) (Modular algorithm, reciprocal of

a mod m). The inputs are an odd L-integer m > 1 and an L-integer
a bounded by m/2 and relatively prime to m. The output is an L-
integer b bounded by m/2 and satisfying ab = 1 (mod m). The
Extended Euclidean Algorithm [KNU68, p.14] is used.

Computing time: # L(m)z.

Algorithm L = MPQREM(m,A,B) (Modular polynomial gquotient and

remainder). The inputs are an odd L-integer m > 1 and univariate
polynomials A and B with L-integer coefficients bounded by m/2; the
leading coefficient of B must be relatively prime to m. The output
is the list L = (Q,R) where Q and R are the quotient and remainder
obtained upon dividing A by B using arithmetic modulo m; the
coefficients of Q and R are bounded by m/2.

Computing time: £ (k+1)(h-k+1) L(m)2 where h = deg A, k = deg B,

provided h 2 k.

Algorithm MPSPEQ(m,A,B,S,T,U,Y,Z) (Modular polynomial solution

of a polynomial equation). The inputs are:

m, an odd L-integer > 1;

A,B,S,T, univariate polynomials with L-integer coefficients
bounded by m/2, satisfying AS+BT = 1 (mod m), with ldef A relatively
prime to m;

U, a univariate polynomial with L-integer coefficients.

- 11 -

The outputs are Y and 7, univariate polynomials with L-integer
coefficients bounded by m/2 such that AY+BZ = U (mod m) and
deg Z < deg A.
(1) Set W < MPMOD(m,U), V< MPMOD(m,TW).
(2) Using Algorithm MPQREM, compute Q,Z € Z[x] such that
V £ AQ+Z (mod m), deg Z < deg A,
IQl, « m/2, |Z].< m/2.
(3) Set Y « MPMOD(m,SQ+BQ).

Theorem MPSPEQ. Assume h = deg A > 0, k = deg B> O,

n = max(h+k, deg U), deg T< h, deg S < k, u= lU\ and L(n) V1,

1
Then the computing time for Algorithm MPSPEQ is

4 nzL(m)2 4+ n L{m)L(u).

3. Set Operations

In some of the factoring algorithms to be described in Section 5,
a subalgorithm is required for solving the following problem:

given positive integers n S0 (not necessarily distinct) and

1oDgs e
an integer n, for what sets J ={1,...,r} is ZjGJ nj = n? In the
factoring algorithms, the n, are the degrees of the irreducible
factors of a polynomial and the problem is to produce all factors

of a given degree n. 1In this section we present a simple, efficient

solution to the general problem of determining the subsets T,

which we shall refer to as sum index sets.

- 12 -

We first consider the solution to a simpler problem: is

there any set J <« }1,...,rf such that Zﬁej nj = n? This problem

can be attacked by constructing the sumset of n LN which

1M

we define to be the set of all sums ZjCJ nj such that Jc< %1,...,r};

we then have merely to determine whether n is a member of the

sumset of n_,...,n .
1’ Ty

The following algorithm computes the sumset S of n

(0)

eo.,nl,
1’ >'r

(1) Set S(OL‘{O}. (s is the sumset of the empty set)

(2) For j=1,...,r: Set S(jlgw S(jul)(J (S(j-1)+inj3)

(S(J) is the sumset of nl,nz,...,nj).

(3) set se 58,

(-1 (j‘l)j-

In step (2), S +£nj§ is the set {a+ni:a €S
To solve the original problem of finding sum index sets, we

present the following recursive algorithm.

Algorithm G(j,n,J) (Generation of sum index sets). Let

) g g0

NysMy, e eyt be fixed positive integers and S

(1) is the sumset of n

sets such that § cesm for 0 < 1 ¢ r.

(3

(S(O) = {0t.) Given a nonnegative integer j, an integer n € § s

1%

and a set J, this algorithm outputs all sets J' U J such that

(r)

J'e {1,...,j} and 2, =n. (Thus, if n< S , performing

n,
N L

G(r,n,@) causes all sets J<¢ {1,...,r} such that 2,3 My =nto

be output).
(1) If n = 0, output J and exit.

(2) 1If n-n, 3 S(J_l), perform G(j-l,n—nj,{jf v oJ).

(-1

(3) Ifne¢ S , perform G(j-1,n,J). Exit.

- 13 -

The SAC-1 implementation of these algorithms is based on the
idea of representing sets of integers by bit strings. Since the
binary representation of an integer is unique, there is a one-to-one
correspondence between non-negative integers and finite sets of
non-negative integers, defined by

fe> 3 iff 1= 2 427" and g = {Gsmemsd b

We shall write J =4(i) and i =LJ(J) when i<¢—= J,

If i is a non-negative integer, let

1= 2 byt e {44y
r r
rz0
denote its unique binary representation. We define operations 'A"

(logical product) and "v'' (logical sum) on "bits® (binary digits)

in the usual way, and on non-negative integers as follows:

i43=2 Wy 5y 52 5 @y D)y,T
rz0 r >0 r r

With these definitions the following identities obviously hold:

i = 4o n dG,
dav i =dwu dao,
Aoy = 4@+ inl.

Thus the computation of S U (S + {n}) required in the sumset
algorithm discussed above can be performed by computing i v (i-Zn),
where i <> S,

The following algorithm computes k = i A j from nonnegative
integers i and j.

(1) Set ke 0, me1i, ne j, re 1.

(2) Ifm=20ormn=0, exit.

- 14 -

(3) Set pe- mmod 2, me |m/2],
qenmod 2, ne [n/2},
{ 1 ifp=1andq-=1,
t
0 otherwise,
k ¢ rt+k, re 2r, and go to (2).

This algorithm simply determines the bits in the binary
representations of i and j and constructs k accordingly. If the
arithmetic indicated is performed using the SAC-1 Integer Arithmetic
System operations, then i and j may be of arbitrafy size.

Most binary computers have hardware logical operations A and V
for single precision integers, and on such machines the above
algorithm can be made more efficient: Let ¥ be the base used in
SAC-1 system (a positive integer whose base [representation is

n

. n-1 . . .
dnp + dn-lp S do is represented by the list (do’d d);

1reedy
zero is represented by the empty list), and let ‘/7= [1og2€j.

V¢

Replace "2" throughout the algorithm by "2°" and compute t (which
will be a P-digit and therefore will be single-precision) using the
hardware /| operation.

In fact, on a binary machine F will generally be a power of 2

L

and we will thus have 2- ﬁ, so that the algorithm can be rewritten
using list operations in place of the arithmetic operations:

(1) Set ke (), me— 1, ne& j.

(2) Ifm= () orn= (), set k< inverse(k) and exit.

- 15 -
(3) Set pe- first(m), me tail(m),
g<- first(n), ne tail(n),
te-p 4 q (where"A" here is the hardware operation),
ke prefix(t,k),
and go to (2).
The latter algorithm (named IAND) is the one which actually
appears in the program listings in Section 8. This algorithm and
the other logical operation algorithms, whose descriptions follow,
should be considered "primitives', i.e., machine-dependent algorithms
which. for efficiency, must be written especially for a particular
machine, based on the characteristics of the hardware. It is assumed
in this version that a hardware (or software) "," operation is
accessible in Fortran via a function called AND. 1If this is not the
case on a particular machine, AND will have to be programmed.
Other logical and set operation algorithms which are provided in
a similar way are:

Algorithm k = TAND(i,j) (Integer AND) The inputs are non-

negative L-integers i and j; the output is the T.-integer k = i A j.

Computing time: ~min(L{(i),L(7))

Algorithm k = TOR(i,j) (Integer OR). The inputs are non-

negative L-integers i and j; the output is the T.-integer k = iV j.

Computing time: #max(L(i),L(J))

Algorithm j = TLS(i,n) (Integer Left Shift) The inputs are an

L-integer i and a non-negative Fortran integer n. The output is
. . n,
the L-integer j = 2 1.

Computing time: w~L(i) + n.

- 16 -

Algorithm b = MEMBER(n,i). ‘The inputs arc a lortran integer n

and a non-negative L-integer i. The output is a Fortran integer b
such that if n ¢ ;ki) then b = 1; otherwise, b = 0. (b = [i/2?] mod 2.)

Computing time: +min(nt+l,L(1)).

Remarks similar to those for AND apply to the OR function which is

called in IOR. For SAG-1 implementation in which ﬁ is a power of 2, the

only change which might be required to the given Fortran versions of these

algorithms is to change the definition of WL, the base 2 logarithm of ﬁ,
in ILS and MEMBER. TIf F is not a power of 2, then these subprograms

" ll’ or

could be rewritten or the basis of the first algorithm given for "4
hased on a list representation of finite sets of integers.

Algorithm 8§ = SUMSET(N) (Sumset of N). The input N is a list

(nl,nz,...,nr) of positive Fortran integers. The output is a list
S = (10,11,. "lr) of L-integers iy such that Jj(lk) is the sumset
of LIRRRRR for k = 0,...,r. (io = 1, representing {0}, the sumset

of the empty set.)

(1) Set ifF 1, S& (i), N'e# N,

(2) I£fN'" = (), go to (3). Otherwise,
set n « first(N'), i& iV 2ni, prefix i to S, set N'e— tail(N'"),
and repeat this step.

(3) Set S e—inverse(S) and exit.
Theorem SUMSET. Assume r » 0 and n = n +...+nr. Then the

1

T
computing time for SUMSET(N) is'vzz' (n1+...+nj)f n.
j=1
We now come to the implementation of Algorithm G. This algorithm

outputs all "sum index sets" satisfying certain criteria. Here we

shall be generating sum index lists J and we could produce as output

- 17 -

a list of all sum index lists which satisfy the given criteria.
Since, however, we may not use all of the sum index lists generated,
this would be wasteful of time and storage. Thus we shall set up

the algorithm so that each sum index list generated is made available
immediately. Also we shall show the stacking mechanism necessary

to implement recursion in a language such as Fortran which does not
allow explicit recursion.

Algorithm GEN (STACK, N,S,n,k,J) (Generate sum index lists).

The inputs are:
STACK, a first order list (explained below);
N, a nonempty list (nl,...,nr) of positive Fortran integers;
S, a nonempty list (io,...,ir) of L-integers such that

‘i(ik) is the sumset of n for 0 < k ¢ n;

IERREELME
n, a Fortran integer;
k, a Fortran integer satisfying 1 ¢ k ¢ r.
The outputs are STACK and J, a list of indices (jl""’jv)

such that

12 < ... ¢ fkandn +4..4n =m0 ()

h iq i,

With fixed values for N, S and n, repeatedly performing GEN
wi}l yield all lists J = (jl""’jv) which satisfy (*). The
algorithm must be performed initially with STACK = (). When all
such lists have been generated the values of STACK and J will be ().
°

If there are no such lists then STACK = () and J = () will be

output the first time the algorithm is performed.

