" THE SAC-1 RATIONAL FUNCTION
SYSTEM"™

by
George E. Collins

Technical Report #135

September 1971

Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

THE SAC-1 RATIONAL FUNCTION SYSTEM*
by
George E. Collins

Technical Report #]35Jr

*
Research supported by National Science Foundation, grants
GJ-239 and GJ-30125X, The Madison Academic Computing Center,
and the Wisconsin Alumni Research Foundation.

+This report is also distributed as Madison Academic Computing
Center Technical Report #8.

Table of

Introduction
External and Internal Data
The Subprogram Functions .
An Applications Example. .
The Algorithms

Acknowledgements

References:. . « « o ¢ o &

Appendix: FORTRAN Listings

Contents

Structures.

.

15

18

19

20

Page 1

Introduction

The SAC-1 Rational Function System is the fourth subsystem of the
SAC-1 System for Symbolic and Algebraic Calculation. The three prior
subgystems are the List Processing System [4], the Infinite Precision
Integer Arithmetic System [5], and the Polynomial System [6]. Numer-
ous additional subsystems are in progress or are being planned. The
documentations of the previous systems are available upon request,
and familiarity with these will be assumed in the present document

wherever this is convenient.

All SAC-1 subsystems are programmed in FORTRAN in strict accordance
with the A.S.A. specifications [1]. Each subsystem is a collection of
many subprograms whose common purpose is to perform a certain class of
operations appropriate to a specific class of data. The data class for
the present system is the class of all multivariate rational functions
with infinite-precision integer coefficients. Since the rational func-
tions in no variables are included as a special case, the Rational
Function System also provides operations on infinite-~precision rational
numbers. The operations provided are the arithmetic operations (addi-
tion, subtraction, multiplication, division), input and output (includ-
ing conversions between internal and external canonical forms), differ-
entiation, substitution (including numerical evaluation as a special

case) and a few miscellaneous operations.

In the following sections, the system is described at several levels.
Section 2 describes the external and intermnal representations of the
data. Section 3 is a user's description of the subprograms, providing
just that information which is needed to apply the system in most cases.
Section 4 illustrates the use and capability of the system. The example
application chosen is the exact inversion of matrices with rational num-
ber or rational function entries, and this itself is further specialized
to Hilbert matrices and a generalization thereof. In Section 5 we des—
cribe and discuss the algorithms employed to perform the operations and

this includes, to some extent, programming techniques related to the data

2 Page

structures that are used. Finally, an appendix contains FORTRAN
listings of all the subprograms. These may be consulted for a more
detailed study of the algorithms. They may also be used, together
with similar listings in the previous SAC-1 documents, to implement
SAC-1 on any computer with a FORTRAN compiler which fulfills the A.S.A.
standards of [l]. At present, SAC-1 has been or is being implemented
on CDC 1604, CDC 3600, CDC 6400, IBM 360/65, GE 645 and UNIVAC 1108
computers. The author would appreciate notification of other implemen-

tations.

Currently, a fifth SAC-1 system for operations on polynomials with
rational function (or rational number) coefficients is in progress.
This will be followed by a system for exact solution of linear systems
with coefficients which are integers, rational numbers, polynomials or
rational functions. Also in progress are an improved infinite-
precision integer arithmetic system and an improved polynomial system,

embodying faster algorithms for g.c.d. calculation.

2. External and Internal Data Structures

The canonical form of a non-zero rational function in the SAC-1
Rational Function system is a pair (P(Xl,...,Xn), Q(Xl,...,Xn)) such
that P and Q are relatively prime and Q is a positive polynomial in the
sense defined in [6]. P is the numerator and Q is the denominator. As
implied by the notation, P and Q contain the same variables, Xl,...,Xn,
ordered in the same way. However, a polynomial need not depend on all
the variables which it contains; either P or Q, or both, may be of
degree zero in any given variable. In particular, for example, Q may be
independent of all its variables, in which case 0 is isomorphic to an
integer, and (P,Q) is isomorphic to a polynomial with rational number
coefficients. Also, n=0 is allowed, in which case we obtain a rational
number as a special case. Note that P and Q must be relatively prime
in the strong sense that their greatest common divisor is 1 (not merely

a polynomial of degree zero). Since, for any non-zero polynomial Q,

exactly one of the polynomials Q or -Q is positive, it follows that the

Page 3

canonical form is indeed unique, for a given ordering of the variables.
But the ordering of variables for a given rational function may con-

veniently be changed using subprograms provided in the system.

Internally, the rational function (P,Q) 1s represented by the list
(P*,Q*) where P* and Q* are the lists which represent P and Q, respec-
tively, as defined in [6]. It follows that the list representing a non-
zero rational function is easily distinguished from a list representing
an infinite~precision integer by its properties of having a length of
two and having a list as its first element. The rational function zero
is treated as a special case and is represented by the null list, as are
the infinite-precision integer zero and the polynomial zero. By conven-
tion, the location of the null list is zero. So a rational function is

zero if and only if its location is zero.

If an arithmetic operation is to be performed on two rational func-
tions, they must be compatible in the sense that they must contain the
same variables, these variables being ordered the same in each. As a
special case, however, the rational function zero is compatible with
any rational function. Similarly, if one rational function is to be
substituted into another, certain conditions are imposed on the variables
and their ordering. These restrictions result in a system in which the
operations are performed much more rapidly. In most applications the
requirements are naturally satisfied most of the time and where they are

not, the reordering operations may be conveniently applied.

The external form of a rational function is a string of characters
defined in terms of the same canonical form that is used internally.
We have defined in [6] the character string, P, which represents exter-
nally any polynomial P. The character string which externally repre-
sents a non-zero rational function (P,Q) is defined to be the string
Pbbb/bbbQ where each b represents a blank (blanks are actually used, not
b's). The external canonical form of the rational function zero is just

+O.

For input to the system, some slight deviations from external canon-

ical form are permitted. The slash must occur either in the same record

4 Page

3.1

as the last character of P or in the following record. Similarly, the
first character of a'must occur either in the same record as the slash
or in the following record. Apart from these requirements, the number
of blanks on either side of the slash is arbitrary. It may even be
zero. Recall, however, that if P is an integer, its last character is
a blank following the last digit. For a description of the deviations
permitted in the polynomials themselves, consult [6]. All output pro-
duced by the system is in strict canonical form and hence any punched
card output may be used as input at a later time. The external charac-
ter string of any rationmal function always begins in the first character
position of a 72-character record, is continued into as many additional
records as may be required, and the last record is completed with
blanks.

