Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

THE SAC-1 POLYNOMIAL SYSTEM *

by

George E. Collins

Technical Report #HSJr

Computer Sciences Department and Computing Center
University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin

Technical Reference 2: 1968

January 1968

Revised March 1968

*The research described in this report was supported by the University of
Wisconsin Computing Center.

T This report is also being distributed as University of Wisconsin Computing
Center Technical Report #2 (first edition January 1968, second edition March
1968, third edition March 1971).

TABLE OF CONTENTS

Introduction —-~======-=---=-=--m—e——soosomommm e —omm s L
Internal and External Representations of Polynomials---------- 4
Descriptions of the Subprograms---------=-—-===-—-—-====-—==== 8
Descriptions of the Algorithms —---==-========-=-=--—————--—=-— 20
A Sample Application -=~-=-=-==-=--=---------o——————o oo mm e 28
System Performance and Storage Requirementg-----=========-- 36
Acknowledgementg —=---—=--—---mmmmm e e 4(;
References--------=-—-=—=——--momm - 41

Appendix: Listings of the Subprograms--------====———-e—c——o 43

1. Introduction

SAC-1 is a programming system for gsymbolic and algebraic
calculations. SAC-1 is organized into a hierarchy of subsystems.
At the base of this hierarchy is the SAC-1 subsystem for list processing,
which was described in a previous paper [1]. The SAC-1 subsystem
for infinite-precision integer arithmetic, which depends on and utilizes
the list processing subsystem, has also been previously documented [2].
The present paper describes the SAC~1 subsystem for formal operations
on multivariate polynomials with infinite-precision integer coefficients,
and assumes familiarity with the two previous documents. _

The PM system [3] was likewise organized as a hierarchy of
subsystems and, in fact, the three SAC-1 subsystems just mentioned
correspond to the three PM subsystems. The main difference is that
while PM was programmed for a particular computer (the IBM 7094),
SAC-1 can be easily made operational on any general purpose digital
computer for which an A.S.A., FORTRAN compiler is available. In order
to implement SAC-1! on such a computer it is only necessary to (1) compile
the SAC-1 FORTRAN subprograms (listings of which are supplied in the
appendices of the SAC-1 papers) and (2) program in machine language
the few simple SAC-1 "primitive" subprograms (according to the specifi-
cations in [1] and [2]). The effort required to implement SAC-1 should

in most cases amount to no more than one man-month. At the time of this

writing, the two previous SAC-1 subsystems have been, or are being,
implemented on at least seven different computers at six institutions.

Several additional SAC~1 subsystems are planned. Work is currently
in progress on a subsystem for operations on rational functions (regarded
as relatively prime pairs of multivariate polynomials, and including
infinite-precision rational numbers as a special case). Other subsystems
will provide operations on truncated power series with polynomial or
rational function coefficients and methods for the exact solution of systems
of linear equations with polynomial or rational function coefficients. Longer
range plans include capabilities for symbolic processing of algebraic an;i
transcendental functions.

Besides being very easy to implement on almost any computer, one
of the design objectives of SAC-1 is a system that is highly efficient with
respect to execution time. This aspect of PM was discussed in [4], where
comparisons were made between PM, ALPAK [5] and FORMAC [6]. PM's
efficiency resulted from several factors, including the use of the recursive
canonical form for polynomials, the use of a reference count list processing
system, and the use of assembly language programming in critical parts of
the system. All these factors are fully retained in SAC-1 except for the
last. In Section 6 we assess the extent to which this has impaired the
efficiency of SAC~1 relative to PM . It is shown that this efficiency factor

is probably no more than 3.0 and can easily be reduced to about 1.5 with

only a little additional effort in implementing SAC-1.

For the most part, the SAC-1 polynomial subsystem is just a translation
of the PM polynomial subsystem into A.S.A. FORTRAN [10]. However, a
few improvements have been made. The list representation of a polynomial
has been changed to reduce somewhat the memory requirements. A sub-
routine, PERASE, which erases the list representing an arbitrary polynomial,
has been included, thereby exploiting one of the ways in which a reference
count system can improve efficiency. The polynomial product algorithm has
been modified so as to reduce the required number of list inversions.
Polynomial variables may now consist of an arbitrary number of characters,
and they are now uniquely represented as lists in computer memory much
the same as are atomic symbols in LISP [7]. The biggest change pertains
to polynomial substitution and reordering the variables of a polynomial.
Whereas in PM reordering of variables was achieved as a byproduct of
substitution, in SAC-1 reordering is achieved through an independent
mechanism. As a result, the required substitution mechanism is logically
simplified, is easier to apply, and is likely more efficient. All these

changes are discussed in more detail in Sections 2, 3 and 4 .

2. Internal and External Representations of Polynomials

All SAC-1 polynomials are represented in recursive canonical form,

both internally and externally. This terminology is carried over from the
PM system [3], and refers to the fact that a polynomial in n variables
is always regarded as a polynomial in one variable (called the main
variable) whose coefficients are themselves polynomials in n - |
variables. As a special case, any (infinite-precision) integer is a

polyvnomial in zero variables. This implies an assumed ordering of the

variables of any polynomial. Whenever we write P(Xl’ o xn), displaying

the variables of P, the intention is to specify this ordering, Xn being

the main variable, Xn—l being the main variable of the coefficients of
P, etc.
If P(Xl’ “ees xn) is any non-zero polynomial in n = | variables,
then we have uniquely P(x X) = Foop (x X) xei where
quely e X)) = o5 Pixeeax 0

e, > e, 2 ...>e_ =z 0 andthe P(x,...,x_,) are all non-zero.
1 2 r n-1

A polynomial variable is any sequence of letters and decimal digits

whose first character is a letter (there is no restriction on the number of

characters).
The external canonical form of a polynomial is a sequence of characters.
Suppose n =1 and X, is ALPHA .
(+LALPHA**3 -37ALPHA*%1 +239ALPHA**0)

is an example of a polynomial in external canonical form. If Hi is the

representation of Pi as a signed decimal integer, Gi is the representation

of ei as an unsigned decimal integer, and x, is the sequence of characters

l
g, the general form is

KR EEH s sk
(ng elﬁzgﬁ e, .- Hrg ﬂer)

Polynomials are invariably output in this form. The only deviation permitted
from this canonical form in input polynomials is that the sign of the leading
coefficient may be emitted if positive.
Now suppose n > 1 .

((+LALPHA**3-37ALPHA**1+239ALPHA**0)BETA**4+4(~-29ALPHA**2~51 2ALPHA**1)

BETA*%2})
is an example of a polynomial in two variables written in external canonical
form (BETA is the main variable). In general, for n > 1, if Hi is the
external canonical form for Pi(xt’ e, X 1)’ Xn is the sequence of
characters ¢, and € is defined as above, then the external canonical
form of P(Xl’ . "Xn) is

(H lg**el + Hzé**ez veees F Hrg**er)

The zero polynomial is always a polynomial in zero variables and hence
its external canonical form is +0 (the + may be omitted in input).

Notice that variables may occur vacuously in a polynomial. For
example, the following is permissible (and useful):

((+1ALPHA*%0)BETA*%*0)

For further examples of polynomials in external canonical form, see
Section 5.

Internally, the recursive canonical form of a polynomial is represented
as a listof order n+ | , where n is the number of variables.

The zero polynomial is represented as the null list. A polynomial in
zero variables is an infinite-precision integer and as such is represented
as a first order list (see [2]). Assume, inductively, that the polynomials

Pi(xl’ .o

"Xn-—l) are represented by lists Hi . The variable X is repre-
s ented as a first order list ¢ (explained below). Then P(Xl’ ceesX)} is

n
represented as the list

(& Hl, e Hz’ e, ...,Hr, er)

In this list the exponents ei are atoms -- FORTRAN integers -- not infinite

precision integers.

ste

In PM the list representing P(Xl’ . e .,xn) was of the form ((II L e'lp),

* *
(,,e s (Hr, er)), where e, was an atom representing both er and

2 2)"'

the variable Xn . The SAC-1 list representation has the advantage of
requiring somewhat less memory. For example, if P(Xl’ ey Xn) is of degree
r in each of its variables, has no "missing terms", and all of its integer
coefficients are K-precision, then the SAC-! representation requires
approximately (K + 2)rn cells as compared with approximately (K + 3)rn for
PM . This change probably also reduces execution time somewhat, but

this is not entirely evident since it has effects in both directions.