- 18 -

In the algorithm, by "stack j" we mean "prefix j to STACK",

and by "unstack j" we mean ''set j&— first(STACK), STACK<— tail(STACK)".

(D
(2)

(3)

(4)
(5)

(6)
(7)
(8)

9
(10)

one

If STACK # (), unstack j, set n&-0 and go to (6).

[Initialize.] Set j < length(N), J< (), N'& inverse(N)

S'« inverse(S'), R&~ 10, and, while j > k, repeat the following:
set N'€~ tail(N'), S'<¢ tail(S8') and j<¢ j-1. (Steps (3)-(9)
correspond to the recursive Algorithm G(j,n,J); this step has
initialized to perform the algorithm with j = k and J = ().)
[Output?] 1If n = 0, stack j, and exit. (This exit allows the
current value of J to be used outside the algorithm; the
algorithm may be reentered to generate another sum index list,
provided that neither STACK nor J is altered outside the algorithm,)
[Recursion necessary?] If n-first(N') ¢ Q/ksecond(s')), go to (7).
[Perform G(j—l,n-nj,{j}() J).] Stack N',S',R, set n<— n-first(N')
N' & tail(N'), S'e& tail(S'), R« 6, Je& prefix(j,J), j< j-1,

and go to (3).

Unstack R,S',N', set j& j+l, ne ntfirst(W'), J& tail(d).
[Recursion necessary?] If n ¢ gf(second(s')), go to (R).

[Perform G(j-1,n,J).] Stack N',S',R, set N'«— tail(N'),

S'e— tail(S'), R& 9, j&« j-1, and go to (3).

Unstack R,S',N', set j < j+l, and go to (R).

Exit (this exit is taken when all sum index lists have been
generated).

Computing time: The time for each execution of GEN (producing

sum index list J) is 4 rs, where r = length(N), s = ZN.

- 19 -

The order in which Algorithm CEN produces the sum index
lists will be important in the application made in Section 5.3
(Algorithm PFPLl). TLet J = (jl""’jv) and K = (kl""’kw) be
sum index lists output by the algorithm. Then

jV > kw =» J precedes K (in order of output).

This may be seen from the fact that the algorithm generates all
index lists which end with the highest index before those which do
not, (In fact the order of output could be completely characterized
by saying that the inverses of the sum index lists appear in
reverse lexicographical order).

We conclude this section with a description of an algorithm

which will be used in conjunction with Algorithm GEN.

Given an arbitrary list A = (al,...,am) and a list I = (il""’in)
of integers satisfying 1 = ilé ves F in:f m, we define
AI = (ail,...,ain). (AI = () if A= ()).

Algorithm B = SELECT(A,T) (Select AI from A). The inputs
are lists A and I as described above (the integers in I being Fortran
integers); the output is the list B = AI' Those elements of A

which are lists are borrowed for use in B.

Computing time: A’in + 1.

- 20 -

4. TFactor Coefficient Bounds

In [MUS71, Sec. 3.4] we derived several bounds on the integer
coefficients of factors of a given polynomial over the integers.
Most of these bounds are based on the theory of Lagrange interpolating

polynomials, particularly the following two theorems:

Theorem D. Let L§m)(x), -m ¢ j ¢ m, be the Lagrange interpolating
polynomials for the points -m,...,0,...,m, where m 2 1. (Thus
(m) _ . x - i
A R P 2
1#]
Then m .2

(i7 +
e L] - e i .
' i 'l 241 (m+ N @-HT 7

b. }Lémjl “ b

. 7 L <amw
. o }1 .

j=-m
Theorem E. TLet C € Z[x] and let A be a factor of C of degree k.

Assume C(j) # O for all integers j such that \j‘ﬁ m = rk/Z]. Then

m
a. |al, ¢ 2 |ew] "\ngm)!l;

j==-m
m
b. |A[4 jé_m lc(]s

£

c. iAIlf 4/%m max [C(j)f.
1€ m
The bound given by part b of Theorem E is simplest to compute,

but we shall now show that only a bit more computational effort is

required for the bound in part a.

- 21 -

m .2 . .
Let m be fixed, let P = 1 (i"+1), and let fj = P/[(m+j) ! (m-3)"].
Hees i=1 :

From Theorem D, part a,

(m) -]jl+l
ij ll 3241 fj'

It is easy to compute fj from fj

-1
£ o= P (m-j+1) . m-j+l
j (mwrt3) (mt+j-1) ! (m-j+1) ! M4 J j-1

m
Hence the following algorithm computes b = ij_m lC(j)f
m

(1) set £ T_, (1%+1)/ ()7, b« £-[c(0)] , j& 1.

L§m)l exactly:

j-1

(2) (Now b = 7, lc()) \Ljfm)j, f=f, _.) Ifj>» m, exit.

i=-3j+1 j-1°
(3) Set fe& (m~j+1)f/(m+]),

be b+ (HDE[[-D] + [e(d] 1G5,

j e j+1, and go to (2).

This algorithm is the basis of the bounding algorithm PFBI1
which we shall now describe. The main modification is to arrange
the computation so that only integer arithmetic is required, rather
than rational arithmetic. This gives a somewhat larger bound,
which is nevertheless smaller than that given by part b of Theorem .
It is also necessary to check for cases in which C(i) = 0 for one

or more of the points i used, and to remove linear factors (x-1i)

in such cases.

Algorithm PFBIL (Co,m,C,L,b). (Polynomial factor bounding
algorithm, 1 variable) The inputs are a polynomial CO over 7 of
positive degree and a positive Fortran integer m. The outputs are

a polynomial C over Z, a list L of linear polynomials such that CO = C1l.,

- 9292 -

and a positive IL-integer b such that if A is any factor of C of
degree £ m, then lAIl ¢ b. (Possibly C = CO and L = ().)

(1) Set Ce=C_, L& ().

(2) If deg C = 1, set b« tCll and exit.

(3) Compute C(0). If C(0) # 0, go to (5). Otherwise, set j« O.
(4) Set C(x)< C(x)/(x-j), prefix x-j to L, and go to (2).

(5) Set f< 4, b< £-|C(0)], j< 1.

(6) Mowbz 2. .. |c] [L;7],, £z £ C, = CiL and C(i) # 0

31
for |i| = j-1.) If j»>m, exit.
(7) Compute C(j). If C(j) =0, go to (4).
(8) Compute C(-j). If C(-j) = 0, set j& =-j and go to (4).
(9) Set f& [(m-i+1)E/ (mkD)],
be b+ [(GHDEL|¢-D] + |e|D/G™)]
i ¢ j+1, and go to (6).
Note: The Fortran version of this algorithm is written with
the further assumption that m2 + 1< @, where £ is the base used

in the SAC-1 integer arithmetic system.

Theorem PFBL. Let n = deg C0 and ¥ be a bound on the norm

(’)l) of any factor of CO. Let k be the number (counting multiplicity)
of linear factors x-i of C0 such that |i] ¢« m. Assume L(n) ~ 1,
L{m) ~ 1. Then the computing time for Algorithm PFB1l is

(k+1) m[n2+nL(Y)].

- 23 -

5. Main Algorithms

5.1. Algorithm PSFREE

The first factoring algorithm to be described is an algorithm
for finding the squarefree factors of a given primitive polynomial
over Z. As defined in Section 1.2, a polynomial over Z is squarefree
if it is the product of distinct irreducible factors.

The following algorithm is based on Algorithm 2.4S of [MUS71]
and is similar to Horowitz' algorithm PSQFRE in [COL70a]. Either
algorithm could be used to obtain a squarefree factorization, but
PSFREE is probably somewhat faster when the input is not already
squarefree (if the input is squarefree, the two algorithms perform
essentially the same computation). Also, the inclusion of PSFREE
in the Polynomial Factorization System makes this system independent
of the Rational Function Integration System [COL70a].

Algorithm L = PSFREE(A) (Polynomial squarefree factorization)

The input A is a non-constant, primitive, positive polynomial over Z.

...,At) where A = A A2 At each

The output is a list L = (AI’A 1B Al

2’

Ai is a primitive, squarefree, positive polynomial over Z, deg(At)> 0,

and A A ,...,A

12895 are pairwise relatively prime. (L = (A) if A is

t

itself squarefree).
(1) Set L& (), Be gecd(A,A'), Ce« A/B,

(2) 1If B =1, prefix C to L, invert L, and exit.

2 t-]

(3) Set D¢ gcd(B,C) and prefix C/D to L. (Now B = Aj+1Aj+2 cee AL

- 2% -

C = AjAj+1 ... At’ D = Aj+2 ces At and L = (Aj""’Al)’ where

j is the number of times this step has been executed.)

(4) Set B« B/D, C& D, and go to 2.

The gecd calculations in steps (1) and (3) should be performed
using the fast modular PGCD algorithm of the Polynomial G.C.D. and
Resultant System [COL72], rather than the (reduced p.r.s.) algorithm
in the original Polynomial system. (It should be noted that the

PSQFRE algorithm of [COL70a] erroneously refers to PGCDl; this

should be changed to PGCD if PSQFRE is used instead of PSFREE,)

Theorem PSFREE, Let n = deg(A) and !/ be a bound on [B]l for
any factor B of A. Then the computing time for PSFREE is
4 oL (2.

5.2, Algorithm PFHIL

The algorithm to be described in this section is based on a
modified "Hensel's Lemma' construction due to Zassenhaus. Given
a polynomial over the integers and a factorization modulo some
integer prime p, the algorithm computes factorizations modulo
pz,pa,p8,p16,... in successive iterations until a desired power of
p has been reached. The algorithm is basically similar to omne for
Hensel's construction given in [KNU69, Section 4.6.2].

In the algorithm, we use the notation hp for the induced

homomorphism of Z[x] onto GF(p)[x], as defined in Section 1.1.

Algorithm PFH1 (p,m,C,K,g,E,E,A,B) (Polynomial factorization

based on the Quadratic Hensel Algorithm, 1 variable). The inputs are:

- 25 -
p, an odd positive prime integer (Fortran integer);
m = pj for some positive integer j (m is an L-integer);
C, a primitive positive polynomial over Z;
K,g,g,ﬁ, polynomials over GF(p) such that
h (€)= AB and AS + BT = 1.
The outputs are polynomials A,B over Z such that
C = AB (mod m);
ho(A) = A, hp(B) = B;

|ldef Al < p/2; |Al,, |Bl. < m/2.

il

Note: The conditions hp(A) A and lldcf A|L p/2 imply that

ldef A is a unit mod m and deg A deg‘x.