The Subprogram Functions

The 15 rational function subprograms are divided below into five
categories and each subprogram is defined with respect to its function
and mode of use. Except as otherwise noted, subprograms do not redefine
their arguments. Most of the subprograms are of the type function;
these are distinguished below by the specification of a function value

in the description.

Input-Output

The positioning of external character strings on records is specified
above in Section 2. Whether output is printed or punched depends on
the logical unit specified according to local convention, as explained
in [4].

R=RREAD(U). U is a logical unit number. If unit U is initially posi-~
tioned at the first record of a syntactically correct rational function,
this rational function will be read and converted to internal canonical
form as a list, R will be assigned as value the location of this list
(a non-negative integer), and unit U will be left positioned at the

next record following those which contained the rational function. If

3.2

3.3

Page 5

unit U was initially positioned at an end-of-file, R is assigned the
value ~1. If a syntactic error is detected (not all errors are detec-
ted), R is assigned the value -2 and unit U is left positioned at some

indeterminate record.

RWRITE (U,R). U is a logical unit number and R is a rational func-
tion (more precisely, the location of the internal list representation
of a rational function). The rational function is converted to external
canonical form and written on unit U as a sequence of records. Note
that after output, the rational function still exists internally; if it
is no longer needed, it should be erased using RERASE (described below).
Note also that conversion and output proceed simultaneously; as soon as
one record of output is produced it is written out and conversion of the

next record commences. -

Arithmetic

T=RSUM(R,S). R and S are compatible rational functions. T=R+S, a
rational fumction compatible with R and S.

T=RDIF(R,S). R and S are compatible rational functions. T=R-S, a
rational function compatible with R and S.

T=RPROD(R,S). R and S are compatible rational functions. T=R-S, a
rational function compatible with R and S.

T=RQ(R,S). R and S are compatible rational functioms, S#0. T=R/S,
a rational function compatible with R and S.

T=RINV(R). R is a non-zero rational function. T=R'-1

nal function compatible with R.

= 1/R, a ratio-

Differentiation

T=RDERIV(R,V). R is a rational function, V is a polynomial variable
(as defined in [6]). T is the derivative of R with respect to V, a
rational function compatible with R. Note that V need not occur in R;
if it doesn't, the derivative is zero. In particular, R may be a ratio-

nal number.

6 Page

3.4

3'5

Substitution

T=RPSUB(R,P). R is a rational function, say R(Xl,...,Xn). P is a
polynomial P(Xl""’xn’Y)' If P is non-zero, then the numerator and
denominator of R (unless R=0) must be compatible with P, and then T is
the result of substituting R for Y in P, Y being the main variable of
P, and T is compatible with R. If P=0, then T=o.

T=RSUBST(R,S). R and S are rational functions, R(X
S(Xl,...,xn,Y), Y being the main variable of S. T=T(X

l,...,Xn) and

1,...,Xn) is the
result, S(Xl,...,Xn,R(Xl,...,Xn)), of substituting R for Y in S. As a
special case, S may be zero and then T=o. Notice that this operation
is undefined in case the result of substituting R into the denominator

of S is zero. In this case T is given the value ~-1.

Others

RERASE(R). R is an arbitrary rational function. The list represen-
tation of R is erased in the sense of [4]. Thus RERASE has the same
effect as ERASE when applied to a rational function, but RERASE executes
considerably faster since it takes advantage of the known structure of

the list representation of a rational function.

The following two subprograms are useful for reordering the variables
of a rational function and introducing new variables as a means of

satisfying the compatibility conditions for arithmetic and substitution.

L=RVLIST(R). R is an arbitrary rationmal function, say R(X,,...,X).
1 n
L is the list of variables (Xl,...,Xn), Xn being the main variable of
R. If n=o, i.e. if R is zero or a rational number, then L is the null
list.

T=RORDER(R,L). R is an arbitrary rational function, say R(Xl,...,xm).
L is a list of distinct variables (Yl""’Yn) such that each.Xi is some
l""’Yn) which is equi-

valent to R(Xl,...,xm). In other words, T is the rational function

Yj. Hence o<m<n. T is a rational function T(Y

resulting from reordering the variables or R and, possibly, introducing

others. However, R remains intact.

Page 7

The following two subprograms may be used to construct rational func-

tions from polynomials.

T=RPOLY(P). P is an arbitrary polynomial, say (P(Xl,...,Xn). T is
the rational function T(Xl""’xn) equivalent to P(Xl,...,Xn). That is,
P is the numerator of T and the denominator of T is 1 expressed as a

polynomial in (Xl,...,Xn), except that if P=0, then T is just zero.

T=RPOLY2(P,Q). P and Q are compatible polynomials P(Xl,...,xn) and
Q(xl""’xn)’ Q#0. T is the rational fumction T(Xl,...,Xn)-
P(Xl""’Xn)/Q(xl’°"’Xn)‘ Thus if P=0, then T=0. Otherwise, T is the
rational function whose numerator is P and whose denominator is'a, obtain-
ed by reducing P and Q to lowest terms with the further condition that

Q is a positive polynomial.

Note especially the following application of RPOLY2. Suppose we -wish
to read a rational function P/Q, but we do not know whether P and Q are
relatively prime and it would be difficult to determine this by hand.

We cannot use RREAD since we might violate the relative primality
requirement of canonical form. The simple solution is to read P and Q
separately using the PREAD subprogram of [6], then apply RPOLY2. RREAD
does not automatically reduce its inputs to lowest terms since this
would be wasteful, polynomial greatest common divisor calculating being

a relatively time consuming operation.

An Application Example

As an i1llustration of how to use the SAC-1 Rational Function System,
and as a demonstration of its capability, we include here a main pro-
§n; defined by
Hg}Ll/ (i+3-1) , and uses the system to invert it, exactly, and print out

gram, HILB, which generates an n by n Hilbert matrix H

the result. HILB uses a subroutine, INVERT, to perform the inversion.

INVERT is a general matrix inversion subroutine which can invert any
non-singular matrix whose elements are compatible rational functions or
rational numbers. As an example of inversion in the rational function case,
we also wrote a program, GHILB, which generates the generalized Hilbert

matrix G(n), defined by G(i?)z 1/(i+j-X), inverts it, and prints the

8 Page

result. These generalized Hilbert matrices were previously considered

by Engeli, [8], who has used his SYMBAL system to invert some of them.