Variables are represented internally as infinite-precision integers.
If a variable v 1is the sequence of characters Oy Qy +ee Oy and if Ni
is the SAC-! internal code for a, then v is represented by the infinite-
n

precision integer N = s =N, - 64

n-i
i=1l i '

Variables are stored uniquely in the computer memory as are atomic
symbols in LISP [7] . There is a symbol list whose elements are the
infinite-precision integers representing all the variables occurring in poly-
nomials which have been read in. The location of the symbol list is kept
in the symbolic location SYMLST, which is the first item in the labelled
common block TR2. When a variable has been read which should occur as
the first element of the list for a polynomial, the variable is presented to
a subprogram PROSYM. PROSYM converts the variable to an integer and
searches the symbol list for an occurrence of this integer. If found, the
location of the occurrence on the symbol list is returned. Otherwise, the
integer is prefixed to the symbol list. This is explained in more detail in

Section 3 .

3. Descriptions of the Subprograms

There are 36 subprograms in the SAC-1 polynomial system. In
this section we describe the function and effect of each subprogram. It
is designed to enable one to use the system. Section 4 describes the
algorithms employed by the subprograms. It explains how the subprograms
achieve their effects.

The subprograms are grouped below according to their use and
purpose into the following categories: input-output, arithmetic, differentiation,
greatest common divisors, substitution and reordering of variables, and mi-s—
cellaneous. Not all the subprograms are likely to be used in applications
programs. Some exist chiefly because they were useful in implementing the
major subprograms, or because they will be useful in implementing later
SAC-1 subsystems. Or, they may be useful to someone who wishes to con-
struct his own extension of the system for some specialized problem. These
subprograms are marked below with an asterisk and may be ignored in a first
reading.

In order to facilitate the following descriptions, we first establish some
conventions and terminology.

A proper polynomial is a polynomial in at least one variable, or is the

zero polynomial. An improper polynomial is a non-zero integer. Except

where explicitly precluded, polynomial shall include both proper and improper

polynomials. When an operation is to be performed on two polynomials, it is

frequently required that these polynomials be compatible. Two non-zero
polynomials are compatible in case they are polynomials in the same
variables and these variables occur in the same order in each (as a special
case, any two improper polynomials are compatible). Also, the zero poly-
nomial is compatible with any polynomial.

The compatibility requirements are not serious restrictions, since
there are subprograms, described below in Section 3.5, which enable one
to easily compatibilize any two polynomials by introducing vacuous occurrences

of variables and changing the ordering of variables. -

3.1 Input-Output

The following input-output conventions were established for the
previous SAC-1 subsystems and continue to hold for the polynomial system.
A standard record of 72 characters is used for input and output (either
printed or punched). All input-output subprograms have an argument which
specifies a logical unit number. In the case of output, the unit number deter-
mines, according to local convention, whether the output will be printed or
punched. E;ach input or output item (e.g., polynomial) begins in column |
of some record and extends over as many records as required, the last record
being filled out with blanks. Blanks within an item are not admissible, except
where explicit provision is made. In particular, no blanks are allowed within

polynomials.

10

P = PREAD(U). U is a logical unit number, If U is positioned at
the first record of a correctly punched polynomial, the records containing
this polynomial are read, the polynomial is converted to internal canonical
list representation, and P is the location of the resulting list. U is then
left positioned at the next following record. If U was initially positioned
at an end-of-file, P = -1 ., If U was initially positicned at the first record
of an incorrectly punched polynomial, P = -2 . However, not all errors will
be detected. The last character of a polynomial should always be followed
by a blank since this will terminate the attempt to read a polynomial in case
of a missing parenthesis or other syntactical error. No diagnostics are
printed.

PWRITE(U,P). U is a logical unit number, P is a polynomial. The
polynomial P is converted to external canonical form and written as a sequence
of records on unit U . (Note that the polynomial is not erased; if it is no
longer needed, it should be erased using the PERASE subroutine.)

* PREADS(P, U, I). This is a subroutine called by PREAD which, in fact,

does most of the work of the latter. U is a logical unit number, I is a FORTRAN
integer, 1 =1 = 72, specifying a character position within a record. A
polynomial is read from unit U, converted to internal list representation,

and the location of this list is assigned to the variable P . It is assumed

that the first record of the polynomial has already been read and is in the

I

array RECORD of common block TRL. Also, the first character of the
polynomial is assumed to be in character position I of the first record.
(When PREADS is called by PREAD, I will always be 1 . But PREADS is
designed for use by other subprograms in later SAC-1 subsystems also,

in which case I need not be 1 .) PREADS assigns a new value to I,
namely, the character position in the last record which contained the last
character of the polynomial. (If the polynomial is proper, the last character
is a right parenthesis but if the polynomial is an integer, the last character
is, by convention, a blank, which must be present, immediately followin-g
the last decimal digit.) As in PREAD, a value of -1 is assigned to P if

U is at an end-of-file, -2 1if a syntactic error is discovered.

* PWRITS(P, U, I). This subroutine bears the same relation to PWRITE

as does PREADS to PREAD. P is a polynomial, U is a unit number, I is

a character position. The polynomial P is converted to external canonical
form and written as a sequence of records on unit U , starting in character
position I of the first record. The first I-1 character positions of the first
‘record will contain whatever characters were in the first I-1 positions of the
array RECORD when PWRITS was called. The last record of the polynomial P
is not written on unit U, but is left instead in RECORD. A new value is
assigned to I, which is the character position in the last record which

contains the last character of the polynomial (a right parenthesis if P 1is

proper, a blank otherwise).

12

* I = PROSYM(X). PROSYM (PROcess SYMbol) manages the symbol

list. X 1is the location of a list (Cl’ C «os cn) where c is the SAC-1

20
internal code for the i-th character, C‘i, of the symbol S = CLCZ' . 'Cn
(A polynomial variable is an example of a symbol. Later SAC-l1 subsystems
may use symbols for other purposes, also, suchas function names.) The
infinite-precision integer J which represents S is generated and the
symbol list is scanned for an occurrence of J . If J occurs on the symbol
list, the list for J which was generated is erased and the value I is the
location of the list for J which was on the symbol list.)

If J is not on the symbol list, it is prefixed to the symbol list and
the value I returned is the location of the list for] that was generated.
If J occurred on the symbol list, the occurrence on the symbol list is
borrowed. If J did not occur on the symbol list then the generated list
for J is borrowed. This reference count policy for symbols results
naturally from treating the symbol list just like any other list. Notice that
it has the consequence that after all polynomials in which a variable occurs
have been erased, that variable will still exist on the symbol list and have a
reference count of one. Normally, the total number of variables will be suffi-
ciently small that this will not create a problem. If it were to become a
problem, however, one could always scan the symbol list, deleting and

erasing those symbols with reference counts of one, and leaving all other

symbols and their reference counts untouched.

13

* I = STOI(X). (Symbol TO Integer) X is the location of a list

(c.,Cly venus cn) where ci is the SAC-1 internal code for the i~th

1”72
character, Ci’ of a symbol Cl C‘2 - Cn . I is the infinite-precision

-1
integer Z?—-l c, 64",

* X = ITOS(I). (Integer TO Symbol) I is an infinite-precision
integer Z?—L c 64" where c, 1s the SAC-l internal code for
the i-th character, Ci’ of a symbol Cl CZ . Cn . X lis the list
(cl, Corvves cn).

* NEXTCH(U, I). (NEXT CHaracter) U is a logical unit number, I
is a character position, ! = I =72, within arecord. If I < 72, I is
replaced by I+ 1 ., If I=72, I is setto one and a new record is read

from unit U into the array RECORD of common block TRI .

3.2, Arithmetic

R = PSUM(P,Q). P and Q are compatible polynomials. R =P + Q,
a polynomial compatible with P and Q .

R = PNEG(P). P is an arbitrary polynomial. R=-P, a polynomial
compatible with P .