(1) [Initialize.] Set q<« p and obtain A,B,S,T ¢ Z[x] such that

h (&) = K,...,hp(tr) =T, |Alw< P/2,...,]|T|. < p/2. (This
may be done conveniently using Algorithm CPGARN described in

[coLe9al).

(2) [Done?] 1If q = m, exit. (This exit is taken only if m = p.)

i

(3) [Compute Y,Z.] (Now A,B,S,T € Z[x], C = AB and AS+BT = 1 (mod q),

b (&) = A, b (B) =B, |ldef A] < p/2, [Al., |Blo, [S]w. [Tl = a/20)
Set U ¢ (C-AB)/q. 1If q2> m, set q< m/q, Z.%'MPMOD(&,A),...,

T < MPMOD(q,B); otherwise, set q « q, A,“‘A,...,T <« T. (Now

— -

{&]oy..., |Tle = §/2.) Apply Algorithm MPSPEQ to q,A,B,S,T,U,

h

obtaining Y,Z ¢ Z[x] such that AY + BZ = U (mod q), lY’w < q/2,
|zl < q/2 and deg Z < deg A.

(4) [Compute A*, B* and check for end.] Set A%« AtqZ, B* & BtqY.

- 26 -

(Then C ¢ A¥*P* (mod q&); hp(A*) = K, hp(nw) =‘E, Idef A*!‘ p/2,

and IA*‘W, |B¥ . « qg/2.) If q2 > m (in which case qq = m),

set A& A%, B « B* and exit.

(5) [Compute Yl,Zl.] Set U,<— (A*S+B*T-1)/q. Apply Algorithm

1

MPSPEQ to q,A,B,S,T,U,, obtaining Y ¢ 7[x] such that

1’ 1771
AY,+BZ, = U, (mod q), 'YlI“’ lZlfw < q/2 and deg zZ < deg Z.

(6) [Compute S*,T*,] Set S¥e S-qYl, T & T—qu. (Then A*S*4B*T* =
1 (mod q2), s+, [T#] o < a®/2).

(7) [Advance.] Replace q,A,B,S,T by qz,A*,B*,S*,T*, and go to (3).

Theorem PFH1. Assume in Algorithm PFH1 that deg A > 0,

deg B > 0, deg B < deg X, deg T < deg E, n = deg C, L(n) v 1, and
c = lC{l. Then the computing time for the algorithm is
nZL(n)2 4+ nL(m)L(c).

5.3. Algorithm PFC1l

Given a polynomial C(x) over the integers and a mod p factorization

into several factors, we can obtain, by repeated application of

Algorithm PFH1, a corresponding factorization mod pJ. That is, each

mod pJ factor obtained will correspond to one of the mod p factors.
This factorization is obtained in the following algorithm.

Algorithm F = PFCl (p,m,C,G) (Polynomial factorizationm,

.

]

construction of mod p” factors, 1 variable).

The inputs are:
p, an odd positive prime integer (Fortran integer);

m = pJ for some positive integer j (m is an L-integer);

- 27 -

C, a primitive positive polynomial over Z such that p % ldcf C
and hP(C) is squarefree over GF(p);
G = (Gl,...,Gr) where r 2 2, each Gi is a monic polynomial

over GF(p), of positive degree, and

]

hp(C) (ldcf hp(C)) Gl...G .

r

The output is a list F = (Fl""’Fr) of polynomials over Z such that
C = (ldcf ©) Fl"'Fr {mod m)
hp(Fi> = Gi’ deg Fi = deg Gi’ Fi is monic, }Filw < m/2,
i=1,...,r.

(1) Set C« h(C), 6'< G, Fe ().

(2) Set A< first(G'), G'« tail(G'), B < C/A.

(3) Using Algorithm CPEGCD, obtain S and T over GF(p) such that

AS + BT = 1.

(4) Apply Algorithm PFHL to p,m,C,K,E,E,E and let A and B be the output.

(5) Prefix A to F and set C< B, Ce B.

(6) If tail(G') # (), go to (2).

(7) Set ¢ < MRECIP(m,ldcf C), A< MPMOD(m,c-C). Prefix A to F,
invert F, and exit.

Theorem PFCl. Let n = deg C, ¢ = ‘Cl r = length(G) and

1

assume L(n) » 1. Then the computing time for Algorithm PFCl is

4 rm’Lm)? + n L(m)L(c).

5.4, Algorithm PFP1

If Algorithm PFC1l of the previous section is applied to complete
mod p factorization (factorization into irreducibles) of the given

polynomial C, the corresponding factorization F = (Fl’FZ""’Ft)

- 28 -

obtained is a "'complete factorization mod pi" of ¢, in a sense which
is precisely defined in [MUS71, p. 67]. For the purpose at hand,
it suffices to note that this implies that C = (ldef C) T F(mod m)
and that to every factorization C = AB over the integers there
corresponds a unique subset H of {Fl,Fz,...,Fr} such that
A = (ldcf A) T H(mod pl).

In the statement of the algorithm we use the notation NJ, where
N and J are lists, as defined at the end of Section 3.

Algorithm F = PFP1 (m,C,G,C) (Polynomial factorization of a

primitive polynomial, 1 variable). The inputs are:

m = pj for some positive prime integer p and positive integer j
(m is an L=integer);

C, a non-constant, primitive, positive polynomial over Z
such that m/2 bounds the coefficients of any factor A* of
% = (ldef C) C for which deg A* ¢ |(deg C)/2] and ldef A*| ldef C;

G, a list (Gl,...,Gr) of monic polynomials such that
a, C = (ldef C)TG (mod m),
b. for every factorization C = AB over Z there is a

unique subset H of %Gl,...,Gri such that A = (ldecf A)TH

(these conditions, as noted above, are satisfied by the list
output by PFCl, when applied to a complete factorization of
hp(C) over GF(p));

D, a positive L-integer representing a set of positive integers

which contains the set {d:d = deg A, AvC, 0+« d = [(deg C)/ZJf.

- 29 -

The output of the algorithm is a list T of the prime positive

polynomials over Z such that C = ¥,

(1) Set F<(); d<« 1; Né“”(nl,...,nr), where n, = deg Gi;

T ¢'(t1,...,tr), where ti = tlef Gi’ k<« r « length(G).

(2) Set ¢ &« ldef C, C¥« ¢-C, t* « tlef C*, S e SUMSET(N),

D D A last(S).

(3) I1If d-> [(deg €)/2), prefix C to F and exit. If d t.Z or
k =0, go to (7).

(4) TUsing Algorithm GEN, generate a new list J = (jl,...,jv) such
that 1 = j1 - .. < jV = k and ENJ = d, If all such lists
have already been found, go to (7).

(5) Set te- MPLPR(m,prefix(c,TJ)). If t f t*, go to (4).

(6) Set A%< MPLPR(m,prefix(c,G)). If A% f C*, go to (4).
Otherwise, set B*<- C*/A* and go to (8).

(7) Set d<¢ d+l, ke r and go to (3).

(8) Set A< pp(A¥), prefix A to F, and set C < B*/ldef A.
Construct K = (kl,...,kw) such that 1 * kl R kw £ r,
{31553, N {kl,...,kwf =@ and {i;,...,3 0 Uk, k § =
{1,...,r}. Set G« G, N« N T« T, T 1oV, k*%‘jv—v,

K
and go to (2).

Theorem PFPl, ILet C = C,C,...C , d. =deg C,, 1 =~ d, = ... - d_,
172 e i G
n = deg C, and

fmax{de_l,[de/zj_ﬁ if e > 1.

/{zi[n/zj if e = 1.

- 30 -

Let 4 be the number of products P = ’ﬁ(:] such that] = (]l,... , iv),

1= “ L., < jv < r = length(G), and 1 £ deg P ¢ #, and let T be

I
the number of these products satisfying the additional condition
that MIMOD (m, (ldef C) (tlef P)) is a divisor of (ldecf C)(tlef C).
Finally, let Yy be a bound on [A[1 for any factor A of C. Then
the computing time for PFPl is

4 [(r+1-e)pn® +TH2 +du] L(m)?

+(Vn+J)LmﬁQ)+Jm

A %un L(m)[n L(m) + L(y)]

where J < min(Zr,rp).

5.5. Algorithm PFZ1

In this algorithm, factorizations modulo several primes are
considered, and the prime p which yields the fewest irreducible
factors is chosen for input to the Hensel algorithms. This is
superior to use of a single prime, since it reduces the probability
that the mod p factorization will have many more irreducible factors
than the integer factorization. This is of critical importance
since the computing time for Algorithm PFP1l can be an exponential
function of the number of irreducible factors mod p.

Also, important information is obtained from the mod p
factorizations about the possible degrees of factors of the input
polynomial C. The set of degrees of factors of C must be contained
in the set Dp of degrees of mod p factors for any prime p, and

therefore must be contained in D (3 D N ... 1D where I » R
Py P, P, PPy Py

- 31 -

are the primes for which factorizations are carried out. Dp is

just the sumset of the list of degrees of the irreducible factors

mod p, and is thus easily computed using Algorithm SUMSET (Section 3).
If C is irreducible then we will often find

D ND N ...=140, deg
S {0, deg c}

after a few primes PysPyse e have been tried, thus proving irreducibility
without ever having to apply the Hensel algorithms,

Two algorithms, which are implemented in the SAC-1 Modular
Arithmetic System [COL69a] are used for the mod p factorizations.
CPBERL implements Berlekamp's algorithm and computes the complete
squarefree factorization of any monic squarefree polynomial A over
GF(p). The computing time for CPBERL is = pn3 (assuming L(p) ~ 1).

For the purposes of finding a prime which gives few irreducible
factors and of computing the degree sets Dp, it is not actually
necessary to obtain the complete factorization modulo each of the
primes tested. All that is necessary is a list of the degrees of
the irreducible factors and this can be obtained from the output
of Algorithm CPDDF (distinct degree factorization). Given a monic

squarefree polynomial A over GF(p) to be factored, CPDDF produces a

list ((dl,Al),...,(dS,As)) where the di are positive integers,
d1 < d2 < ... & ds’ and Ai is the product of all monic irreducible
factors of A which are of degree di' Thus A = Al"'As and this is

a complete factorization just in case no two irreducible factors of

A have the same degree.

- 32 -

The computing time for CPDDF is 4 n3 if L(p) ~ 1; hence this
algorithm is practicable for much larger primes than CPBERL. Even
for small primes it appears to be about 20 per cent faster, according
to empirical results. Therefore this algorithm is used to obtain
the lists of the degrees of irreducible factors over GF(p) for
several primes in the first phase of Algorithm PFZ1l, and CPBERL is
applied only to the single prime selected and the reducible factors
output by CPDDF for that prime.