The two main programs and the inversion subprogram are listed below
at the end of this section. The inversion subprogram, INVERT, has three
arguments, MA, N, and TWON, which are, respectively, a two-dimensional
array name, the number of rows in the array, and the number of columns
in the array. The number of columns in the array must be twice the num-
ber of rows, n. The first n columns of the array must contain the
matrix to be inverted when INVERT is called, and the last n columns
should be unused. INVERT first creates an nxn identity matrix in the
last n columns. The given matrix is then inverted by the Gauss elimina-
tion method, the inverse appearing in the last n columns. During the
inversion the given matrix is gradually altered and after the inversion
all elements in the first n columns are zero. Whenever an element of
the array is altered during the course of the inversion, the previous
element is erased as a list. Of course the values actually stored in
the array are just the locations of the lists which represent the ratio-

nal function matrix elements.

In spite of its rather general usefulness, the subroutine INVERT is
not considered to be a part of the Rational Function System. As men-
tioned in the introduction, a later SAC-1 subsystem will be dedicated to
operations on linear systems with rational function and polynomial entries,
including matrix inversion and solution of systems of equations. This
subsystem will employ several algorithms which are generally much faster
for exact calculation than Gauss elimination over the field of rational
functions. More specifically, the algorithms will employ calculations
carried out in finite fields, GF(p), with prime numbers of elements, as
in [2], [10], and [11].

The HILB program was performed with N=5,10 and 15 on a CDC 1604,
Computing times were respectively 9, 93 and 386 seconds. The GHILB pro-
gram was performed with N=3,4 and 5 with corresponding computing times
of 34,118 and 306 seconds. The need for faster algorithms is thus

apparent. As a sample, a few of the lines of output for the cases N=15

Page 9

and N=5 are reproduced following the programs.

The main programs display several principles and practices which are
worth noting. Every SAC-1 main program must declare the labelled common
blocks TRl and TR2 as in lines 2 and 3. An array in this program called
SPACE, must be declared as in line 4, which will be converted to the
available space list by the subroutine BEGIN, as in line 9, prior to the
call of any other SAC-1 subprogram. All SAC-1 subprogram names and all
variables occurring in the program should be declared type integer as in
lines 5, 6 and 7. SYMLST must be initialized to zero, as in line 8,
prior to any SAC-1 subprogram call. Negligence in attending to any of
these tedious little chores can, unfortunately, result in rather disas-

trous consequences.

Either of these programs can be used as a desirable test by anyone
implementing the system. The last few lines embody what might be termed
a complete erasure test. Each element of the inverse matrix is erased
in statement 12 after it is printed. In the following statement the
symbol list, SYMLST, which is automatically created during input as
explained in [6], is erased. At this point all lists which were created
should be erased and the available space list, AVAIL, should contain
the same number of cells as it did initially. The next three statements
compute and print out the length of AVAIL, in this case 5000 since each
cell contains two words in the CDC 1604 implementation. If this test
fails, the system should be carefully checked over to isolate the source
of difficulty.

10 Page

PRCGRAM HILSB
COMMON /TR1/ AVAIL,STAK,RECORDI(72)
COMMON /TR2/ SYMLST
DIMENSION SPACE(L0CCC) ¢H(15,+30)
INTEGER AVAILSTAKsRECORDy SYMLSTySPACEsH
INTEGER PREADPFAPFLPVBL yPOIF4LENGTH
INTEGER INyOUT» TWUNPOLX9TLeT2yDENSNUM
SYMLST=0
CALL BEGIN(SPACEL1CCCQ)
IN=5C
QuT=51
N=15
TWON=2%N
DO 10 I=1sN
00 10 J=1sN
T1=PFA{1,0)
T2=PFA(I+J-1,0)
10 H{TsJ)=PFL{TLPFL(TZ,0)})
T1=TIMEF(Q)
CALL INVERT(HoNsTWCN)
T2=TIMEF{(Q)
L=(T2-T11)/1000
PRINT 11lstL
11 FORMAT (19HL1TIME FOR INVERSICN,I548H SECUNBS//)
NPLUSLI=N+1
VO 12 I=1sN
CU 12 J=NPLUS1,»TWON

K=J=N
PRINT 13.19K

13 FGRMAT (4HORCWy 1349k COLUMN,I3)
CALL RWRITE(OUTyHCIL 9d))

12 CALL KERASE{HII,J))

CALL ERASE(SYMLST)
L=LENGTH{AVAIL)
PRINT 14.L

14 FORMAT{L6HLILENGTH GF AVAILI17)
STOP
END

10

11

13

1z

14

Page 11

PRGCGGRAM 6HILB

CUMMON /TR1/ AVAILSTAK,RECGRD{72)
COMMON /TRZ2/ SYMLST

DIMENSIGN SPACE(L1CGCCC)H(5,10)

INTEGER AVAILSTAKRECORD, SYMLSTsSPACE#H
INTEGER PREAUPFAsPFLoPVBL yPUILFLENGTH
INTEGER INsUUT s TWCN sPOLXsT19T2+DENsNUM
SYMLST=Q

CALL BEGIN(SPACE,10CCO)

IN=50C

gut=51

N=5

TWON=2%N

POLX=PREAD(IN)

vd 13 I=1eN

00 10 Jd=1sN

T1=PFA{I+J,0)
T2=PFLIPVBL{POLX)sPFLITL,PFA(O,50)))
DEN=PUIF(POLX,T<)

CALL PERASE(TZ)

Ti=PFA(~1,0)

NUM=PFL(PVBL{PCLX) +PFL{TL1+PFA(Q,C)))
H(IeJ)=PFLINUMPFL{LEN,0O)) -
CALL PERASE(PGLX)

Tl=TIMEF(Q})

CALL INVERT(HsNsTWCN)

T2=TIMEF(C)

L=(T2-T1)/1000

PRINT 1l1.iL

FORMAT (1SH1TIME FOR INVERSICN¢IS5s8H SECONDS//)
NPLUS1=N+1

DU 12 I=1sN

DO 12 J=NPLUS1sTwCON

K=J-N

PRINT 13+14K

FURMAT (4HCORGW 13,5k CCLUMN,I3)

CALL RWRITE(OQUT+HEI+d))

CALL RERASE(H(I.J2)

CALL ERASE(SYMLST)

L=LENGTH{AVAIL)

PRINT i4sL

FURMAT(L6HILENGTH OF AVAIL.I7)

STGP

END

12 Page

SUBRGUTINE INVERT(MA,N,TWON)

UIMENSIUN MALINLTWCN)

COMMON /TR1/ AVAIL+STAK,RECGCRD(72)

CUMMON /TR2/ SYMLST

INTEGER AVAIL +STAK,BECORDy SYMLST

INTEGER BURROW,FPFA,FFL

INTEGER RURDERWRVLIST4RINVIRPRCOYROIF

INTEGER RNONEsRFUNE »VL s TWON» TEMP o TEMPZ yRPIVOT
C *% k%% CREATION OF IDENTITY MATRIX*%%%%

IONE=PFA{1,0)