R = PDIF(P,Q). P and Q are compatible polynomials. R=P - Q,
a polynomial compatible with P and Q .

R = PPROD(P,Q). P and Q are compatible polynomials. R =P - Q,

a polynomial compatible with P and Q .

14

R = PQ(P,Q). P and Q are compatible polynomials. R is the
polynomial P/Q if Q #0 and P/Q exists. Otherwise, R is the
FORTRAN integer -1 .

R = PIP(P,I). (Polynomial-Integer Product) P is an arbitrary poly-
nomial. I is an infinite-precision integer. R = P - I, a polynomial
compatible with P .

R = PSPROD(P,Q,N). P and Q are polynomials and N is a non-
negative FORTRAN integer. If either P or @Q is zero, then R is zero.
Otherwise, Q is compatible with the leading coefficient of Q, R = P-Q-VN

where v 1is the main variable of P, and R is compatible with P .

R = PSQ(P, Q). (Polynomial Special Quotient) P is a non-zero proper
polynomial. Q 1is a non-zero polynomial compatible with the leading coefficient
of P. R =P/Q if this exists, and R is compatible with P . Otherwise,

R = -1, a FORTRAN integer.

The following two subprograms require an explanation. They exist

primarily to define uniquely the greatest common divisor of two polynomials.

We define the leading numerical coefficient of a non-zero proper polynomial

P recursively, as follows. If P is a polynomial in one variable, its leading
numerical coefficient is its leading coefficient. Otherwise, the leading
numerical coefficient is the leading numerical coefficient of the leading

coefficient of P . Notice that the leading numerical coefficient of a poly-

15

nomial is the integer coefficient which occurs leftmost in its external canonical
form. Notice also that the leading numerical coefficient is not invariant under
a reordering of the variables.

The sign of a non-zero proper polynomial is defined to be the sign of its
leading numerical coefficient. The sign of any other polynomial is its sign
regarded as an integer. If P is any polynomial, the absolute value of P,
|P| , is P ifthesignof P is 0 or L, -P otherwise. A positive
polynomial is one whose signis +1 .

S = PSIGN(P). P is an arbitrary polynomial. S 1is the sign of P',

a FORTRAN integer, +1, 0 or -1 .

Q = PABS(P). P is an arbitrary polynomial. Q is the absolute value
of P, a polynomial compatible with P .

R = PMPNV(P,V,N). P is a proper non-zero polynomial. V 1is a

variable which occurs in P . N is a non-negative FORTRAN integer. R is

the polynomial P - VN , a polynomial compatible with P .

3.3, Differentiation

R = PDERIV(P,V). P is an arbitrary polynomial. V is a variable
(represented as an infinite-precision integer). R is the derivative of P
with respect to V, a polynomial compatible with P . The variable V need
not occur in P and, in particular, P may be an integer; in this case R is,

of course, zero.

16

3.4. Greatest Common Divisors

R =PGCD(P,Q). P and Q are compatible polynomials. R 1is the
greatest common divisor of P and Q , a polynomial compatible with P
and Q . R is zero if P and Q are both zero; otherwise, R is a positive
polynomial.

R = PCONT(P). P is a non-zero proper polynomial. R is the content
of P, i.e., the greatest common divisor of the coefficients of P. R is a
positive polynomial compatible with the leading coefficient of P . -

R = PPP(P). P is a non-zero proper polynomial. R = |P/Q| where
Q 1is the content of P . R is compatible with P .

L = PCPP(P). P is a non-zero proper polynomial. L is the list (Q,R)
where Q is the content of P and R is the primitive partof P .

R = PGCDA(P,Q). P and Q are non-zero proper compatible polynomials
of respective degrees m and n in their main variable, with m = n . If

be the complete reduced

n =0, then R = Q. Otherwise, let PL’PZ’ ""Pk

polynomial remainder sequence (see [8] for a definition) starting with P, = P,

1

P2 =Q . If Pk # 0, then R = P.; otherwise, R=P . R 1is an associate

k k-1

of the greatest common divisor of P and Q . R is compatible with P and
Q.

R = PSREM(P, Q). P and Q are non-zero proper compatible polynomials
of respective degrees m and n in their main variable, with mz n . R is

the standardized remainder of P with respect to Q , a polynomial compatible

17

with P and Q . The standardized remainder can be defined as follows. Let
v be the main variable of P and Q and let B be the leading coefficient
of Q@ . Then R is the unique polynomial such that, for some polynomial S,
() B™ ™' p-Q.s+R, and

(2) Either R =0 or degree of R (inv) < degree of Q (in v),

* Z = PCGCD(I,P,Q). This subprogram exists as a means of

implementing the method of indirect recursion described in [1] for the mutually

recursive subprograms PCONT and PGCD .

3.5, Substitution and Reordering of Variables

R = PSUBST(P,Q). Either Q =0, orelse Q 1is a non-zero proper
polynomial and P is a polynomial compatible with the leading coefficient
of Q. R is the result of substituting P for the main variable of Q in Q,

a polynomial compatible with the leading coefficient of Q (except R = 0 when
Q = 0).

This subprogram provides only for substitutions for the main variable. To
make a substitution for some other variable of Q , one should reorder the
variables of Q so that that variable becomes the main variable. In general,
the variables of P must also be reordered so that P becomes compatible
with the leading coefficient of the new Q . It may also be necessary to
introduce vacuous occurrences of variables into either P or Q . This can all
be done quite easily and efficiently using the following subprograms PORDER

and PVLIST.

18

L = PVLIST(P). P is an arbitrary polynomial, If P = P(XL’ coes Xn)’

then L is the list of variables (XL’ vy Xn) . If P is an integer, then

L is the null list. Each variable in L 1is represented as an infinite-
precision integer, as itis in P .

R = PORDER(P,L). L is a non=-null list (v . .,Vn) of distinct

I

variables such that every variable occurring in P occurs in L (L may
also contain variables which do not occur in P). R is the polynomial

R(v ,V) which is equivalent to P and which results from P by

1P Vg)

reordering the variables (and,possibly, introducing others).

R = PMERGE(P,Q). P and Q are non-zero, proper, compatible,
disjoint polynomials (P and Q are disjoint 1in case they have no common

terms, i.e. if P = P(x .,xn) and Q=Q(x1,...,xn), then the

B
el e

coefficient of X5 xnn is zero in either P or Q for all n-tuples

(el, cees en)). R =P + Q, a polynomial compatible with P and Q . PMERGE

is used in an important way by PORDER.

3.6. Miscellaneous

PERASE(P). P is an arbitrary polynomial., The list which represents
P is "erased". The general subroutine ERASE would have the same effect,
but PERASE executes faster because it takes advantage of the special
structure of any list which represents a polynomial.

N = PDEG(P). P is a proper polynomial. N is the degree of P in

its main variable, a FORTRAN integer (N =0 if P = 0).

19

R = PLDCF(P). P is a proper polynomial. R is the leading

coefficient of P (R=0 if P = 0). The list which represents R is an

element of the list for P ; the reference count of the former is increased

by one.

V = PVBL(P). P is a proper polynomial. V is the main variable of P

(V=20 if
reference

R

1}

If P is the non-zero proper polynomial Zz—l Pi(xl’ ve s X)Y T,

r
e, >e2> >er, then the reductum of P is Sis P(xl,...,x) y

(0 if r =
S =
(for all x

l"

P = 0). The list for V is an element of the list for P ; its

count is increased by one.

PRED(P). P is a proper polynomial. R is the reductum of P .

1); the reductum of 0 is O.
PONE(P). P 1is an arbitrary polynomial. If P(Xl’ S R

vees xn), then § 1is the FORTRAN integer | ; otherwise S = 0,

(Two polynomials, P and Q , are relatively prime just in case

PONE(PGCD(P, Q)) = 1.)

20

4, Descriptions of the Algorithms

In this section we describe the algorithms embodied in the FORTRAN
subprograms of the system. We have omitted these descriptions for the
simplest subprograms, either because they are without interest or because
one can quickly consult their listings in the appendix.

These verbal descriptions serve several purposes. In some cases
they provide a guide to understanding the FORTRAN listing in the appendix.