Algorithm F = PFZ1(C) (Polynomial factorization based on

Algorithm 2.7.1Z, 1 variable). The input C is a non-constant,
primitive, squarefree, positive polynomial over Z. Two other inputs,
Y and SPRIME, are required in COMMON block TR5 (COMMON/TRS/NU,SPRIME).
¥ is a positive Fortran integer which specifies the maximum number
of primes for which mod p factorizations should be tried. SPRIME
is a list of small odd positive prime integers (Fortran integers).
This list should be of length no less than, say, min(20,2v), so that
it will not be exhausted in practical application (if the list is
exhausted then the algorithm terminates with no output.) Such a
list can be conveniently generated using subprogram GENPR of the
Modular Arithmetic System.

The output of the algorithm, provided the list SPRIME is
not exhausted, is a list F of the prime positive polynomials over 7

such that C = TF.

- 33 -

(1) [Initialize for factoring modulo » different primes.] Set
SP < SPRIME, RMIN <« deg C + 1, NP < 1, D¢ 21 here
dx = [(deg C)/ZJ. (D represents the set {O,l,...,d*}).
(2) [Get next prime.] If SP = (), stop. Otherwise, set
p &« first(SP), SP< tail(SP).
(3) [hp(ldcf c) = 0?] If p|ldef C, go to (2).
(4) [hP(C) squarefree?] Set E‘%‘hp(C), B gcd(E,E'). If deg B # O,
go to (2). (We have deg B = 0 iff C is squarefree.)
(5) [Apply CPDDF.] Apply Algorithm CPDDF to the monic associate
of E, obtaining a list G = ((dl,Al),...,(dS,AS)), where the di
are positive integers, dl < L. < ds, and Ai is the product
of all prime monic factors of C which are of degree di' (Thus
C = (ldef C) Ap...A_.)
(6) [Construct N = (nl,...,nk), where the n, are the degrees of
the prime factors of E.] Set N< () and for each (d,A) on
G, prefix d to N, (deg A)/d times.
(7) [C prime?] Set r< length(N). If r =1, set F<+ (C) and exit.
(8) [Compute sumset.] Set S < SUMSET(N), D& D a last(5). If
D =1, set F<«— (C) and exit.
(9) [New minimum number of factors?] If r < RMIN, set RMIN<« r,
p*< p, G* « G.
(10) [v factorizations tried?] Set NP< NP + 1. If NP = 7, go to (2).
(11) [Pick prime which yields minimum number of factors.] Set p< p*,

Ge G*, H « ().

- 3 -

(12) [Obtain complete factorization of hp(C).] For each (d,A) on G:
if d = deg A, prefix A to H; otherwise apply Algorithm CPBERL
to p and A, obtaining a list F of the prime monic factors of A,
and concatenate F with H. Then set G ¢- inverse(H).

(13) [Obtain bound.] Set d < LlogzDJ (d is then the maximum of
the degrees in the set represented by D) and apply Algorithm PFB1
to C and d, obtaining C* over Z, a list F of monic linear
polynomials such that C = C*IF and an integer b such that
]Ajl ¢ b for any factor A of C¥* of degree ¢ d. 1If deg C* = 1,
prefix C* to F and exit. Otherwise, set C€ C* and, for each
linear factor A on F, set Kf%“hp(A) and search for and remove
A from G. If length(G) = 1, prefix C to F and exit.

(14) [Compute modulus.] Set m< p, q< 2b(ldef C). While m < q
repeat: set m« mp.

(15) [Apply PFC1l.] Apply Algorithm PFCLl to p,m,C,G, obtaining a

list F(l) = (Fil),...,Fil)) of polynomials over Z such that
C = (1def ©) F{l)... Fél) (mod m),
(1), _ (1 _
hp(Fi)y = Gi’ deg Fi = deg G.s
Fil) is monic, and [Fl£1>ﬁ m/2, 1i=1,...,t.
(1)

(16) [Apply PFP1.] Apply Algorithm PFP1l to m,C,F ,D, obtaining a

(2)

list F of the prime positive polynomials over Z such that

(2)

C = WF(Z). Concatenate F with F and exit.
As we remarked earlier, if C is irreducible (and V is

sufficiently large), often only the first phase of the algorithm,

steps (1)-(10), will be performed. Therefore we give separate

consideration in the following computing time analysis to the two

phases,

Theorem PFZl. a. Let Py < pzfi ee 2 R) be the y smallest
odd positive prime integers such that 129 f ldcf C and C is squarefree
modulo Py for 1« 1 # 7; and ® be the number of odd positive primes = p,-
Also, let ¢ = [C/l, n = deg C, and assume L(p,), L(n)v 1. Then
the computing time for steps (1)-(10) of Algorithm PFZl is
5 9n3 + an + 6nL(c).

b. Let r = min N(pi,C),
1o i<y

where N(p,C) is the number of irreducible factors of C modulo p;
k be the number of linear factors x-i of C such that !iff |n/21;
y and 4 be defined as in Theorem PFPl and m be the integer computed
in step (13). Then the computing time for steps (11)-(16) of
Algorithm PFZ1 is
£ pyn3 + (k+1)n2[n+L(Y)] + min(zr,rﬂ)/unL(m){nL(m) + L(y)].
c. py;ﬁ y + n L{c).
d. L(m) 4 otL(y).
e. Hence the time for steps (1)-(10) is
4 nzL(c)2 + (n3+vn)L(c) + Vn3,
and for steps (11)-(1l5) is
f9n3 + n4L(c) + min(zr,rﬂignz(n+L(r))2.
and thus for the entire algorithm the time is
- (n4+vn)L(c) + vn3 + min(Zr,rﬁ)ﬁnz(n+L(¥))2.

f. If we assume p, 1 (i.e., if we restrict the set of inputs

C to those for which py is no greater than some fixed bound) then

- 36 -

the time for steps (1)-(10) is A n3 + n L(c) and for steps (l1)-(15) is
A min(Zr,r”)unz(n + L(r))z;
the latter bound is a bound for the entire algorithm.
Remark: The assumption in f is actually made in the algorithm
since the list SPRIME of small primes used by the algorithm is of
finite length.

5.6. Algorithm PFACT1

The final algorithm which we shall describe is PFACT1, which
factors an arbitrary nonzero polynomial A over the integers. PFACT1
first factors out the content of A using Algorithm PCPP of the
SAC~1 Polynomial System. The content itself is not factored into
prime integers by the algorithm since this may not be necessary in
some applications., The primitive part of A is factored into
squarefree polynomials using Algorithm PSFREE. Finally, Algorithm
PFZ1 is used to factor each of the squarefree factors of degree 7 1
into prime factors,

Algorithm F = PFACTL (A) (Polynomial factorization, 1 variable).

The input A must be a non-constant polynomial over Z. The output

is a list F = (c,A ..,Ar), where ¢ is the content of A and

142
Al’AZ""’Ar are the unique prime positive factors of pp(A). Note
that ¢ < 0 if ldef A ¢ 0. (c is an L-integer).

(1) Using Algorithm PCPP obtain the positive content c and the
positive primitive part P of A. If ldcf A< 0O, set c<« ~c. Then

set F < (¢), i« 1, Q< PSFREE(P). (Then Q = (Q ""’Qt)’ where

1

- 37 -

P =Q Q%... QE, gcd(Qi,Qj)«u 1 for i # j, and each Qi is a primitive
squarefree positive polynomial.)

(2) Set Ce« first(Q), Q& tail(Q). If deg C = 0, go to (4). If

deg C = 1, prefix C to F, i times.

(3) Set few-Ple(C), and for each E on the list F, prefix E to T,

i times.

(4 Set i< i+l. If Q # (), go to (2). Otherwise, invert F and exit.

Theorem PFACTlI. Let n = deg A, Y be a bound on 'B]w for any

factor B of A, and A = QlQng... QE be the complete squarefree

factorization of A. Then the computing time for Algorithm PFACTL is

t
= tn3L(r)2 + L 7T

i=1 '

there Ti is the computing time required to apply PFZl to Q..

6. Empirical Results

We shall conclude by presenting several tables of empirical
results obtaiied during testing of the algorithms described in this
manual,

Although numerous tests have been conducted, no systematic
empirical study of computing times has been made. The data presented
here, however, are indicative of the behavior of the algorithms and
demonstrate the practicality of their application to polynomials
with large degree and large coefficients.

The tables give the computing times observed when PFACTI1
was applied to '"random" polynomials. 1In order to concisely describe

these polynomials, let us define P(b’dl’dZ""’dk) to be the set of

- 38 -

all polynomials over the integers having k irreducible factors

C15Cys---»Cy such that lci «* band deg C, =d;, 1= 1%k

27 k i

Polynomials in P(b’dl’dZ""’dk) were obtained for the tests by
generating polynomials Ci of degree di’ 1 £ i ¢ k, each with
coefficients randomly chosen in the closed interval [-b+1,b-11],

and forming their product. (Actually a polynomial generated in this

way 1is not necessarily in P(b,d ,dc), since Ci may be reducible.

1’d2""
But the probability of Ci being reducible is very small and none
of factors generated were found to be reducible by PFACTL). Note
that the size of the coefficients of the products obtained in this
way will be about bk.

For example, Table 1 gives computing comes for five polynomials

in P(27,2,3,5); these are polynomials of degree 10 whose coefficients

are about 221 = 2'106 in size. The times are in seconds on a
Univac 1108 computer.

Column I of each table gives the time required to compute
the content and primitive part of the input polynomial and the
squarefree factorization of the primitive part. (All of the
polynomials tested were squarefree). Column II gives the time for
steps (1)-(10) of PFZl, in which the mod p factorizations are
computed. Column IIT gives the time for steps (11)-(15), in which
algorithms CPBERL, PFBl, and PFCl are applied. (Most of thig time

was spent in PFH1). Column IV gives the time for step (16), the

application of PFPLl. The last column shows the total time.

- 39 -

The number in parentheses following the time in Column IT is
the number of different primes for which mod p factorizations were
obtained. For reducible polynomials this was, of course, always
equal to the value V = 5 used during all of the tests. Irreducible
polynomials often required fewer than 5 primes, and thus steps
(11)-(16) of PFZl were not executed. The variation in the number of
primes used in the irreducible cases accounts for the large variations

in the computing times in these cases.

No.

No.