RNONE=PFLIBURRUGW{ICNE) sPFLUICNELQ))

DU 10 I=1.N

IF (MA(Is4l).NE.C) GC TC 11

10 CUNTINUE
GO T0 80
11 VL=RVLIST(MA(L,1))

REFCNE=RUORUER (RNCNE s VL)

CALL RERASE(RNGCNE)

CALL ERASE(VL)

NPLUSL=N+1

DO 15 I=1,N

DO 15 J=NPLUS14TWON

MA(I,J)=0

IF ((N+1)eEQed) MA(I,J)=BORRCWIRFCNE)
15 CONTINUE

CALL RERASE(RFCONE)
C k%R TRIANGULARIZAT ICN%* 3wk ¥k

DU 3€ Jd=1sN

JPLUSI=J+1

IF (MA(JyJ).NE.C) GC TO 30

If (J«EWsN) GU TO EC

CO 2C I=JPLUSL1sN

I (MA(I,J).NE.C) GC TU 21

2C CONTINUE
GG TO 80
21 U0 22 K=J,»TWCN

TEMP=MA[I,K)
MA(I 4K)=MA(J oK)
2e MAlJ»KI=TEMP
39 RPIVOT=RINVIMA(Jsd))
0O 31 I=JsTWCN
TEMP=MACJsI)
MA{Jy1)=RPRODIMALJI).RPIVOT)
31 CALL RERASE(TEMP)
CALL RERASE(RPIVOT)
If (J.EQ.N) GU TO 4C
DO 36 I=JPLUSLN
DU 35 K=JPLUS1,»TWGN
TEMP=MA(L+K)
TEMPZ=RPROUD(MA(IL+J) o MALJIK))
MA{ILT +K)=RDIF{TEMP,TEMP2)
CALL RERASE(TEMP)

35 CALL RERASE(TEMPZ)
CALL RERASE(MA(I.J))
3¢ MA(I+d)=0
c ¥% %X IAGONAL TZATIC ¥k
49 J=N
41 I=d=1

4c CC 45 K=NPLUSL,TWCON

45

5C

80
81

TEMP=MA(1,K)
TEMP2=RPRUL(MA(Lsd) o FA(JsK))
MA(L s KI=RUIF(TEMP, TEMPZ)
CALL RERASE(TEMP)

CALL RERASE(TEMPZ)

CALL RERASE(MA(I,J))
MA(I.,J)=C

I=1-1

IF (I.NE.Q) GO T0 4c¢

J=Jd=-1

IF (JoNEel) GC TO 41
xkEF¥ERASE DIAGUNAL #% %%k
L0 50 I=1sN

CALL RERASEI(MA(I,I))
MA(I,1)=C

RETURN

¥%FXXPRINT DIAGNOST IC *aok ¥k
PRINT 81

FORMAT (l6HLISINGULAKR MATRI X}
ST1GP

END

INVERSE OF 15X15 HILBERT MATRI X,
ROw 15 CCLUMN 1
+116338140C / +1

RUW 15 CCLUMN 2
~-244321005400C / +1

ROwW 15 CCLUMN 3
+12704124888CCC / +1

ROW 15 CUOLUMN 4
-28796316412ECCC / +1

RUW 15 CCLUMN 5
+3563507031C€4CCC / +1

ROW 15 CCLUMN 6
~-270826534362384C0 / +1

ROW 15 COLUMN 7
+1354132611811652C0C / +1

ROW 15 CCLUMN 8
-~4£4274058%06544000 / +1

RUW 15 COLUMN 9
+11171594542448340C(C / +1

RUwW 15 COLUMN 1C
~1503308€566824532CC(C / +1

RUW 15 CCLUMN 11
+2283517043517864384C(/ +1

ROW 15 COLUMN 12
-188757€87585604CCCC / +1

Page

13

14 Page

RCOW 15 CCLUMN 13
+102243855775658C0CC / +1

ROW 15 CCLUMN 14
-3£665634389668(C0C / +1

ROW 15 CCLUMN 15
+4667090627124CC00 / +1

INVERSE CF 5X5 GENERALIZED HILBERT MATRIX

ROW 5 COLUMN 1
(=IX¥% G454 X%%B= 1266 Xx%T+16884X*¥%6-140889X*%5+T761166X*¥%4~2655T764X%%3+5735
T3eX*%%2-6GG9840x%%1 436288 IX%%*]) / (+576X%%0)

ROW 5 COLUMN é
[+ IXFXG=58X* %84+ 14T 4x*¥T=-21 532X¥%6+199129X*¥%¥5=-1208242X%¥%4+4806276X%%3-120
15768X%%2+1737CT720X**1-1088040CX%*%0) / (+144X%%0)

ROW 5 COLUMN 3
(= IX*RG+O2X¥ b= L ES4XRRT+26 TOBX*¥%6-209549X*¥%5+1793498X*%¥4~T78834T76X*¥%3+220
09 2TLX*%2~356G3280X**%1+254016CCXx**(0) / {+96X%%0)

RCW 5 COLUMN 4
(+IX¥RG=COX¥KE+ G20 X% K T-3261L EX¥*0+353229X%%5-25369T4X%%4+12083564X%%3-36
8C2824X%*246503616CXx*%]1-50803200x%x%%0) / {(+144X%%0)

RGW 5 COLUMN £
(= IX*%G+TCX**B=2LTOX* % T+39 L 00X*%6-4512T73X¥%54+3459670X%%4~]1T61T7980X%%3+57
465J00X%%2-108G3€6576X*%*1+9144576CX%%*)) / (+576X%%0)

Page 15

The Algorithms

In the following we describe and discuss the algorithms employed in
the subprograms for the arithmetic operations, differentiation and sub-
stitution. The subprograms for input-output and the miscellaneous
operations are quite trivial and uninteresting, and the listings in the

appendix should be consulted directly.

The algorithms for the arithmetic operations are those which were pre-
viously used by Brown in the ALPAK system [3] and, before that, by
Henrici, [9], in subroutines for single-precision rational number arith-
metic. The differentiation algorithm is also due to Brown. Henrici
introduced his algorithms to avoid single-precision overflow of inter-
mediate results insofar as possible. Brown rediscovered these algorithms
as a means of minimizing the time required to calculate greatest common
divisors in reducing results to lowest terms, and devised a similar
algorithm for differentiation. For convenient reference these algor-
ithms are reproduced below and are followed by a rough analysis of the

extent to which they reduce computing time.