In some cases speical techniques which improve efficiency are explained.

In some cases the mathematical formulas behind the algorithms are prese;nted.
One underlying theme is the simplicity of the algorithm which results from
the use of the recursive canonical form for polynomials.

As in Section 3, the subprograms are grouped into six categories.

4.1, Input-Output

PREADS(P, U, I). This subroutine uses a recursive procedure, PREADS(Y),
which reads and converts an arbitrary polynomial from external to internal
form. If the polynomial is an integer (indicated by the absence of a leading
left parenthesis), the integer is brought into the form of a list of characters
and IDTOB is then applied and the list of characters is erased. If the poly-
nomial is proper, its terms are processed in a loop. Each term consists of
a coefficient, a variable, two asterisks and an exponent. The recursive
procedure calls itself to process and convert a coefficient. Each occurrence

of the variable is made into a list of characters. If the occurrence proves to

21

be not the last, it is simply erased; if it is the last, it is presented to
PROSYM, which returns the location of the unique infinite-precision integer
representation. The recursive procedure also calls itself to process each
exponent; this yields an infinite-precision integer whose only element is
the required FORTRAN integer. The recursive procedure returns the

location of the list representation of the polynomial as the value of the
variable Y, or -2 if a syntactic error is revealed.

I = STOI(X). This subprogram is essentially the same as IDTOB
except that the conversion is from base 64 to base g rather than from
base 10 to base B . The process consists in repeated multiplication by
64 and addition of the next character code. Each multiplication-addition
is carried out by modifying the existing list.

X = ITOS(I). This is a base B to base 64 conversion. The inverse
of the list for I is constructed with CINV. This inverse list is then

repeatedly altered in carrying out successive divisions by 64.

4.2. Arithmetic

R = PSUM(P, Q). The trivial case where P or Q is zero is first
disposed of. Then if P and Q are integers ISUM is used. Otherwise,
recursion on the number of variables is used. The terms of P are merged
with the terms of Q and the PSUM recursive procedure calls itself to add
coefficients of like terms (except that ISUM is used directly if these

coefficients are integers, as a means of improving efficiency). If the two

22

coefficients cancel, the corresponding term is omitted from the sum.
When a term of P has no mate in Q (or vice versa), a coefficient of
P is borrowed for use in R . When all terms of P (Q) have been processed,
the remaining final segment of Q (P) is borrowed and made to be the final
segment for R, after inverting the portion of the list for R that was con-
structed during the merge. The main variable of P 1is then borrowed and
prefixed to the list for R . This borrowing of a final segment of P or Q,
as an alternative to borrowing instead the coefficients in the final segment,
surprisingly contributes a great deal to the efficiency of the algorithm. “One
would not expect such a final segment tc be very long, on the average.
However, PSUM is used as a subprogram of PPROD in such a way that
there the expected length of this final segment is *;‘ of the length of
the entire list for R . This is one instance where the SAC-1 algorithm
is an improvement of the corresponding PM algorithm.

R =PNEG(P). If P=0, R=0, If P is a non-zero integer, INEG
is used. Otherwise, a recursive procedure is used, which calls itself to
negate coefficients of P .

R = PDIF(P,Q). If Q =0, R=P . If P=0, PNEGis used. If P
and Q are non-zero integers, IDIF is used. Otherwise, a recursive procedure
is used, which parallels that in PSUM except that a final segment of P or Q

is never borrowed. This algorithm is more efficient than using PNEG and

PSUM because it avoids constructing (and later erasing) a list for -Q .

23

R = PPROD(P, Q). If P=0 or Q =0, then R=0, If P and Q
are non-zero integers, IPROD is used. Otherwise, a recursive procedure
is entered. Inverses of the lists for P and Q , minus their variables,
are constructed using CINV. From the inverse list for P and the first
term of the inverse list for Q is constructed the product of P and the last
(low order) term of Q . The recursive procedure calls itself once for each
coefficient of this product. The list for the product is obtained in the correct
order, without inversion, because the list for P was inverted. In like
fashion, the product of P with each term of Q is constructed and is then
added to the partial sum of all previous such products, using PSUM. The
final partial sum is R .

The initial inversion of P obviates the inversion of the list for eaéh
of the partial products (products of P with terms of Q). The initial inversion
of Q aids PSUM in computing the partial sums, since in each successive
partial sum a longer final segment can be borrowed than in the previous sum.
Both initial inversions represent improvements over the PM algorithm for
polynomial sums.

R = PQ(P,Q). If Q=0, R==~1. If P=0 and Q#0, R=0, If
P and Q are non-zero integers, IQR is used. If the degree of P is less
than the degree of Q, R = -1 . Otherwise, the recursive procedure calls
itself to attempt division of the leading coefficient of P by the leading

coefficient of Q . If the attempt fails, then R = -1 . If it succeeds, the

24

quotient times the reductum of Q times a power of the main variable is
subtracted from the reductum of P . The result replaces the polynomial

P . If the new P is zero, P is divisible by Q and the coefficients of
the quotient are the quotients of the coefficients that were formed. If the
new P is non-zero, the process is repeated with the new P in place of the
old.

R =PIP(P,1I). If P=0 or I=0, R=0. Otherwise, a recursive pro-
cedure is used. If P is an integer, IPROD is used. Otherwise, the recur-
sive procedure calls itself to multiply each coefficient of P by I. -

R = PMPNV(P, V, N). A recursive procedure is used. If V is the
main variable, R 1is a replica of P in which each of the exponents is N
larger than the corresponding exponent of P . If V is not the main variable,

N
the recursive procedure uses itself to multiply each coefficient of P by V .

4,3, Differentiation

R = PDERIV(P, V). If P =0, orif P is an integer, R = 0. Otherwise,
a recursive procedure is used. If V is the main variable of P, each
coefficient of P is multiplied by the exponent of the term in which it occurs,
using PIP, and the exponent is reduced by one. If V is not the main variable,
the recursive procedure uses itself to differentiate each coefficient of P

with respect to V .

25

4,4, Greatest Common Divisors

The polynomial greatest common divisor algorithm employed in SAC-1
is the reduced polynomial remainder sequence algorithm described in [8].

P for

The complete reduced polynomial remainder sequence Pl’ Pz, RRTR

two polynomials, P1 and PZ s, 1s computed by the subprogram PGCDA ,
which returns as its value the last non-zero element of this sequence, since
this is an associated of the greatest common divisor of P‘1 and P2 .

PGCD and PCONT are mutually recursive. As a result, in order to
implement the method of indirect recursive procedures described in [1], i
there is a subprogram, PCGCD, which embodies recursive procedures for
both PCONT and PGCD.

R =PGCD(P,Q). If P=0, R=|Q|. If Q=0, R=|P|. If P and
Q are non-zero integers, IGCD is used. Otherwise, the recursive procedure
for PGCD in the subprogram PCGCD is entered. A = PCONT(P) and B =
PCONT(Q) are computed, then C = PGCD(A, B). Next P=P/A and Q = Q/B
are computed. If the degree of P is less than the degree of 6, P and Q@
are interchanged and then R = PGCDA(E,@) . After that, D = PCONT(R) and
R = R/D are computed. Finally, R = |R| * C is the greatest common divisor.

R = PCONT(P). The recursive procedure for PCONT in PCGCD is
P

entered immediately. Let P ..,Pr be the coefficients of P . A is

l, 2’ .

initialized to lPli . If r=1, R=A. Otherwise, A is replaced by

26

PGCD(A, Pi), and PONE is applied to the new A, for i=2,3,... until

an A 1is obtained which is identically one or until i =r, whichever occurs

first. Then R =A .
R = PGCDA(P, Q). The reduced polynomial remainder sequence

Pl’ PZ’ PS’ P4, ... is computed according to the following formulas. Let

Ci be the leading coefficient of Pi’ n, the degree of P, and 8; = N,

i ni+L)
&51-1+1

i

i

Also, set 6o = -1. Then Pi+2 = PSREM(Pi, Pi-H) and Pi+2 = Pi+2/C

P = O 3 = . ' ’ i 3 ‘
If Pi+2 then R Pi+l Otherwise Pi+2 is computed Pi is

{41’ Pi+l is replaced by Pi+2’ and a new Pi+2 is computed.

replaced by P
R = PSREM(P, Q). k = PDEG(P) - PDEG(Q) + | is computed. The

following process is done k times. If PDEG(P) < PDEG(Q), then R = PLDCF(Q). P.