- 40 -

Table I

7
Computing Times for Polynomials of Degree 10 in P(2 ,2,3,5)

I II
0.21 1.69 (5)
0.19 1.61 (5)
0.18 1.44 (5)
0.19 1.48 (5)
0.18 1.95 (5)

ITT

4.79

Table 2

IV

0.42

Total

7.57
8.94
6.83
10.81

8.26

Computing Times for Polynomials of Degree 15 in P(2°,3,5,7)

I 1T
0.29 4.65 (5)
0.26 4.58 (5)

0.27 4.18 (5)

ITT

14.10

19.25

19.40

IV

0.87

0.90

1.17

Total

19.91

24.99

23.85

- /‘]. —

Table 3

Computing Times for (Irreducible) Polynomials in P(27,10)

No. I IT ITT v Total

1 0.16 1.25 (4) -—- -—- 1.41

2 0.18 1.65 (5) 4.25 0.17 6.24

3 0.16 0.22 (1) - - 0.38

4 0.19 0.75 (2) -—- --- 0.94

5 0.18 0.56 (2) -—- - 0.74
Table &

Computing Times for (Irreducible) Polynomials in P(27,15)

No. 1 II I1T v Total
1 0.22 2.80 (4) e - 3.02
2 0.23 4.23 (5) 9.65 0.18 14.29
3 0.22 1.06 (2) --- e 1.28
4 0.24 4.30 (5) 9.85 0.12 14.51

5 0.24 2.48 (3) - - 2.72

- 47 -

Table 5

Computing Times for (Irreducible) Polynomials in P(27,20)

No. I IT ITL v Total
1 0.30 3.09 (2) -—- -—- 3.39
2 0.28 3.56 (3) ——- --- 3.84
3 0.31 6.34 (5) 20.71 0.23 27.36
4 0.32 8.36 (5) 16.28 0.23 25.19
5 0.32 7.87 (5) 18.90 0.32 27.41
Table 6
20

Computing Times for (Irreducible) Polynomials in P(27 ,10)

No, I II III v Total
1 0.16 06.47 (2) - --- 0.63
2 0.17 1.66 (5) 6.03 0.18 8.04
3 0.18 1.45 (5) 8.54 0.22 10.39
4 0.17 0.43 (2) -—— - 0.70

5 0.20 0.59 (2) - - 0.79

- 43 -

Table 7

20

Computing Times for (Irreducible) Polynomials in P(27 ,15)

No. I
1 0.24
2 0.26
3 0.24
4 0.26
5 0.24

II
2.48 (3)
3.12 (5)
1.04 (2)
0.77 (1)

1.32 (2)

ITT

Table 8

Computing Times for (Irreducible)

No. I
1 0.53
2 0.56
3 0.58
4 0.53
5 0.60

iI
5.63 (&)
5.95 (4)
4.53 (4)
2.96 (2)

1.32 (1)

ITT

Iv Total
- 2.72
0.22 21.80
- 1.28
- 1.03

——— 1.56

Polynomials in P(ZZO,ZO)

v Total
- 6.16
- 6.51
——— 5.11
- 3.49

- 1.92

- 4l -

7. References

[BER68]

[BER70]

[COL67]

[coLr68a]

[COL68D]

[con68c]

[cOL69a]

[coL70a]

[coL70b]

[COL71]

[cOoL71a]

E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill,
Inc., New York, 1968.

E. R. Berlekamp, Factoring Polynomials over Large Finite
Fields, Mathematics of Computation, November, 1970.

George E. Collins, The SAC-1 List Processing System,
University of Wisconsin Computer Sciences Department
Technical Report No. 129, July, 1971.

George E. Collins and James R. Pinkert, The Revised SAC-1
Integer Arithmetic System, University of Wisconsin
Computing Center Technical Report No. 9, Nov., 1968.

George E. Collins, The SAC-1 Polynomial System, University
of Wisconsin Computer Sciences Department Technical
Report No. 115, March, 1971,

George E. Collins, The SAC-1 Rational Function System,
University of Wisconsin Computing Center, Technical
Report No. 8, Sept. 1971.

George E. Collins, L. E. Heindel, E. Horowitz, M. T,
McClellan, and D. R. Musser, The SAC-1 Modular Arithmetic
System, University of Wisconsin Technical Report No. 10,
June, 1969,

George E. Collins and Ellis Horowitz, The SAC-1 Partial
Fraction Decomposition and Rational Function Integration
System, University of Wisconsin Computer Sciences Dept.
Technical Report No. 80, February 1970.

George E. Collins and Lee E. Heindel, The SAC-1 Polynomial
Real Zero System, University of Wisconsin Computing
Center Technical Report No. 18, August, 1970.

George E. Collins, The Calculation of Multivariate
Polynomial Resultants, JACM, Vol. 18, No. & (Oct. 1971),
pp. 515-532.

George E. Collins, The SAC-1 System: An Introduction
and Survey, Proceedings of the Second Symposium on
Symbolic and Algebraic Manipulation, Los Angeles,
March, 1971,

[con72]

[KNU68]

[KNU69]

[MUS71]

[VDW49]

[ZAS69]

- 45 -

George E. Collins, The SAC-1 Polynomial G.C.D. and
Resultant System, Computer Sciences Dept. Technical
Report No. 145, February 1972.

Donald E. Knuth, The Art of Computer Programming, Vol I:
Fundamental Algorithms, Addison-Wesley Publishing Co.,

Reading, Mass., 1968,

Donald E. Knuth, The Art of Computer Programming, Vol, II:
Seminumerical Algorithms, Addison-Wesley Publishing Co.,

Reading, Mass., 1968,

David R. Musser, Algorithms for Polynomial Factorization,
Computer Sciences Dept., Technical Report No. 134,
September 1971.

B. L. Van der Waerden, Modern Algebra, Vol. 1, trans. by
Fred Blum, Frederick Ungar Publishing Co., New York, 1949.

Hans Zassenhaus, On Hensel Factorization, I, Journal of
Number Theory 1, 291-311 (1969).

8.

G

C

C

OO0

eleNelzNe Ky

EN

i

2

- 46 -

Fortran Program Listings

SUBROUTINE GEN(STACKoNNsSSONOoKeJJ)
INTEGER STACKoSSySPoR9 TSP XXX
INTEGER FIRSToPFAsPFLITATLOCINY
GENERATION OF suM INDEX LISTSe
IF (STACK oFQe 0) G0 TO 2
CALL DECAP(JySTACK)
NS 0
GO0 TO 6
INITIALIZE.
J 3 LENGTH(NN)
JJg = 0
N = NO
NP = CINVI(NN)
Sp = CINV(SS)
STACK = PFLI(SPoPFL (NPoSTACK))
R =1
iF (’J oLEs Ky GO 70 3
NP = TAILINP)
SP = TAIL(SP)
J 2 y=l
GO0 TO 25
STEPS 3 THROUGH 9 CORRESPOND TO A RECURSIVE PROCEDURE G(JsNsJJ),

~ STgP 2 HAS INITIALIZED 7O PERFORM THE PROCEDURE WITH J=K AND JJ=0),

CHECK IF A SUM INDEX LIST HAS BEEN GENERATED.

IF (N oNEe 0) GO TO ¢

STACK 8 PFA(JoSTACK)

RETURN
THIS EXIT ALLOWS THE CURRENT VALUE OF JJ TO BE USED
OUTSIDE THE SUBROUTINE. THE SUBROUTINE MAY BE REENTERED
TO GENERATE ANOTHER SUM INDEX LISTe PROVIDED THAT
NEITHER STACK NOR JJ IS ALTERED OUTSIDE THE SUBROUTINE.

CHECK IF RECURSION IS NECESSARY,.

TSP = TAIL(SP)

IF (MEMBER(N=F IRST(NP) s FIRST(TSP))eEQe 0) 5O To 7
CALL RECURSIVE PROCEDURE G(J=IlyN=NNG) sPREFIX(JsJJ))e

STACK = PFA(R,PFA(SP,PFA(NP,STACK)))

N = N=FIRST(NP)

NP = TAIL (NP)

§p = TSP

R s 2

JJ = PFA(JoJd)

J 3 Jel

G0 70 3

CaLL DECAP(Ry,STACK)

CALL DECAP(SPySTACK)

CALL DECAP(NPoSTACK)

J = Jel

- 47 -

N 2 Ne¢FIRST(NP)
CaLL DECAP(XXX9JJ)
TSP = TAIL(SP)
C CHECK IF RECURSION IS NECESSARY,
7 IF (MEMBER(NoFIRST(TSP)) +EQe 0) GO TO 99
C CcALL RECURSIVE PROCEDURE G(J=lgeNgJJ)
8 STACK = PFA(R,PFA(SP,PFA(NP,STACK)))
NP = TAIL(NP)
Sp = TSP
R =3
J 8 Jel
G0 7O 3
9 CaLlL DECAP(RySTACK)
CALL DECAP(SPsSTACK)
CalL DECAP{(NP¢STACK)
Jes Jgel
99 GO TO (106649)9 R
C THE FOLLOWING EXIT IS TAKEN WHEN ALL SUM INDEX LISTS
C HAVE BEEN GENERATED,
10 CALL ERASE(STACK)
RETURN
END
IAND
INTEGER FUNCTION IAND(A¢B)
INTEGER A+B
INTEGER CGFIRSTVPFAeTAILoTl9T29T3
C 17 IS ASSUMED THAT BETA (THE BASE OF THE SAC=] INTEGER ARITH,
C_ SYSTEM) IS A POWER OF 2.