T=RSUM(R,S). If R=0, set T=S; if S=0, set T=R. Otherwise, we have
R=R1/R2 and S=Sl/S2 where gecd (Rl,R2)=l, ged (Sl,Sz)=l, and R, and S,
are positive polynomials. Next compute B=gcd (RZ’ SZ)' If B=1, then
compute T.=R.S,+R,S If T

171727271
From B=1 it follows that gecd (Tl,T2)=l. Also, T2 is a positive polyno

l=0’ then T=0. Otherwise, compute T2=R282.

mial so T=T1/T2 is in canonical form. If B#1, compute 2=R2/B and
SZ=SZ/B’ then T1=R1§§+Si§2' If Ti=0, set T=0. Otherwise, compute
T2=Ri§2. Next, compute C=gcd (fl,B). If C=1, then Téflffz is in can-
onical form. Otherwise, compute Tiifl/c and TZQTZ/C. Then T=T§/T*, is

in canonical form.

T=RDIF(R,S). If S$=0, T=R. Otherwise, S=Sl/S2 and RSUM is applied
to R and —S=(-Sl)/82.

T=RPROD(R,S). If R=0 or S=0, then T=0. Otherwise, we have R=R1/R2
and S=81/S2 where ged (Rl,R2)=l, ged (Sl,Sz)=1, and R, and 52 are posi-
tive polynomials. Compute A=gcd (Rl’SZ) and B=gcd (RZ’Sl)’ Then

16 Page

u /A, §,=8,/A,R,=R,/B and

fé _Flle and géfsz, and if B=1, set

T1=R18l and Té=RZSZ' Then T=Tlffé in canonical form.

w

compute R =R 1=Sl/B, except that if A=]1 simply

=]

,2=R2 and §i=Sl. Finally, compute

T=RQ(R,S). If R=0, set T=0. Otherwise T=RPROD(R,S). If s=5,/8,

in canonical form, then S—1=SZ/Sl or (—Sz)/(—Sl) in canonical form

according as to whether S1 is a positive polynomial or not.
T=RINV(S). S"l is computed as in RQ above.

T=RDERIV(R,V). If R=0, set T=0. Otherwise, we have R=R1/R2 in canon-
ical form. For any F let F” be the derivative of F with respect to V.
Compute Ri and Ré. If Ré=0 and Ri=0, set T=0. If Ré=0 and Ri#O, com-
pute G=gcd(Ri,R2). If G=1, T=Ri/R2 in canonical form. If G#l, compute
T1=Ri/G and T2=R2/G. Then T=T1/T2 in canonical form. If Ré#O, compute
G=gcd (RZ’RZ)' If2G=l, compute T1=RiR2—RlR£. If Tl=0, set T=0, Other-
wise, compute T2=R2. Then T=T1/T2 in canonical form. If G#1, compute
R2=R2/G and R§=R5/G, then T1=R£§2—R1§5. If i&=0, set T=0. Otherwise,
compute T2=R2R2, then H=gcd(Tl,G). If H=1, then Tiflffz in canonical

*~T./H and T*Qfé/H. Then T=T:/T; in canonical

form. If H#l, compute Tl 1 9

form.

A thorough analysis of the Henrici-Brown algorithms above for additionm,
multiplication and differentiation would be a considerable task which will
not be attempted here. Since the three algorithms are of the same general
nature, we shall restrict attention to multiplication, this being the

simplest of the three.

We first consider a one-parameter family of cases in which two ra-
tional numbers are to be multiplied. We assume that R and S are non-zero
and, in fact, that the numerators and denominators of R and S all contain
approximately d digits (the base is immaterial). We will also assume
that A=ged (Rl’SZ) and B=gcd (RZ’Sl) are each approximately td digits
along. As a result of the considerations in [7], it is reasonable to
assume that the time to compute either A or B will be approximately
G(l—t)dz, for some constant G. Also, the time to compute'ﬁl;ﬁz;gl or

52 will be approximately Dt(l—t)dz, for some constant D. The time to

Page 17

compute T& or T, will be approximately M(l—t)2d2, for some constant M.
So the total computing time will be [2G(l—t)+4Dt(1-—t)+2M(l—-t)2]d2
approximately. If the same approximations are used to estimate the time
for the classical multiplication algorithm (T1=R131’ T2=R232,A= ged
(,,T,),T,=T,/A,T,=T,/A), we obtain [4G(1-t)+4Dt (1-£)+2M]d> as the total
computing time. This shows that the Henrici-Brown algorithm is always
faster for this class of problems. In general, the constant G will be
appreciably larger than either M or D. This being so, the Henrici-Brown
algorithm will be approximately twice as fast as the classical algorithm

for the class of problems considered.

Now suppose that R and S are univariate rational functions. Then we
know that most of the computing time for either algorithm will be
devoted to g.c.d. calculation, since the time to compute the g.c.d. of
two n-th degree polynomials is approximately proportional to n4 by [71.
It follows easily from this that the Henrici-Brown algorithm will be’
approximately eight times as fast as the classical algorithm in this

case.

As the number of variables in our rational functions increase, it is
fairly clear that the advantage of the Henrici-Brown algorithms will in-
crease. While this analysis is far from definitive, we think it provides
strong reasons for attaching considerable importance to the Henrici~Brown

algorithms.
Now we consider the substitution algorithm.

T=RPSUB(R,P). If P=0, T=0. If R=0, PSUBST is used and the result
is converted to a rational function using RPOLY. Otherwise, the sub-

stitution is effected by Horner's method.

T=RSUBST(R,S). If S=0, then T=0. Otherwise, let S=Sl/82. V=RPSUB
(R,Sz) is computed. If V=0, the substitution is undefined and T=-1.
Otherwise, U=RPSUB(R,S,) is computed. If U=0, then T=0. Otherwise,
T=U/V, which is computed by RQ.

18 Page

7.

Acknowledgements

Development of the SAC-1 Rational Function System has been supported
by the University of Wisconsin Computing Center through funding by the
Graduate School and the Wisconsin Alumni Research Foundation. L. E.
Heindel, Ellis Horowitz and M. T. McClellan were all responsible for
significant portions of the programming and testing. Their sustained
interest and assistance have contributed significantly to the continuing
development of SAC-1l. I would also like to express my appreciation to
all those persons, at the University of Wisconsin, throughout the United
States, and in many other countries, who in numerous ways have expressed
their interest in the earlier portions of the system, and in the ob-

jectives of those portions yet to come.

10.

11.