Otherwise, R = PLDCF(Q)+<PRED(P) ~ PLDCF(P) «+ PRED(Q) - vd where d = PDEG(P) -

PDEG(Q) and v is the main variable. Then P is replaced by R before the

process ls repeated.

4,5, Substitution and Reordering of Variables

R = SUBST(P, Q). If Q =0, then R = 0. Otherwise, Horner's method

r
for the evaluation of a polynomial is used. Let Q(Xl’ e e Xn’ y) = Zi=l
ey . _ _
Qi(xl""’xn) "Y hoe >e2> >er. Starting with RO—O, the
_ C p(8i+lTeit2)
recurrence formula Ri+l = (Ri + Qi+l) P is used to compute
Rl’ RZ’ ey Rr’ where by convention e il = 0. Then R = Rr .

R = PORDER(P,L). If P=0, R=0 . Otherwise, a recursive procedure

is entered. If P 1is an integer, R is constructed from P by successively

27

introducing vacuous occurrences of the variables in the list L . If P
is a proper polynomial, let P = Zr Pi(xl’ ceos Xn) Y Y. Then
=
S e E 1
R = z‘lf_l P; -y ' where P, = PORDER(P,L). PORDER calls itself to

ei ! ei

b sk 3
compute each Pi . PMPNV computes each Pi Y% The Pi Y% are

mutually disjoint. Hence PMERGE is used to compute the partial sums

k * 8

Ty Byt Y

R = PMERGE(P, Q). A recursive procedure is used. The terms of P
are merged with the terms of Q . When a term of P matches a term of

Q , the recursive procedure uses itself to add the two coefficients.

4.6, Miscellaneous

PERASE(P). A recursive procedure is entered unless P = 0. If P is
an integer, ERLA is used. Otherwise, successive cells on the main level of
P are returned tc AVAIL by DECAP (until one is encountered whose reduced
reference count is positive). The main variable of P is erased by ERLA
(if at all). The recursive procedure calls itself to erase any coefficients
of P which must be erased.

S = PONE(P). If P=0, then S=0. If P is a proper polynomial,
then S8 = 0 if deg (P) # 0 and otherwise S = PONE(Q), where Q 1is the
leading coefficient of P . If P is a non-zero integer, then S =1 if

and only if TAIL(P) = 0 and FIRST(P) =1 .

28

5. A sample Application

As an illustration of the use of the SAC-1 polynomial system we
include here a complete SAC-1 main program together with its input and
output. This will serve to illustrate certain rules and practices which,
if followed, will facilitate the programming of other applications problems.
The program below computes the terms, fi and gi , for 1=1,2,3,...,
of the f and g series of Keplerian motion. This calculation was first
programmed for the FORMAC system [6] and the results were reported in
[9]. For purposes of comparison, the calculation was later programmed for
PM and the results were reported in [4].
Each fi and each 9, is a polynomial, with integer coefficients, in three
variables €, j, and ¢ . €, py and 0 are themselves functions of a time

variable t, implicitly determined by the following differential equations

in which a dot over a variable stands for its derivative with respect to t .
. . . 2
(1) € = -0y +2€), p = -3p0, o= €-20

By the differential calculus, we have

T 30
with a like formula holding for éi . The fi and 9 satisfy the following

recurrence relations.

29

(3) £, =& Mg g9, 7 Ltg .

Finally, the initial conditions are

(4) fo=l,g0=0.

In the program below, f é, 1L and G are input polynomials,

0’ gO’
as is also K . All polynomials are represented as polynomials in €, ¥ and ©
(in that order). In order to reduce the quantity of output, these variables are
written as E, M and S . An integer N is also input, which terminates the
calculation after fN and IN have been computed. In the sample outp}lt
given, N = 12, although the program has been run for much larger N .

The program begins with several essential declaractions. First, the
labelled common blocks, TRI and TR2, together with their constituent variables
and arrays, are declared. Next, the array which is to be used as the available
space list, here called SPACE, is dimensioned. Third, every variable, or
array, and every function name which occurs in the program is declared to
be of type integer. Omission of any variable or function name from the integer
declarations is almost invariably disastrous and is one of the most common
programming errors in using SAC-1.

This program was written to be run on a computer for which (under
the current operating system) the standard input tape is logical unit 50
and the standard output tape is logical unit 51 . Hence the first two

executable statements assign the integers 50 and 5! to IN and OUT,

variables which are used throughout the program as arguments of PREAD and

30

PWRITE. In order to run this program on a different computer, it is then only
necessary to change these two statement to assign different numbers to IN
and OUT. Or, the program could be modified to produce punched output
rather than printed output by merely assigning a different number to OUT.

Next, the BEGIN subroutine is called, which creates the available
space list and initializes the pushdown stack. BEGIN must always be
called before any other SAC-1 subprogram is referenced. Likewise, the
symbol list must be initialized, by executing SYMLST = 0, before any
polynomial subprogram is used.

Next, the input polynomials are read in. The input polynomials are
listed after the program just as they were punched on the input cards. In
this program the integer N was read in using IREAD. PREAD could have
been used instead in the same way. N could also have been read using a
FORTRAN read statement. Since it was read in as an infinite-precision
integer, T, it must be converted to a FORTRAN integer. This is done
using DECAP, which also serves to erase the list which represented N .
the variables, €, |y and 0, symbolically referenced as EPS, MU and
SIGMA, are needed as arguments of PDERIV for computing the partial
derivatives of the fi and g, - They are conveniently obtained using PVLIST
and DECAP. Note well that the main variable, in this case SIGMA, is the

last element of the list of variables provided by PVLIST.

31

After fO and 99 have been printed at statement 40 and beyond, control
returns to statement 20, where first fl is computed (denoted by FDOT).
Notice that each of the three derivatives, three products and two sums
required for this computation must be written out as a separate FORTRAN
statement in order that the intermediate polynomials created (FSIG, FMU, FEPS,
Pl, P2, P3 and T) can then be erased.

The next part of the program similarly computes éi , then f1+l‘ and
g Since fi+ must be temporarily

. replaces fi (as the value of F), f£

i+l ” i+1
assigned to U, until the previous value of F can be erased. -
This program was executed on a CDC 1604 computer in 75.9 seconds
with on-line printing. A lengthy discussion of computing times and storage
requirements is given in Section 6.
The FANDG program illustrates several programming requirements
that are rather tedious and burdensome: the integer declarations of variables
and function names, the inability to nest functions in most cases, and the
necessity to individually and explicitly erase each polynomial or other

list. It would not be difficult to design a preprocessor which would per-

form these chores automatically.

14

20

32

PROGRAM FANDG

COMMON /TR1/AVATILsSTAKSRECORD(7?2)

COMMON /TR>/ SYMLST

NIMENSTON SPACF(1850N0N)

INTFGFR AVAIL sSTAKSRFCORN«SYMLST

INTEGFR PREADSPVLISTSPDERIVPPRODPSUMSPDIF
INTEGFR SPACFIN-OUT

INTEGER F oG oMUPOL sMUNOT s SIGDOT s FPSEOTSFDOTHGDOT
INTFGFR VRLSsSTGMA ¢MUSEPS

INTEGER FSIGsFMUSFEPSGSTIG»GMU s GEPS

INTEGER P13sP2sP3sQ1+Q02:Q39TsU,sV

IN=80Q

NUT=581

CALL REGIN(SPACFS15000)

SYMLST=0

F=PRFAN(TN)

G=PREAD{TN)

MUPOL=PRFaD(TN)

MUDOT=PRFAND(TN)

STGNOT=PRFAD(IN)

FPSDOT=PRFAD(IN)

T=TRFAD{IN)

CALL DFCAP(N»ST)

PRINT 14N

FORMAT(/2H N=»s12)

VRLS=PVLIST(F)

CALL DErapP(ERS,VRLS)

cAlLL NECAP (MULVRLS)