1 c =0
Tl = A
T2 = 8

2 IF (Tl (EQe 0 2ORo T2 ¢EQ. 0) GO TO 3
T3 = AND(FIRST(TL) ,FIRST(T2))
C = PFA(T30C)
T1 = TAIL(TY)
T2 = TATIL(T2)
GO TO 2
3 IAND = INVI(C)
RETURN
END
ILS
INTEGER FUNCTION ILS(LsN)
INTEGER PFAsQoRoToWL
1T IS ASSUMED THAT BETA (THE BASE OF THE SAC=1 INTEGER ARITHe
SYSTEM) IS A POWER OF 2,
WL = 33
WL = BASE 2 LOGARITHM OF BETAe
Q@ = N/WL
R = N=Q®WL
T = PFA(2%%Ro0)

sy e N el

- 48 -

ILS = IPROD(L.T)
CALL ERLA(T)

2 IF (Q oEQo 0) RETURN
ILS = PFA(O,ILS)
Q"—?le
GO TO 2
END

I0R
INTEGER FUNCTION IOR(AeB)

INTEGER A¢B

INTEGER BORROWoC,FIRSToPFAsTATL,T19T2,73
C IT IS ASSUMED THAT BETA (THE BASE OF THE SAC=1 INTEGER ARITH.
C SYSTEM) IS A POWER OF 2,
i c = 0

71 = A

72 = B
2 IF (Tl .EQe 0) GO TO 4

IF (T2 (EQe 0) GO YO 3

T3 = QR(FIRSTI(TL)spIRST(T2))

€ = PFA(T3s¢)

T1 = TAIL(TD)

T2 = TAIL(T2)

GO TO 2
3 T2 = T1
6 I0R = INVI(C)

CALL SSUCC(BORROW(T2)oC)

RE TURN

END

FUNCTION LAST(L)
INTEGER ToTAILSFIRST
1 M= |
IF (L. oEQe 0) GO TO &
2 T = TAIL (M)
IF (T oEQe 0) GO ToO 3
M=2T
G0 70 2
3 LAST = FIRST(M)
RETURN
4 LLAST = M
RE TURN
END
MEMRER
INTEGER FUNCTION MEMBER(NoS)
INTEGER NS
INTEGER FIRSToQoRoToTAILe ToWL
C 1T IS ASSUMED THAT BETA (THE BASE OF THE SAC=1 INTEGER ARITH,
€ SYSTEM) IS A POWER OF 2.
WL = 33
C WL = BASE 2 LOGARITHM OF BFTAe

MIMOD

- 49 -

IF (N oLTo 0) GO TO 4
T=8§

Q@ = N/WL

R 2 N=Q®WL

IF (T «EQe 0) GO TO ¢
IF (QeEQs 0) GO 70O 3
T = TAIL(T)

Q = Q=1

GO TO 2

Ty = FIRST(T)/2%«R
MEMBER = Tlw(Tl/2)22
RE TURN

MEMBER = 0

RE TURN

END

INTEGER FUNCTION MIMOD(MoA)
INTEGER MoA

INTEGER RoR1,TR

R = JREM(AsM)

IF (R oEQs) GO 7O 3

IF (ISIGNL(R) +GTo 0) GO TO 2
Rl = ISUM(RyM)

CaLL ERLA(R)

R = Rl

Te = ISUMIRsR)

IF (ICOMP(TRoM) LY. 0) GO TO 25
Ri = IDIF(R,My

CALL ERLA(R)

R 2 R]

CalLL ERLA(TR)

MIMOD=R

Re TURN

END

FUNCTION MPLPR (MyA)
INTEGER A®AAsBoFAs ToBORROWOFIRSTsPFAsPPRODsTATL
IF (A eNEe 0) GO TO 15
MPLPR = PFA(1,0)
RETURN

B ® BORROW(FIRST(A))
AA = TATL(A)

IF (AA EQ. 0) GO TO 4
CALL ADV(FA,AA)

T = PPROD(BoFA)

CALL PERASE(B)

B @ MPMOD (MsT)

CALL PERASE(T)

60 TO 2

MPLPR = B

- 50 -

RE TURN
END
MPMOD
INTEGER FUNCTION MPMOD(MsA)
INTEGER MoA
INTEGER AApBCoDyEsPFASPFLIPVBLsTAILsTYPE
1 8 s 90
IF (A (EW@e 0) GO TO 4
IF (TYPE(A) (NE.) GO TO 15
B=MIMOD (Mo A)
, GO TO 4
1S AA = TAIL(A)
2 CALL ADV(CoAA)
CALL ADV(EoAA)
D=MIMOD (M9 C)
IF (D eNEo 0) B = PFA(EoPFLI(DsB))
IF (AA NE, 0) 60 70 2
3 IF (B oNEe o) B = PFL(PVBL(A)sINV(B))
4 MPMOD = B
RE TURN
ERND
MPQREM
INTEGER FUNCTION MPQREM(MoAsB)
INTEGER MoAoB
INTEGER BDoBLBORROWIBReC oD Y
INTEGER PDEGoPDIFosPFAsPFLsPLDCFoPRED9PSPRODIPVBLsQ
INTEGER RoRDoRLoRRyTEMP, TEMP]
1 R = BORROW(a)
BL = PLDCF(B)
C = MRECIP(M¢BL)
cal.L ERLA(BL)
Q@ = 0
BR = PRED(B)
BD = PDEG(B)
2 RD = PDEG(R)
J = RD=8D
IF (J oLTe 0 oORe R «EQes 0) GO 7O 3
RL = PLDCF(R)
TEMP = IPROD(CsRL)
DsMIMOD (Mo TEMP)
CALL ERLA(TEMP)
TEMP = PSPROD(BRyDgy)
RR = PRED(R)
CALL PERASE(R)
TEMPL = PDIF(RRoTEMP)
R = MPMOD(Ms TEMP1)
CalLl PERASE (TEMPj)
CALL PERASE (TEMP)
CALL PERASE (RR)
CALL ERLA(RL)

- 51 -

Q = PFA(JoPFLI(DsQ))
G0 70 2
3 IF (Q oNEo 0) Q = PFLI(PVBL(A) o INV(Q))
MPQREM = PFL(QoPFL(Rs0))
cal.l. PERASE (BR)
cabl ERLA(LC)
RETURN
END
MPSPEQ
SUBROUTINE MPSPEQ(MosAoBeSeTeUsYsel)
INTEGER MoAoRBoSoTolloYeZ
INTEGER PPRODsPSUMsQs TEMPs TEMPL o TEMP2,Vo W
1 W = MPMOD (Mol
TEMP = PPROD(TsW)
V B MPMOD (Me TEMP}
CaLL PERASE (TEMP)
2 TEMP = MPQAREM(MoVoA)
CALL DECAP (Qe TEMP)
CALL DECAP(Z,TEMP)
CaLl PERASE (V)
3 TEMP = PPROD(Ssl)
TEMPL = PPROD(BoQ)
TEMPE = PSUMI{TEMP»TEMPL)
CaLL PERASE(TEMPY)
CaLL PERASE(TEMP)
CALL PERASE(®Q)
Y & MPMOD (Ms TEMP2)
CALL PERASE (TEMP2)
CaLL PERASE (W)
Reg TURN
END
MRECIP
INTEGER FUNCTION MRECIP (MeX)
INTEGER Mo X
INTEGER AlsA2,A3,BO0RROWIFIRST
INTEGER PFhoQoTAILoTEMPoYloY2,Y3
Al = BORROW (M)
A2 = BORROW(X)
IF (ISIGNL(AZ2) oGTe 0) 60 TO B
TEMP = ISUM{MoA2)
CALL ERLA(AZ)

AZ = TEMP
5 Yis 0
Y2 s PFA(L1:0)
60 70 2
1 TEMP = TQR(AYoA2)

CALL DECAP (Qq TEMP)
CALL DECAP(A3,TEMP)
TEMP = IPROD(Y2:Q)
Y3 = IDIF(Yl,TEMP)

- 52 -

CALL ERLA(TEMP)

call ERLA(Q)

CALL ERLA(AL)

Al = A2

AZ = A3

call ERLA(YL)

vl = v2

v2 s Y3
2 IF (FIRST(AZ) oNEoe 1 oOR. TAIL(A2) +NE. 0) GO TO 1
4 MRECIP = Y2

CALL ERLA(ALl)
CaLL ERLA(AZ)
CALL ERpLAL(Y])
RETURN
END
PFACT}
INTEGER FUNeTION PrFacTy(a)
INTEGER A
xwiﬁeaﬁ BORROWoCoCONTODSEsF oFFoFIRST
GER PCPPy 9 ’
i %gM% 2 pcPPTA?DEGePFL PFZ1oPPePSFREE*QoTAIL? TEMP
CalL DECAP(CONT,TEMP)
caLl DECAP(PPoTEMP)
IF (ISIGNLI(FIRST(TAIL(A))) <GTe 0) GO TO 15
TEMP = INEG (CONT)
caklL ERLACCONT)
CONT = TEMP
15 FF = PFL{CONT#0)
Q@ = PSFREE(PP)
CALL PERASE (pP)
I =1 '
2 CALL DECAP(C,Q)
D s PDEG(C)
IF (D <EQe 0) GO To 28
IF (D o670 1) 60O 24
DE 22 J s 1,1 To
22 FF = PFL (BORROW(C) oFF)
60 70 2
26 F = PFZ1(C)
25 CALL DECAP(E,F)
Do 26 J = 1,1
26 FF = PFL(BORROW(E) oFF)
cALL PERASE (E)
IF (F «NEo 9y GO To 25
28 CALL PERASE(C)
2 Jel
IF (Q oNEe 0) GO TO 2
PFACTL s INV(FF)
RETURN
END

-~ 53 .

PFB]
SUBROUTINE PFBL(COysMeCol oB)
INTEGER CO09CoBoVeToFsAVoV]IPV2pAV]IeAV2sT1,T2
INTEGER BORROWsPDEGsPTLCFePFLoPVBLYPFAsPNePSUBST
, INTEGER FIRSTsTAIL
1 C = BORROWI(CO)
L = 0
B a g
2 IF (PDEG(C) oNEo 1) 6O TO 3
TeTAIL(C)
calL ERLA(B)
BesIABSL(FIRST(T))
TaTAIL(TAIL(T))
IE(TeEQ.0)RETURN
Vi=g
V2s1ABSL(FIRST(T))
B=ISUM(V1oV2)
CALL ERLA(VI)
CALL ERLA(V2)
RE TURN
3 V = PTLCF(C)
IF (V oNEo 0y GO 70 5
T = PFA(1s0)
LF = PFL(PVBL(C)PFL(BORROW(T)sT))
60 TO 41
4 LE = PFL(PVBL(C)sPFLI(PFA(190)sPFA(LsPFL(PFA(=Js0)sPFA(QeQ)))))
41 T 8 PQICHLF)
CALL PERASE(C)
c =7
L = PF%‘LF@L)
GO TO °
g F s 4
T = PFA(F00)
AV = IABSL(V)
CALL ERLA(V)
CALL ERLA(B)
8 = IPROD(AV,T)
CALL ERLACAV)
CaLL ERLA(T)
J s 1
6 IF (J 28T M) RETURN
7 T 3 PFA(Je0)
Vi = PSUBST(T+C)
CALL ERLA(T)
IF (V1 -EG@e o) GO TO 4
8 T = PFA(=Jo0)
V2 = PSUBST(T+C)
CALL ERLA(T)
IF (V2 (NEe 0) GO YO 9
CALL ERLA(VD)