Page 19

References

American Standards Association, A Programming Language for Information
Processing on Automatic Data Processing Systems, C.A.C.M. Vol. 7, No.
10 (October 1964), pp. 591-625,

Borosh, I. and Fraenkel, A.S. Exact Solutions of Linear Equations with
Rational Coefficients by Congruence Techniques. Math. Comp:, Vol. 20,
No. 93 (January 1966), pp. 107-112.

Brown, W. S., Hyde, J. P., and Tague, B. A., The ALPAK System for
Nonnumerical Algebra on a Digital Computer - II:; Rational Functions
of Several Variables and Truncated Power Series with Rational Function
Coefficients. B.S.T.J. Vol. 43, No. 1 (March, 1964), pp. 785-804.

Collins, G. E. The SAC~1 List Processing System. University of Wisconsin
Computing Center Report, July 1967.

Collins, G. E. The SAC-1 Integer Arithmetic System. University of
Wisconsin Computing Center Report, September 1967.

Collins G. E. The SAC~1 Polynomial System. University of Wisconsin
Technical Reference 2: 1968, January 1968.

Collins G. E. Computing Time Analyses of Some Arithmetic and Albegraic
Algorithms. University of Wisconsin Computer Sciences Technical Report
36, July 1968.

Engeli, M. E. Achievements and Problems in Formula Manipulation. In-

vited Paper for IFIP Congress, August 1968.

Henrici, Peter. A Subroutine for Computations with Rational Numbers.

J.A.C.M,, Vol. 3, No. 1 (January 1956), pp. 6-9.

Newman, Morris. Solving Equations Exactly. Journal of Research N.B.S.,
Vol. 71B, No. 4 (October-December 1967), pp. 171-179.

Takahasi, H. and Ishibashi, Y. A New Method for "Exact Calculation" by
a Digital Computer. Inf. Proc. in Japan, Vol. 1 (1961), pp. 28-42,

Page 20 Appendix: FORTRAN Listings

INTEGER FUNCTION RDERIV(R»sS)
INTEGER AlBsA2BsGsHsHOLDLsHOLD2sPsPLlsP2sP1PsP2P +sP2BsP2BPsRsTEMP»S
INTEGER BORROWsPDERIVsPFLsPGCDsPONESPPRODSPQsPDIF
P=R

G=0

RDERIV=0

TEMP=35

IF (PeEQe0) RETURN

CALL ADVI(P1sP)

CALL ADV(P2+P)
P1pP=PDERIV(P1sTEMP)
P2P=PDERIV(P2sTEMP)
P28=BORROW(P2)
P2BP=BORROW(P2P)

IF (P2P+EQeO) GO TO 4
G=pGCD(P2sP2P)

TEMP=PONE (G)

IF (TEMP.EQel) GO TO 1
P2B=PQ(P2sG)

CALL PERASE(P2)
P2BP=PQ(P2PsG)

CALL PERASE(P2P)

1 HOLD1=PPROD(P1PsP2B)
HOLD2=PPROD(P1sPZBP)
CALL PERASE(P1P)

CALL PERASE(P2P)
A1B=PDIF(HOLD1sHOLD2)
A2B=PPROD(P2sP2B)
CALL PERASE(HOLDI1)
CALL PERASE(HOLDZ2)
CALL PERASE(P2B)

CALL PERASE(P2BP)
P1=BORROW(A1B)
P2=BORROW(AZB)

IF (Al1BeEQe0O) RETURN
IF (TEMP+EQel) GO TO 2
H=PGCD(ALB»sG)

6 TEMP=PONE(H)

IF (TEMP.EQel) GO TO 3

P1=PQ(A1BsH)

P2=PQ{A2BsH)

CALL PERASE(A1B)

CALL PERASE(AZB)

CALL PERASE(H)

RDERIV=PFL(PLsPFL(P2+0))

CALL PERASE(ALB)

CALL PERASE(A2B)

CALL PERASE(G)

RETURN

4 IF (P1lPeNEeO) GO TO 5
CALL PERASE(P2B)

CALL PERASE(P2BP)
RETURN

MNoW

Page 21

5 P1=P1P
CALL PERASE(PZP)
CALL PERASE(P2B)
CALL PERASE(P2BP)
A18=BORROWI(P1)
A2B=BORROW(P2)
H=pGCD(A1BsP2)
GO TO 6
END

INTEGER FUNCTION RDIF(X9Y)
INTEGER PsQeQlsQ29Z9XsY
INTEGER BORROWsPFLsPNEGsRSUM
P=X

Q=Y

IF (QeNEo0O) GO TO 1
RD1F=BORROWI(P)

RETURN

CALL ADV(QlsQ)

CALL ADV(Q2-,Q)

Q=pPNEG(QL)
2=pFL{QsPFL(BORROW{Q2)50))
RDIF=RSUM(Ps2)

CALL RERASE(Z)

RETURN

END

SUBROUTINE RERASE (X)
INTEGER XsRsPsN
INTEGER COUNT

R=X

IF (ReEQe0) RETURN
N=COUNT(R)-1

IF (NesEQeO) GO TO 1
CALL SCOUNT(NsR)
RETURN

CALL DECAP(PsR)
CALL PERASE(P)

IF (ReNEeO) GO TO 2
RETURN

END

22 Page

INTEGER FUNCTICN RINV(R)

CUMMON /TR1/AVAIL,STAK,RECUORDI(72)
CUMMON /TR2/SYMLST

INTEGER AVAIL +STAKyRECUORD, SYMLST
INTEGER DEMyNUM,R,RAT

INTEGER BORROWPFL+FNEGsPSIGN
RAT=R

CALL ADVINUM,LRAT)

CALL ADV(DEM4RAT)

IF (PSIGN(INUM).EQ.—1) GO TO 1
NUM=BORRLW(NUM)

CEM=BORROW(DEM)
RINV=PFL{DEMPFLINUN+0))

RETURN

NUM=PNEG(NUM)

UEM=PNEG(DEM)

GO TG 2

END

INTEGER FUNCTICN RCROER{(R, L)
CLMMON /TR1/AVAILSTAK,RECORD(T2)
CUMMON /TRZ/SYMLST

INTEGER AVAIL ySTAK,RECORD, SYMLST
INTEGER CLUEM,DEM,L,NUM,R,RAT,VARS,DNUM
INTEGER PFLyPNEGyPCRDERsPSIGNyBORRUMW
RAT=R

VARS=L

IF (RAT.EQ.Q) GO TOQ ¢

IF (VARS.EQ.Q) GO TG 3

CALL ADVINUM,RAT)

CALL ADVIDEM,RAT)
NUM=PCORDER(NUM, VARS)
DEM=PGRLUER(DEM,VARS)