CALL NECAP(SIGMASVRLS)

1=0

A0 TO 40

FSIG=PDERIVI(FsST1GMa)

FMU=PNERTVI(FsMU)

FFPS=PNERIVIFFPS)

P1=PPROD(FSIMsSIGNOT)

Pr=PPROND(FMUMUNDOT)

P2=PPROD(FEPSSFPSNOT)

T=PSUM(P1 +P2)

FNOT=PSUM(T P2}

CcALL PFRASF(FSTAY

CALL PFRASF{FMU)
CALL PFRASF(FFPS)
rALL PFRASF({PY)
CALL PFRASF(P92)
CALL PERASF(P2)
CoaLL PERASFEI(T)
GSIG=PDERIV{GsSIGMA)
GMU=PDFRTVIGsML)
GEPS=PDERIVI(GFPS)
Q1=PPRON(RSTGsSTIGNOT)
Q2=PPRON (MU MUNOT)
QA=PPRON(GFPS,FPSNNT)
T=PSUM(Q1+Q2)
GPOT=PSUM(T,Q2)

33

CALL PERASE(GSTG)
cALL PERASF(GMU)
CALL PERASE(GFPS)
CALL PERASE(QL)
caLL PFRA%C(Q7)
CALL PFRASE(Q
cabll PFRASF(T)
T=PPROD(G,MUPOL)
U=PNIF(FNCT»T)
V=PSUM(F,cDOT)
cAaLL DFQASC(C)
ALl DFRASE(

ALl DFRAS?(

caLL DPRASE(FHOT)
CALL PERASF(GDOT)

F=U
G=V

40 PRINT 411

41 FORMAT (/6K F SUURs T2
rALL PWRITFIDUT oF)
PRIMT 4747

4L FORMAT(/aH ~ SURSTI")
CALL PWRTTFINUT oG)
T=1T+1
IF {(I—=NYy 2092021

21 STOP
FND

FANDG TNPUT
(+1E%%0)MEHD) SH*N)

FIERXOIMEET) SHH0)
—2FHFOIMEH]) SHKET)
—oERKOIMHRD) SHF oL ({FFHXT IM*XQ)SH*0)

((
+0
(L
(S
(R
(((=1E*¥0IM*¥H 4 (—DERHTIMERO)SHFT)
+17?

34

FANDG OUTPUT

N=12

£ osyr N
({41 FRXDIMRR0) SHENY

6 SuUr D
+0
F sus 1
+0
G Sur

({1 xR0)MERD) SH*0))

= SUr 2
(({—=1F%%0)M%*%1) S¥*%n)

5 SUR 2
+0
F SUR 13

({42330) MuxT) 5% -

G SuUe =2
(((=1E%%0)MxA7) SHHXN)

c osuR 4
(({—1RFEROIMBHTYSHED L (((LIF XD)MEXD L (LAFRET YMER]) SHR0)

6 suUR 4
(((+RF*HOIM*RT) SH*T)

F Silp 5
({1 08F*#0IMB*H 7)SH X2 L ((T RF¥FOIMH¥X L (—4BEH¥T YMHK])SHXT)

6 suUm g
(((—LBEXFN)MHIE) SRR 4 (((L7E XXV MERD L (LOF*HT) MR‘T) Sk

F SUo 4
({((—opreR0yMHRT SN L ((£210OF XX IMEXR 2L (a2 OF #37 JMEX T YSHRD L ((= FHEQ) MHH24
(=2LF%%T YMHEDL (g BFEHFD MR)SHXQD)

G SUR A
({{4420F%XD IMEHX 7)SERaaL((=2 0FHFOYME*2 L (~10QEHH) ARFYy §XET)

F SUR 7
(({+10D0BF¥ROYM*H 1) SHXGL((=21 RQFH#HO)MHEH DL (=94 Q0F FH 1) MHN) SH*2L ((+5EHH0)

MER2L (£2Q0F#¥T IMIRIL (LT ET7RE R) M¥H]) SHHT)

nosum 7

(((—a7oBEXRDIMBHT YSHRL 4 ((L4 2NFFENYMRAS L (LRI ROFTHF T YMERY JGHRF o4 (((—ERHFD) MHX
AL —BAFHFEVIMEXD L (20 FHR A)MRNT) SHX())
F suR =

({{=17R72A8F %% IMEH*T)SAXAL((4R TOT7REXXRDIM*XI4 (4185028 F% £ IMH%])S¥H*4+((~220
RERFOIMAKL (=248 TO0FRR] IMERHIL (A 2BPREHXD YMAR Y) SAR oL ((F1FERXQ)MER4+ (+ 7] TE*F
TIMER A4 (F710TFEXH¥D IMERI L (4718 7ECRR2)ME%] Y SHXQ)

35

5 5Ur 8
(((+622TOEXROIM*R])SHEG L ((—=12R00FHXNYMIX S L (=RaTNOFFE] JMEF)SHXL((L1040 %

HOIM®H 2L (L2004 FHT YMIRD L (LoaROF ¥ JMFHRT) SR)

= SUe 9
(((+7W7707EC%*Q)W*%1)S%%W+((~OhEOQEp*%O)M*%1+(~?Q17ROEF**1)M*%l)s**q+((+

£5R28F ¥ %0)ME R+ (FALLLODFH ¥ IMEXIL (L7100 T4 T7EFRAD)MERT) SR 2L [(=DRRE*H0)M¥**y
(=100 2BF%#%] IM#%24+ (~T7LACEFHRI)MELIL{ =00 RFIHRQYMHXT) SH*17)

noSurR 9
(((~04BaaRF®¥NIMENT)SHXAL((4PRORTRERHRQ MUK 4 (410914 THFFHF]) MR) SH*4 4 ((4
ATEFH**¥NIMER2L (=1 TIRTIOFEFA NI MERDIL (=D QTATRFXID IMART)SHUDL (L1 EHRXO)MEXL 4 (404
AF®H T YMERAL (+41TFH X2 IMAXI L (F1T702HEXHKR)MIHX T)SHXD)

F Stir1n

(({=2L4804 2R F 0 IM*¥T)SH%aL ((+1001R000F¥RQ)MERDL(+BERTRATOORHHT yMHEH]) SH*g
((=1201R00F##NIM¥R AL (77N TO]OF¥¥ 1 IMAEF DL (=222 783 3R0F®¥ 2)MHEE])SHH*44((+977]

SOFHXRN IMERL L (+B8Q00ANTHET MR L (42421 HL0F KX YMAXOL (42480 00F K K2)M*EKT) S#xD
({=1F#R0IMEAB 4 (~40aF ¥ 1 IMERLL (=T ROAAER XD IMER2L (—RRAJOEH*H2)MEAD+ (=002 26F

¥HLYMERTY)SHRO)

5 5UR10
((L+1A2T1R200F*¥¥0)MHERY)SHXT 4 ((=RRTRATOFX¥OIM¥H DL (=22 T0DKQOEF*]) M*N]) SH*g
((4+262240F¥¥0IYM¥X2 4L (L2471 7LLOF¥% T) MER 2L (4072 TROOF T YMH I) GH* 4L (-5 0E*¥(
YMEH 4L (=28 1O0F ¥)MEX2L (=271 7Q0F ¥)MER S L (=T702QOFHH3) M*kK) S¥kxT)

F SUr1q

({({ 46547200708 %¥X0IME%T)SHXOL((~412512100F X0)MEF D4 (-1 240539300F ¥¥ 7 yM*k*k)

SHXTL((+5ARALRTOFRXNIMEX 24 (44ARLNLOLNFRH¥T IMBERD L (FTHADTRLHENE ¥ #0) MK) 5¥*g
({(=12N1200EXKN IMFR 4L (=2 TN TNONFR¥T) MEX2 4L (137237 7ONERFD)M*¥XD L (~17027010

OEX#2)M¥¥1)S¥¥ 21 ((£102AF#KO0OIMERS L { +11ALALTR¥ T IMEXRLL(LD0D2TERFXRD) MER 4 (+

ONRARNNFX#2)MEX L (LNP DRI TRERIL)MEF T) GHF 1)