- 54 -

JEWJ
GO TO ¢
9 Ki 3 (MeJ®l) & F
K2 8 M ¢ J
F = K1 /7 K@
IF (Kl oNEo F®#K2) F & Fel
T 3 PFA((Jel)8F,)
Ayl = 1aBSL(v])
caLL ERLATVI)
AVZ = TABSL(V2)
CALL ERLA(V2)
T3 = ISUM(AVIoAvV2)
T2 = IPROD(T1oT)
catL ERLA(AVY)
calL ERLA(AV2)
caLL ERLA(TY)
calL ERLA(T)
T 8 PFA(J®Je190)
Tl = IQR(T2,T)
caLL ERLA(T)
caLL ERLA(F2)
caLL DECAP(T,T1)
CaLL DECAP(T2,71)
IF (T2 .EQe 0) GO TO 95
call ERLA(T2)
Ti = PFA(lo0)
T2 = ISUM(T,T1)
caLL ERLA(T)
7T 8 T2
CALL ERLA(TY)
95 T1 = ISUM(BsT)
calLL ERLA(B)
8 s 7l
CALL ERLA(T)
J 3 J el
GO TO 6
END
PFCy
INTEGER FUNCTION PFC1(PoMsC09G)
INTEGER PoMoC0oG
INTEGER ApAB,B,8B,BORROW,C9CB,CPEGCD,CPMOD,CPQREM,CRECIP,CSPROD
INTEGER FoFIRSToGSePFLIPIP
. INTEGER PLDCFoSBoTAIL9 TRoTEMPoWeW] s XXX
1 ¢ = BORROW(CO)

F e
cg 3 CPMOD(P,C)
2 Gs = @

21 IF (TAIL(GS) -EQ, 0) GO TO 3
AB = FIRST(GS)
TEMP = CPQAREM(PyCBAR)

- 55 -

CALL DECAP (BB, TEMP)
CALL DECAP (XXXsTEMP)
IF (FIRST(AB) oGE. FIRST(BB)) 6o 70 22
TEMP = CPEGCD(PoBByAB)
CALL DECAP(TBoTEMP)
CALL DECAP(SBoTEMP)
6o ToO &3
22 TEMP = CPEGCD(PoAB.BB)
CALL DECAP(SBosTEMP)
CALL DECAP(TBsTEMP)
23 CALL DECAP(WoTEMP)
Wi = CRECIP(PoW)
TEMP = CSPROD(PoSBoeWfo0)
cakL ERLA(SB)
sg = TEMP
TEMP = CSPROD(PoTBoWIo0)
CaLL ERLA(TB)
TR = TEMP
CALL PFH1(PoMoCoABBBISByTBoA(B)
F 2 PFL(ASF)
CALL PERASE(C)
C =228
CALL ERLA(CB)
CB = BB
calL ERLA(SB)
CALL ERLA(TB)
GS = TAIL(GS)
60 70 21
3 Le = PLDCF(C)
LEL = MRECIP(MoLC)
CALL ERLAILC)
TEMP = PIP(CoLCI)
CALL ERLA(LCY)
caLL PERASE(cC)
C = MPMOD (Mo TEMP)
CALL PERASE (TEMP)
PECL = INV(PFL (CoF))
CALL ERLA(CB)
RETURN
END
PFH1
SUBROUTINE PFH1 (PoMeCoABoBBoSByTBoA9B)
INTEGER PoMoCpAB,BBySByTBsAB
INTEGER ASsBSoCPGARNyONE ¢ PDIF s PFA,PFL
INTEGER PIPoPPRODoPSQoPSUMIPVBLoQeQ29SsSSeTo TEMPoTEMPL e TEMP2
) INTEGER TSoUoVoYsY1eZ0eZ1loAT¢BTyST,oTT»QT
i Q = PFA(PsO)
Q2 = 0§
V 8 PFL(PVBLI(C)0)
ONE = PFA(140)

32
34

- 56 -

[}

CPGARN(ONEo QP ABs V)
CPGARN(ONEs0osPyRBY)
2= CPGARN(ONEo0,P,SByV)
2 CPGARN(ONEsQoPsTBoV)
calL ERASE(V)

CALL ERLA(ONE)

&

-4 NH® >

ONE = PFL(PVBL(C)vPFL(PFA(lvogspFA(OoO)))

IF (ICOMP(QoM) oLTe 0) GO TO
caLlL ERLA(Qy)
calL ERLA(Q2)

CAlLL PERASE (ONE)

CaLlL PERASE(S)

CALL PERASE(T)

RE TURN

TEMP = PPROp(A9B)

TEMPL = PDIF(CoTEMP)

CALL PERASE (TEMP)

U = PSQ(TEMPloQ)

CALL PERASE(TEMP1)

Q2 = IPROD(Q,Q)

ic = ICOMP(Q2oM)

IF (IC oLEo p) GO TO 32

QT = 1Q{MoQ)

AT = MPMOD(QTsA)
BT = MPMOD(QT+8)
ST = MPMOD(QTsS)

TT = MPMOD(QToT)

CaLL MPSPEQ(QToAToBTsSTeTTOoUsY»Z)
CALL PERASE(AT)

CaLlL PERASE(BT)

CalLl. PERASE(ST)

caLlL PERASE(TT)

caLl ERLA(QT)

GO TO 3%

CALL MPSPEQ(QoAsB9SeToUsYed)
CALL PERASE(W)

TEMP = PIRP(ZoQ)

CaLL PERASE(2)

AS = PSUM{A,TEMP)

CALL PERASE(TEMP)

TeMP 2 PIP(YoQ)

CALL PERASE(Y)

BS = PSUM(BoTEMP)

CALL PERASE(TEMP)

IF (IC oLTe 0) GO 70 5
call. PERASE(A)

A = AS

CaLlL PERASE(B)

B = BS

G0 TO 21

- 57 -

5 TEMP = PPROD (ASyS)
TEMP]1 = PPRODI(BS:T)
TEMP22 PSUM(TEMP, TEMP1)
CAaLL PEWASE(?EMPE)
CALL PERASE(TEMP)
TEMP = PDIF (ONEs TEMP2)
MUL = PSQ(TEMPsQ)
CaLL PERASE (TEMP2)
CaLlL PERASE(TEMP)
CALlL MPSPEQ(QoAoBoeSesToMULsY1lpZ1)
caLL PERASE (MUl)

6 TEMP = PIP{Y1 Q)
CALL PERASE (Y1)
SS = PSUM(S,TEMP)
CALL PERASE(TEMP)
TEMP s PIP(Z1+Q)
CALL PERASE(Z1)
TS = PSUM(T,TEMP,
CALL PERASE{(TEMP)

7 call. ERLA(Q)
Q@ = @8
CALL PERASE(A)
CALL PERASE(B)
CaLL PERASE(S)
calLl. PERASE(T)
A B AS
B 2 8§
§ B8 §§
T8 7S
G0 70 2
END

PFP]
INTEGER FUNCTION PFP1(MoCCUeGGQeDS)
INTEGER MoCCO0oGGOoDS
INTEGER AeAAeAASeBBSeBORROWaCoCC.CCS.DvDEGSET,FF,FIRST
INTEGER GGoGGJJ9GGSsPDEG,PFAsPFL
INTEGER PZPePLDCFePPPwF09P$QaPTLCF»PVMﬂREMQELECTSS
INTEGER S?ACKeSUMSETeToTAxL;chSoTEMPoTT.TTJJ-R»V

1 ce = BORROW(ccCo)
66 = BORROW(GGO)
FF = 0
D =1
NN@O
77T = 0
GGS = GG
1% CaLl. ADV(AA.GGS)
NN = PFA(PDEG(AA) eNN)
TV = PPFL(PTILCF(AA)oTT)
IF (GBS oNEo, 0) GO 7o 15

35

41

- 58 -

NN = INV(NN)
TY = INV(TT)

R = LENGTH(GG)

K & R

¢ = PLDEF(CC)

€cS = PIP(CCyC)

TCCs = PTLCF (CCS)

§S = SUMSET (NN)

DEGSET = IAND(DS,LAST(SS))
IF (D oLEo PDEG(CC)/2) GO TO 35
FF = PFL(CCoFF)

CalLl. PERASE(GG)

CALL ERLA{(NN)

calL ERASE(TT)

caLL ERLA(C)

caLL ERLA(TcCS)

cALL PERASE (€CS)

cabL, ERASE (SS)

cabkl ERLATDEGSET)

PEPl 3 INVI(FF)

Rg TURN

IF (MEMBER(DyDEGSET) «EQoe 0 «OR, K ¢EQe o) GO TO 7
STACK = 0 '
CALL GEN(STACKoNNgSS,D oK, JJ)
IF (JJ -EQe o) GO TO 7

TTJJ B SELECT(TTodJ)

TEMP s PFL(BORROW(C)»TTUJ)

T = MPLPR (Mo TEMP)

CaLL ERASE(TEMP)

REM = IREM(TECSoT)

CALL ERLA(T)

IF (REM oEQ, 0) GO TO 6
CaLL ERLATREM)

GO TO 41

6GJJ = SELECT(GGoJJ)

TEMP = PFLI(PFL(PVBL(CC)oPFL(BORROWI(C) sPFA(020))) +s6GJJ)
AAS = MPLPR (M, TEMP)

CALL ERASE(TEMP)

BBS = PQ(CCSsAAS)

IF (BBS o867, 0) GO YO 8
CALL PERASE (AAS)

GO 7O 41

D = Del

K = R

Go 70 3

AA = PPP(AAS)

CALL PERASE(AAS)

FFE = PEL(AAGFF)

CALL PERASE(CC)

A = PLDCF(AA)

- 59 -

CC = PSQ(BBSyA)
caLl ERLA(A)
cablL PERASE (BBS)
‘J\Jp = \JJ
Kk = 0
DO 96 I = loR
IF (JJP oEQ, 0) GO YO 95
IF (1 oNE, FIRST(JJPy) GO TO 95
JJUP = TAIL(guP)
60 YO 96

95 KK = PFAL{IoKK)

96 CONTINUE
KK = INV(KK)
V = LENGTH(JY)
JV = LAST(JY)
calL ERLA(JIY
cALL ERASE (STACK)
TEMP = SELECT(GGoKK)
CALL ERASE (66)
GG = TEMP
TEMP = SELECT (NNgKK)
CALL ERASE (NN)
NN = TEMP
TEMP = SELECT(TToKK)
CALL ERASE(TT)
TV = TEMP
R=R =V
K2 gV =V
caLl ERLA (KK)
cALL ERLA(C)
CALL ERLA(TCCS)
calLlL PERASE (CCS)
CALL ERASE(SS)
CALL ERLA(DEGSET)
6o T0 2
END