IF (PSIGN(DEM).NEe=1) GO TO 1
LNUM=NUM

NUM=PNEG(NUM)

CALL PERASE(CNUM)

LCEM=CEM

DEM=FNEG(DEM)

CALL PERASE(DDEM)
RCRDER=PFL{NUMPFL(LCEM,0))

RETURN

RCRDER=0

RETURN

RCRDER=BORROW(RAT)

RETURN

END

INTEGER FUNCTICN RPCLY(P)

COMMCN /TR1/AVAIL STAK,RECORD(T72)
CCMMCON /TR2/SYMLST

INTEGER AVAIL STAK,RECURD, SYMLST
INTEGER DEM,DUMyNUM,4P,VARS
INTEGER BURRUW¢PFAPFLsPCRDER,PVLIST
NUM=P

IF (NUM.EW.0) GU TO 2
VARS=PVLIST{NUM)

CEM=PFA(1.,0)

IF (VARS.EQ.3) GO TC 1

CUM=CEM

CEM=PCRUDER{DEM, VARS)

CALL PERASE(DULM)

CALL ERASE(VAKS)
RPOLY=PFL{BURROW(NUM)+PFLIDEM,0))
RETURN

RPCLY=D

RETURN

END

INTEGER FUNCTICN RPGLYZ2(PL,P2)
CCMMCN /TR1/ZAVAIL+STAK,RECORD(T72)
COMMON /TRZ2/SYMLST

INTECER AVAIL ¢STAKoRECURD SYMLST
INTEGER CEMoDUMCCD «NUMoPL P2

INTEGER BORRGWoPCCD oPFL PNEGyPCNEPQsPSIGN

NUM=P1

DEM=P2

IF (NUM.NE.O) GU TO 1
RPOLYZ=0

RETURN

GCL=PGLLINLM,DEM)

IF (PCNE(GCD}.NE.1) GO TQO 2
NUM=BURROW(NUM)
DEM=BURROW(DEM)

GO TO 3

NUM=PQR{NUM,GCD)
VEM=PG{UEM,GCU)

CALL PERASE(GCD)

[F (PSIGN(DEM).EQ.1) GO TU 4
DUM=NUM

NUM=PNEG (NUM)

CALL PERASE(UULM)

CUM=DEM

UEM=PNEG(CEM)

CALL PERASE(DUM)
RPOLY2=PFL{NUM,PFL{LCEM,2))
RETURN

END

Page

23

24 Page

INTEGER FUNCTIGN RPROD{X,Y)
COMMON J/TR1I/AVAIL +STAK,RECURD{(72)
CUMMCN /TR2/SYMLST
INTEGER AVAIL STAK+RECORDy SYMLST
INTEGER PyPleP1ByP2+P2ByQsQ1+C1B+1Q2+Q2BsAyTEMP+X,yY
INTEGER BORROWPFL yFGCDyPONESPPRCDyPQ
P=X
=Y
RPROC=Q
IF {(P.NE.O) GO TO 1
RETURN
1 IF (Q.NE.O) GO TO 2
RETURN
2 CaLL ADVI(PL.P)
CALL ADVH(P2,P)
P1=BORRCW{PL)
P2=BCRROW(P2)
CALL AuLVIQLl.Q)
CatlL ADVIQZ.Q)
C1=BGRROW(QL)
Jd2=BORROW(Q2)
A=PGCB(PLl+Q2)
P1B=P1
«28=62
TEMP=PUNE(A)
IF (TEMP.EQ.1) GO TC 3
P1B8=PQ(PLlyA)
Q2B=PQ(Q2+A)
CALL PERASE(P1)
CALL PERASE(GQZ)
3 CALL PERASE(A)
PzB=P2
QlB=¢l
A=PGCD(PZ2,Q1)
TEMP=PONE{A)
IfF (TEMP.EQ.1) GO TG 4
P2B=PG(PZ2sA)
QlB=PL(Q1l,A)
CALL PERASE(PZ2)
CALL PERASE(WQI1)
4 CALL PERASE(A)
P=PPROD(P1B,Q1B)
CALL PERASE(P1B)
CALL PERASE(Q18)
C=PPRUD(PZB+w2B)
CALL PERASE(PZB)
CALL PERASE(QZB)
RPROD=PFL{P.PFL(Q,.RFROD))
RETURN
END

Page 25

INTEGER FUNCTION RPSUB(RL1.P1l)
CCMMCN /TR1/AVAIL,STAK,RECORUL(T72)
COMMUN /TR2/SYMLST

INTEGER AVAIL +STAK,RECORDy SYMLST
INTEGER ReRLsP+PLyPIPJsFLAGHDUMP,IP,LEJ
INTEGER RPOLYoRSUMRPROD,PSLBST
R=R1

P=P1

RPSUE=O

IF (P.EQ.0) RETURN

IF (R.EQ.0) GO TO 5

FLAG=D

CALL ADVI(DUMP,P)

CALL ADV(PI.P)

CALL ADV(IP.P)

IF (P.NE.O) GO TU 1

FLAG=1

GO T0 2

CALL ADVA(PJ,P)

CALL ADVIEJ4P)

[P=IP~-EJ

CUMP=RPSLE

PI=RPCLY(PI)
RPSUB=RSUM(DUMP +PI)

CALL RERASE(PI)

CALL RERASE(DUMP)

[F (IP.EQ.0) RETURN

CO 3 I=1,IP

CUMP=RPSLB

RPSUB=RPROD{DBUMP 4R)

CALL RERASE(UUMP)

[F (FLAG.EW.1) RETURN

PI=PJ

IP=tJ

GG TC 6

DUMP=PSUBST(RP)
RPSUB=RPOLY(DUMP)

CALL PERASE(DUMP)

RETURN

END

26 Page

INTEGER FUNCTION RQ({XsY)
CCMMON /TR1/AVAILsSTAK,RECORD(72)
COmMMON /TR2/SYMLST
INTEGER AVAIL ¢ySTAK+RECORDy SYMLST
INTEGER P+QvsQLle&2s TEMP4X,Y
INTEGER BURRUWPSIGNsPNEGyPFLyRPROD
P=X
=Y
IF (P.NE.O) GU TO 1
RE=J
RETURN

1 CALL ADV(Q1.Q)
CALL ADV(WZ2+Q)
G1l=BCRROW(QL)
w2=BURROW(QZ2)
TEMP=PSIGN(QL)
IF (TEMP.NE.-1) GO TC 2
CALL PERASE(QL)
G1=PNEG(GQL)
CALL PERASE{(QZ2)
Q2=PNEG(G2)