5 Sual)

(({(=2107124R7265E%%¥0)M¥¥1)S*%2+((+132422300F¥*¥0)M**¥ 24+ (+5108710300F#%])M*%1)5
#¥6 4 ((~OHBROLABROF ¥R IMAERAL(=1120123400F ¥H¥] IMARD L (2604051 ROE#*¥D JMFEHXT) Gikwg
(+62AANEXHO IM*H 4 4 (£IRRQRLOF¥¥ T)MEXIL (+2]17 16 TOQE*¥D)MEX DL (4+29202100E%%3) 1M
¥UY)SHK oL (= FHFOI)MEHRRL (-1 00RFHH])MAER L (~ENTVAAFFX D YMEX 2L (=48 7200F F %)Mk
24 (—R02NPEFH%, YMEXT)SHHD)

F sur1»
(((=127402 108 7RFX¥¥0IM®HT)SHHT10+{ (+9RD00Q24 T 2EF XY M¥X DL (+0a4APR08RTHERHT)
M##1)S%¥¥RL((=1R4DDARBAADER¥NIMER AL (=123 RT1DTRPOF¥¥ T)MXEX D4 (=271 70043778 QF ¥
IIMAXT)SHHA+ ((+ERT0GNROERMDIMEN¥4+(+7 17207 1R8NEX¥T) Me#23+ (457984432350 %%2)
M#R I+ { +4RAGTPRTEIFH¥2IMAXT)S#% 4+ ((-1 QRTOBEX ¥ IMA_E L (=1 20720 0F %]) M¥ ity 4 (
1EQ72a870F %%)MXH*24 (—~£10018200F #¥¥ 2)MEX DL (=488 1207OEXR R4) MEFT)S** D+ ((+1F
KEQIMIRE+ (470 TEXRHT IMERE L LTALATOER 2) MEXL4 4+ (+2LRNDTIEREXFYMEX4 (+0951505[
%%a)M%%7+(+QQ9Q77RE%%R)M%%1)5%*0)

G sus1l?

(((4ABLTIPANTEOERRN)M¥%]) SHH 0L ((—2208104R00F*¥H 0)M¥H 5, (=124052G2000F F¥])M*
*1)5**7+((+17Q1RQRAOC*%O)M**Q+(+?§87O7?440:**])M**2+(+75671%4900E**7)M%*
1)S*¥E4((=4Q04R0NFHF¥N)M*R4 4 (=145045R00F¥¥ 1)MX ¥ (=1008404400FX¥5) M*tks 4 (-
1702701000F* %2)M*¥¥ 1) SX¥2 L ((4204ACRXN)MERBL (4255LNAFHH] YMIXLL (4922 T196F *H
DIMI_2L (+A0ABNLNNF¥H*2)MIX2 4 (400022 THOF ¥ ¥/) MHIH 1) ST

36

6. System Performance and Storage Requirements

The performance characteristics of SAC-1 will depend on many
complex factors, including the type of problem to which it is applied,
the computer on which it is implemented, and the FORTRAN compiler
which is used to compile the SAC~-1 subprograms. Nevertheless, we shall
attempt below to draw some limited conclusions from experiments with the
f and g series program above on the CDC 1604 computer and their
comparison with PM and FORMAC performance on the same problem.
In particular, we will present evidence that with only a little additional i
effort in implementing SAC-1, its performance can be brought to a level
only slightly below that of PM .

In order to compare SAC-1 performance with PM performance, it
is necessary to compare the CDC 1604 computer with the IBM 7094 computer.
Although the ratio of speeds of the two computers will depend on the type
of application, we believe that for the SAC-1 type of application, the IBM
7094 should be rated as 3.5 to 4.0 times as fast as the CDC 1604. The
subprogram PFA is likely a rather accurate measure of this ratio. PM's
PFA has an execution time of 44 microseconds. When programmed in
assembly language, without subroutine calls, for the CDC 1604, execution
time is 180 microseconds. This would indicate a ratio of 4.0 but other

considerations (e.g., speed of arithmetic and I/O) suggest a somewhat

smaller ratio.

37

The PM f and g series program, for N = 12, executed in 6.6
seconds (see [4]), as compared with 75.9 seconds for SAC-1. This is
a ratio of 11,5, which reduces to about 3.0 after correction for change
of computer. This implies that SAC-1 is about three times as slow as PM
as a result of its computer independence. The explanation of this con-
siderable loss is, of course, that the system spends a large percentage of
its time just executing unproductive subroutine linkages. This state of
affairs could have been avoided, had less pain been taken to make SAC-l easy
to implement by reducing the number of primitives to a minimum.)

Fortunately, one can choose between ease of implementation and
efficiency. One can begin with the standard version of SAC-1l, in which
only the primitives are programmed in assembly language. When occasion
demands it, one can render the system more efficient by reprogramming in
assembly language some of the simpler subprograms which were previously
FORTRAN -compiled. In this reprogramming, the main objective is to program
in-line certain simple list processing operations which were previously
done via subroutine calls, thereby eliminating subroutine linkages.

The experiments we have performed indicate that it is possible to
recoup a large portion of the lost efficiency with only a very small additional
programming investment, since the source of the inefficiency is highly con-

centrated in a few of the lower-level subprograms which are frequently

executed.

38

We reprogrammed in CDC 1604 assembly language six of the SAC-1
list processing subprograms: FFA, PFL, DECAP, ERLA, ADV and INV.
Each was programmed so that it no longer contained any subroutine calls.
The f and g series program, for N = 12, was then run three more times,

with the following results.

Assembly Language Subprograms Execution Time in Seconds
None 75.9

PFA, PFL 57.7 i
PFA, PFL, DECAP, ERLA 43.0

PFA, PFL, DECAP, ERLA, ADV, INV 38.5

Thus it appears that reprogramming these six simple subprograms,
less than one man-month of effort, reduces the PM to SAC-l efficiency
ratio from 3.0 to 1.5, a very tolerable level. There is no guarantee that
these ratios carry over to other computers and other SAC-1 applications,
but we have reasons to believe that these figures will be representative.

The f and g series program, for N = 12, involves approximately
36000 executions of PFA and PFL . Prior to optimization, each of these
subprograms had a CDC 1604 execution time of 680 microseconds. Thus
these two subprograms alone accounted for 32% of the total execution
time. Experiements with PM on other applications indicate that this

percentage is typical. These experiments also showed that approximately

39

another one third of the total time is typically spent on list erasure.
Since all polynomial erasure done by PERASE relies ultimately on DECAP
and ERLA, it is not surprising that assembly language versions of these
subprograms contributed appreciably to the above time reductions. The
contribution of ADV and INV was much less substantial.

The amount of memory required for storage of the instructions and
data (other than lists) of the SAC-1 subprograms may vary considerably
from one computer to another. For whatever it is worth, in general,
here are the approxin ate requirements for the CDC 1604. Two instructio.ns
are stored in most 1604 words, but the instruction repertoire is such that

many instructions are frequently required to perform a simple task.

Subsystem Memory Required
List Processing 1100
Integer Arithmetic 1300

Polynomial 2800

40

7. Acknowledgements

Development of the SAC-1 polynomial system has been supported
by the University of Wisconsin Computing Center and, indirectly, by
the Wisconsin Alumni Research Foundation and the Graduate School.
Much of the programming was done by W. J. Fabens. Smaller portions
were programmed by L. E. Heindel, M. T. McClellan and the author.
The improved polynomial product algorithm was suggested in part by

L. E. Heindel.

41

References

Collins, G. E. The SAC-! List Processing System. University

of Wisconsin Computing Center Report. July, 1967.

Collins, G. E. The SAC-! Integer Arithmetic System. University

of Wisconsin Computing Center Report. September, 1967.

Collins, G. E. PM, A System for Polynomial Manipulation. Comm.

A.C.M. 9, 8 (Aug. 1966), 578-589,

Collins, G. E. and Griesmer, J. H. Comparison of Computing -
Times in ALPAK, FORMAC, PM and Korsvold's System. SICSAM

Bulletin No. 4 (Sept. 1966), 20-25,

Brown, W. S., Hyde, J. P., and Tague, B. A. The ALPAK System
for Non-numerical Algebra on a Digital Computer. Pt. I: Bell
System Tech. J. 42, 5 (Sept. 1963), 2081-2119. Pt. II: lbid. 43, 2

(March 1964), 785-804. Pt. IIL: Ibid. 43, 4 (July 1964), 1547-1562.