PFZy
INTEGER FUNCTION PFZ1(CO)
INTEGER CoCO
INTEGER BoBORROW,CBoCBP¢CBLloCMOD2»CMONICYCONCoCPBERL ¢ CPDDF 9 CPDRY
INTEGER CPGCD1,CPMOD,DyDByUFD,DSsFsFD FDFoFIRST F1,69GPGSoGI4H
INTEGER ONEoPoPDEGoPFAsPFCloPFLsPFPLoPONEsPSsQ,R
INTEGER RMINsSPs SPRIMEoSSeSUMSET.TAIL,TEMp
INTEGER CS@FF’@AQAP =]~
COMMON /TRS5/ NUeSPRIME

1 SPp = SPRIME
C = BORROWI(cCO)
RMIN = EDEG(CY ol
gs = 0
Ne = 1

& W

42

46

61

&2

71

- 60 -

ONE = PFA(1,0)

TEMP = ILS(ONEsPDEG(C)/2+1)
DS = IDIF(TEMPoONE)

CALL ERLA(ONE)

calL ERLA(TEMP)

IF (SP ,EQo 0) STOP

CALL ADV(PosP)

IF (CMOD(PoFIRST(TAIL(C))) oEQ.
CB = CPMOD(P,C)

€8P = CPDRV(PyCB)

IF (CBP oNE, 0) GO TO 44
caLl ERLA(CB)

6o 70 2

B 8 CPGEDL(PoCBoCBP)

DB = FIRST(B)

calL ERLA(B)

CcaLlL ERLA(CBP)

IF (DB oNEo 0) GO TO 42
cgl = eMONIec(PscR)

CALL ERLA{CB)

6 = CPDDF(PocBl)

CALL ERLA(CBI)

NN = O

GP g 6

€CALL ADV(DFD,GP)

CALL ADV(D9DFD)

cal.L ADV(FDoDFD)

KD = FIRST(FD)/D

DO 62 K 8 loKD

NN = PFA{DoNN)

IF (GP oNEe 0) GO TO 61
R = LENGTH (NN)

IF (R oNEe 1) GO TO 8
calL ERLATNN)

F 2 PFL(BORROW(C)0)
CALL ERASE(6)

CALL ERASE(GS)

80 70 99

§S = SUMSET (NN)

TEMP = IAND(DSoLAST(SS))
CAaLL ERLA(DS)

DS = TEMP

callL ERASE (SS)

CaALL ERLA(NN)

IF (PONE(DS) -EQ, 1) GO 7O 71
IF (R oGEo RMIN) GO TO 9%
RMIN = R

Pg = P

CALL ERASE(GS)

GS = 6

0) GO TO 2

- 61 -

G0 TO lo
call, ERASE(G)
NP = NPel
_ IF (NP oLEs NU) GO TO 2
11 p = pS
G = GS
_ H =0
12 calL DECAP(DFD9G)
calL DECAP(D,DFD)
call DECAP(FDsDFD)
IF (D oNEe FIRST(FpD)) GO TO 122
H = PFL(FDoH)
GO 70 125
122 FDF = CPBERL(PeFD)
H = CONC(FDFoH)
, CALL ERLA(FD)
125 IF (6 «NEe 0) GO To 12
G = INV(H)
3 D = PDEGIC)/2
301 1g (MEMBER(D,DS) o.EQ. 1) 6O To 1302
D 8 D=l
) G0 TO 1301
1302 CalL PFBR1(CoDoCSeFsB)
IF (PDEG(CS) oNE, 1) GO TO 132
, F =2 PFL{CSoF)
131 cCcALL ERLA(B)
cal.L ERASE(G)
GO TO 99
132 CALL PERASE(C)
c 3 CS
FP = F
133 IF (FP -EQe 0) GO TO 135
call ADV(AoFP)
AP = CPMOD(PoA)

=0
on

H =6

G = PFA(09G)

. GP = G

134 IF (ICOMP(FIRST(H)oAP) oEQe 0) GO TO 1341
GP = H
H = TAIL(H)
IF (H oNEo 0) GO ToO 13¢
6o 70 1362

1341 CALL DECAP(GIoH)
CALL ERLA(GI)
CALL SSUCC(HsGP)
1342 cALL DECAP(GPoG)
CALL ERLA(Ap)
6o To 133
135 IF (TAIL(G) oNEe. 0) GO TO l4
F = PFL(BORROWI(C) oF)

- 62 -

60 TO 131
16 PP = PFA(P0)
M 8 BORROW(pP)
TEMP = IPROD(BsFIRST(TAIL(C)))
Q@ = ISUM(TEMPsTEMP)
CALL ERLA(TEMP)
) CALL ERLA(B)
142 IF(ICOMP(M9Q) oGE., 0) GO TO 145
TEMP = TPROD (MsPP)
CALL ERLA(M)
M = TEMP
Go TO 142
145 Call ERLA(PP)
CALL ERLA(Q)
15 F1 = PFCl(PsMesCo@)
. CALL ERASE(G)
16 F = CONC(PFPl(MoCoF1sDS)oF)
caLlL ERLA(M)
call ERASE(F1)
99 pell = F
CALL ERLA(DS)
caLL PERASE(C)
RE TURN
END
PSFREE
INTEGER FUNCTION PSFREE(A)
INTEGER A0APoBoCoeDsT
INTEGER FIRSToPDERIVePGCD9sPDEG»BORROW,PQoPFL
L=0
1 AP=PDERIV(A,FIRST(A))
B=PGCD (Ao AP)
CALL PERASE (aP)
IF(PDEG(B) «GT0)G0 TO 15
C=BORROW (A)
6o 70 &
15 C=PQ{seB)
2 IF(PDEG(B) oGT0)G0 TO 3
LasINV(PFL(CoL))
CaLL PERASE(B)
GO TO 99
3 D=PGCD(BsC)
IF(PDEG(D) eBT.0)GO TO 35
L=PFL (BORROW (C) L)
60 70 &
35 LePFL(PQ(CoD) oL)
4 IF(PDEG(D) cEQ.0)GO TO 45
T=PQ (ByD)
CALL PERASE(R)
BzT
45 CALL PERASE(C)

99

PTLCF

25

SELECT

42
66

- 63 -

C=D

GO TO 2
PSFREE=L
RETURN
END

INTEGER FUNCTION PTLCF (P)
INTEGER P

INTEGER BORROWoFIRSTsQoRoTAIL,TYPE
Q = P

IF (@ ,E@, 0) GO 7O 25

IF (TYPE(Q) .EQ., 0) GO TO ¢
Q@ = TAIL(Q)

R = TAIL(Q)

IF (FIRST(R) -EQ, 0) GO TO 3
Q@ 3 TAIL(R)

IF (@ oNEo 0) GO ToO 2

PTLCF = 0

RE TURN

PTLCF = BORROW(FIRST(Q))
RETURN

PTLCF = BORROW(Q)

RETURN

END

INTEGER FUNCTION SELECT(Asl)

INTEGER Aol

INTE§EQ ASoBoBORROWsFIRSToPFAoPFLeTAIL o TYPE
Nﬁ

AS
Is
g = 0

IF (AS oEQe 0 oORe IS oEQes 0) GO TO 5
K 8 FIRST(IS)

IF (N oGEs K) GO TO 4

AS = TAIL(AS)

N = Nel

IF (AS oEQe 0) GO TO 5

60 70 3

IF (TYPE(AS) EQ. 1) GO TO 42

B = PFA(FIRST(AS)B)

6 o

A
1

GO0 TO 4%

B = PFL(BORROW(FIRST(AS)) o8)
1S = TAIL(IS)

AS = TAIL(AS)

N = Nel

GO TO 2

SELECT = INV(B)

RETURN

END

- 64 -

SUMSET
INTEGER FUNCTION SUMSET(N)
INTEGER FIRSToPFAoPFLORsSeToTAIL
1 R 2 PFA(150)
S s PFL(Ry0)
NP = N
e IF (NP 4EQe 0) GO TO 3
T 8 ILS(RoFIRST(NP))
R =& I0OR(RsT)
CaLL ERLA(T)
§ =2 PFL(ReS)
NP = TAIL(NP)
Go 70 2
3 SUMSET = INV(S)
RE TURN
END

Index

of Algorithms

Name

GEN .
TAND
TLS .
IOR .
LAST
MEMBER

MIMOD .
MPLPR .
MPMOD .

MPQREM
MPSPEQ
MREGIP
PFACT1
PFB1
PFC1
PFH1
PFP1
PFZ1
PSFREE

PTLCF .

SELECT
SUMSET

Page

. 17
. 15
15

. 15
6

16

9

9

9

. 10
. 10
. 10
. 36
. 21
e o o . . 26
. 24
. 27
. 30
. 23
6

. 19
. 16

- 65 -

BIBLIOGRAPHIC DATA 1. Report No.
SHEET WIS-CS-157-72

3. Recipient’s Accession No.

4. Title and Subtitle

5. Report Date

. . . March 1972
The SAC-1 Polynomial Factorization System 5
7. Author(s) 8. Performing Orpanization Rept.
. . Neo.
G. E. Collins and D. R. Musser ¢
9. Performing Organization Name and Address 10, Project/Task/Work Unit No.

Computer Sciences Department
University of Wisconsin

1210 West Dayton Street
Madison, Wisconsin 53706

11. Contract/Grant No.

GJ-30125X

12. Sponsoring Organization Name and Address

National Science Foundation
Washington, D. C. 20550

13. Type of Report & Period
Covered

14,

15. Supplementary Notes

16. Abstracts

The SAC-1 Polynomial Factorization System is the ninth subsystem of the
SAC~1 System, a Fortran system for performing operations on multivariate
polynomials and rational functions with exact, infinite-precision coefficients.
The SAC-1 Polynomial Factorization System provides efficient algorithms and
subprograms for the factorization of univariate integral polynomials into
their irreducible divisors using, most notably, Berlekamp's algorithm and
Hensel's Lemma. For each algorithm there is given a semi-formal description,
its theoretical computing time, and a Fortran IV program listing. Tables of
observed computing times are given for the factorization of representative
polynomials of degrees up to 20 with coefficients up to 6 decimal digits, the
computing times on a UNIVAC 1108 ranging up to about 30 seconds.

17. Key Words and Document Analysis. 17a. Descriptors

Polynomials, SAC—-1, Factorization, Algebraic Algorithms, Computational
Algebra, Analysis of Algorithms, Irreducibility, Hensel's Lemma, Berlekamp's
Algorithm, SAC-1, Fortran, List Processing, Modular Arithmetic, Set Operations,

Algebra.

17b. Identifiers/Open-Ended Terms

17¢c. COSATI Field/Group

18. Avatlability Statement

19. Sccurity Class (This 21. No. of Papes
Report) =
UNCLASSIELLD 65
20. Security Class (This 22. P’rice
):‘A\ 1854
UNCLASSIFIED

FORM NTIS-35 (10-70)

USCOMM-DC 40028-1271