2 W=PFLIJZ2+PFL(QLYO))
RG=RPROD(P,4Q)
CALL RERASE({(Q)
RETURN
END

10
11

INTEGER FUNCTICN RREAU(U)
COMMON /TR1/AVAIL «STAK,RECORD(72}
CCMMON /TRZ/SYMLST

INTEGER AVAILL oSTAKyRECORD, SYMLST
INTEGER IT9dsKaPsdeR U
INTEGER PFL

CALL READ(U.RECCRD)
w=RECCRD(1)

I=1

CALL PREADS(QU.1)

[F {QoEQe~loalUReQotEQe—2.0R-Q.EQ-0) GU TO 11
P=Q

J=0

IF (I.LT.72) GO TO 2

CALL REAC{U,KRECCRD)
L=RECORD(1)

IF (d.EQe—-1) GU TO 1C

1=3

J=1

I[=1+1

Q==-2

L0 4 K=l,72

R=RECCRDI(K)

IF (R.EQ.39) GU TO &

IF (ReNE.44) GO TO 1C

IF (J) 1.1410

I=K

J=0

IF (I.LT.72) GO TO 17

=0

J=1

CALL READ{(USsRECCRD)
w=RECORD(1)

If (d.EQs-1) GO TGO 1C

[=1+1

G==2

B0 8 K=1,472

[F (RECURD(K) .NEo44) GG TO 9
IF (J) 646410

CALL PREADS{QsUsK)

IF (WoEQo-1:0RsGeEQ—2) GO TO 10
RREAC=PFL(PPFL(W-,0Q01))

RETURN

CALL PERASE(P)

RREAD=Q

RETURN

END

Page

27

28 Page

19

17

INTEGER FUNCTION RSLBSTI(R1,S1)
COMMGOGN /TRLI/AVAIL «STAK,RECORD(72)
CCMMON /TR2/SYMLST

INTEGER AVAIL 4STAK,RECORDy SYMLST
INTEGER ReR1yS+S1ySCEMySNUMyU,V
INTEGER RPSUBJRG

R=R1

S=S1

IF (S.NE.GC) GU TO 9

RS5LBST=0

RETURN

CALL ADV{SNUM,+S)

CALL ACV(SDEM,S)

V=RPSLB(R,SDEM)}

IF {V.NE.O) GO TO 1

RSUBST=-1

RETURN
U=RPSUB(R+SNUM)

IF (U.NELO) GO TO 3
CALL RERASELV)

GO TG 10
RSUBST=RQ(LsV)

CALL RERASE(L)

CALL RERASE(V)
RETURN

END

Page 29

INTEGER FUNCTICN RSULM{X,Y)
CCMMCN /TRL1/AVAIL¢STAK,RECURDL{T2)
CCMMCN /TR2/SYMLST

INTEGER AVAIL,STAKsRECUORD, SYMLST
INTEGER BsPoePleP2sPZ23Qoeldle Q2+ TEMPZL sL29XyY
INTECER BORROWsPGCD ¢PONEWPFLsPPRCDyPG,PSUM
P=X

Q=Y

IF (PeNELJ) GG TO 1
RSUM=BORRCW(Q)

RETURN

IF {Q.NE.C) GU TOU 2
RSUM=BORROWI(P)

RETURN

CALL ADV(P1.P)

CALL AUV I(P2,4P)

PZ2=BURROW(P2)

P3=BCRROW(PZ2)

CALL ADVIJL1.Q)

CALL ADV(Q2+4)

G2=BCRROW(RZ)

B8=PGCL(Q2+P2) -
TEMP=PUNE(B)

IF (TEMP.EQ.1) GO TC 3
P=PJd(P2,+B)

CALL PEKASE(PZ)

Q=P (R2.8)

CALL PEKASE(QZ)

p2=p

L2=Q

P=PPRCD(PL1,Q2)

«=PPROD{QLP2)

CALL PERASE(PZ)

L1=PSUM(P,4Q)

CALL PERASE(P)

CALL PERASE(Q)

IF (Z1.NE.Q) GG TO ¢

CALL PEKASE(P3)

CALL PERASE(B)

CALL PERASE(QZ)

RSUM=(C

RETURN

L2=PPRUOD(P3,G2)

CALL PERASE(PZ)

CALL PERASE(Qz)

If (TEMP.EQ.1) GC TC 4
P=PGCU{bsZ1)

TEMP=PONEA{(P)

IF (TEMP.EW.1) GO TC 5
«=PW(Z1,P)

30 Page

CALL PERASE(Z1)

1=Q

G2=Pd(Z22.P)

CALL PERASE(Z22)

12=Q2

CALL PERASE(P)

CALL PEKRASE(B)
RSUM=PFL(Z1+PFL{Z2+C))
RETURN

END

INTEGER FUNCTION RVLIST(R)
COMMCN /TR1/AVAIL,STAK,RECORD(72)
COMMCN /TRZ2/SYMLST

INTEGER AVAIL+STAK,RECORDy SYMLST
INTECER R9 5,7

INTEGER FIRSTPVLIST.TYPE

S=R

IF {S.EQ.J) GO 10 1

T=FIRST(S)

IF (TYPE(T).EQ.C} GC TGO 1
RVLIST=PVLIST(T)

RETURN

RVLIST=0

RETURN

END

SUBRGUTINE RWRITE(UR)

COMMON /TRL1/AVAILsSTAK,RECURD(72)
CUMMUGN /TR2/SYMLST

INTEGER AVAILsSTAK,RECORDsSYMLST
DIMENSIUN D{(7)

CATA (D(I),I=1,7)/44,44,44,39,44 44 44/
INTEGER Dol+J,U,R

INTEGER FIRST,TAIL

IF (R.EQ.C) GO TO &8

I=1

CALL PWRITS(FIRST(R) UsI)

IF (RECURDI(I).EGo44) I=1-1

J=0

[F (J.EQ.7) GU TU 4

IF ([.EQ.72) GU TQ 2

J=J+1

[=1+1

RECORD(I)=0(J)

GO TO 1

CALL WRITE(U,RECCRU)

I=0

I=1+1

J=J+1

RECORC(II=C(J)

IF (J.LT.7) GG 10 3

GL TC 5

IF ([.LT.72) GO TQ ¢

=0

CALL WRITE(UsRECCRD)

I=1+1

CALL PWRITS(FIRST(TAILI(R)) +UsI)
IF (1.£Q.72) GO TQ 7

I=1+1

CO 6 Jd=1,72

RECURD(J)I=44

CALL WRITE(URECGRD)

RETUKN

CALL PWRITE (UsR)

RETURN

END

Page

31