Bond, E. et.al. FORMAC -- An Experimental Formula Manipulation

Compiler. Proceedings of the ACM National Conference, Aug. 1964,

McCarthy, John, et.al. LISP l.5 Programmer's Manual. MIT Press,

1962,

Collins, G. E. Subresultants and Reduced Polynomial Remainder

Sequences, Jour. A.C.M. 14, 1 (Jan. 1967), 128-142,

10,

42

Sconzo, P., LeSchack, A. R., and Tobey, R.

Symbolic Computation

of f and g Series by Computer. Astronomical Journal, Vol. 70

(May 1965).

FORTRAN vs. Basic FORTRAN. Comm. A.C.M,

592-625,

7, 10 (Oct. 1964),

w N

43

INTEGER FUNCTION ITOS(X)
COMMON /TR1/ AVAILsSTAKSsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILsSTAKsRECORDsSYMLST
INTEGER XsYsZsQsRoT

INTEGER CINVsFIRSTTAILsPFA
Y=CINV(X)

2=0

Q=0

T=Y

R=FIRSTI(Y)

IF(ReNE0)GO TO 3

CALL DECAP(R»sY)
IF(Y«EQeD)IGO TO 4

T=Y

R=FIRST(T)

CALL QR(QsRs64)

CALL ALTER(QsT)

Q=R

T=TAIL(T)

IF(T«NE«D)IGO TO 2
Z=PFA{Qs2)

GO T0 1

ITOS=2Z

RETURN

END

SUBROUTINE NEXTCH(UsI)

COMMON /TR1/ AVAILsSTAKsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAIL»STAKsRECORDsSYMLST
INTEGER U

I=1+1

[IF(IeLE«T72)RETURN

I=1

CALL READ(UsRECORD)

RETURN

END

INTEGER FUNCTION PABS(X)

COMMON /TR1/ AVAILsSTAKsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAIL sSTAKSsRECORDsSYMLST
INTEGER XsPsS

INTEGER PSIGNsPNEG,BORROW

P=X

S=PSIGNI(P)
IF(SeLTe0)PABS=PNEG(P)
IF(SeGE«0)PABS=BORROW(P)

RETURN

END

12

14

13

15

20

27

21

22

44

INTEGER FUNCTION PCGCD(IsXsY)
COMMON /TR1/ AVAILsSTAKSsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAIL sSTAKSRECORD»SYMLST
INTEGER X9sYsPsQsRsAsBsCeDsPBsQBsRBSRET
INTEGER FIRST»TAILsTYPESsPABSsPONE sPSQsPSPRODsPGCDASPDEG
P=X

Q=Y

RET=1

GO TO (10+20)1

PCGCD=R

RETURN

RECURSIVE PROCEDURE R=PCONT(P)
P=TAILI(P)

A=PABS(FIRST(P))

P=TAIL(TAIL(P))

IF (PsEQ.0O) GO TO 15

B=FIRST(P)

IF (TYPE(B)YeEQel) GO TO 12
C=1IGCD(AB)

GO TO 13

CALL STACK3(AsPHSRET) -
pP=A

Q=B

RET=2

GO To 20

C=R

CALL UNSTK3(AsPRET)

CALL PERASE(A)

A=C

IF (PONE(A)eEQ.QO) GO TO 11

R=A

GO TO (1914+21922+23+24) sRET
RECURSIVE PROCEDURE R=PGCD(PsQ)
IF (PDEG(P)GEPDEG(Q)) GO TO 27
A=p

P=Q

Q=A

CALL STACK3(P3sQsRET)

RET=3

GO TO 10

A=R

CALL UNSTK3(P,QsRET)

CALL STACK2(P,sQ)

CALL STACKZ(RETs-A)

P=Q

RET=4

GO T0O 10

B=R

CALL UNSTKZ(RETsA)

CALL UNSTK2(PsQ)
IF{TYPE(A)sEQe0IGO TO 25

CALL STACK3(PsQsRET)

CALL STACK2(A,B)

25

23

26

24

45

P=A

Q=8

RET=5

GO To 20

C=1GCD(AyB)

GO TO 26

C=R

CALL UNSTK2(AsB)
CALL UNSTK3(PysQsRET)
PB=PSQ(PsA)
QB=PSQ{Q+B)

CALL PERASE(A)

CALL PERASE(B)
R=PGCDA(PB,QB)

CALL PERASE(PB)

CALL PERASE(QB)

CALL STACK3(CsRsRET)

P=R

RET=6

GO T0 10

D=R

CALL UNSTK3(CsRsRET)
RB=PSQ(RsD)

CALL PERASE(R)

CALL PERASE(D)

R=PABS(RB)

CALL PERASE(RB)

RB=R

R=PSPROD(RBsC»0)

CALL PERASE(RB)

CALL PERASE(C)

GO TO (1149219229239 24) 9RET
END

INTEGER FUNCTION PCONT(X)

COMMON /TR1/ AVAIL,STAKsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAIL +STAKsRECORDsSYMLST
INTEGER PCGCDsX

PCONT=PCGCD(1sXs0)

RETURN

END

INTEGER FUNCTION PCPP(X)

COMMON /TR1/ AVAIL.STAKsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILSsSTAKsRECORDSSYMLST
INTEGER XsPsQsRsA

INTEGER PFL¢PCONTsPSQsPABS

P=X

A=PCONTI(P)

Q=PSQ(PsA)

R=PABS(Q)

CALL PERASE(Q)
PCPP=PFL{AJPFL(R,0))

10

14

15

13

16

46

RETURN
END

INTEGER FUNCTION PDEGI(X)

COMMON /TR1/ AVAIL+STAKSsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAIL sSTAKsRECORDSYMLST
INTEGER XaeYolZ

INTEGER FIRSTLTAIL

Y =X

2=0

IF(YeNEeO) Z=FIRST(TAIL(TAIL(Y)))
PDEG=Z

RETURN

END

INTEGER FUNCTION PDERIV(XsY)
COMMON /TR1/AVAILsSTAKSRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILsSTAKsRECORDsSYMLST
INTEGER XsYsPsQsRsUsVs CeDsESsF
INTEGER BORROWsINVsPFASPFLSPIPSTYPE
p=X

v=Y

PDERIV=0

IF (PeEQ.0) RETURN

IF (TYPE(P)eEQeO) RETURN

R=1

GO TO 10

PDERIV=Q

RETURN

Q=0

IF (TYPE(P)eEQeQ) GO TO (1016)sR
CALL ADV(UsP)

IF(VeNE«U)GO TO 13

CALL ADV(CsP)

CALL ADVI(EsP)

IF (E«EQ.0) GO TO 15

F=PFA(E»0)

D=PIP(CsF)

CALL ERLA(F)

Q=PFL{D»Q)

Q=PFA(E-1+Q)

IF (PeNEoQ) GO TO 14

GO TO 18

CALL ADVI(CsP)

CALL STACK2(P.Q)

CALL STACK2(RsU)

P=C

R=2

GO To 10

D=Q

CALL UNSTKZ(RsU)

CALL UNSTK2(PsQ)

17
18

19

10

11

12

13

14
15

17

47

CALL ADVIEyP)

IF (DeEQe0O) GO TO 17
Q=PFL(DsQ)
Q=PFA(E»Q)

IF (PeNELO) GO TO 13
IF (QeEQ.0) GO TO 19
Q=INV(Q)
Q=PFL(BORROW(U)»Q)
GO TO (1s16)9R

END

INTEGER FUNCTION PDIF(XsY)
COMMON /TR1/AVAILsSTAKSRECORD(72)
COMMON /TR2/ SYMLST
INTEGER AVAILsSTAKsRECORDSYMLST
INTEGER BORROWsTYPESTAILsPFASPFLsINVSsIDIFsPNEG
INTEGER XasYsPsQosRsSsTslUUsVsAsBsCorlsJsMsN
P=X

Q=Y

IF (PeNE&O) GO TO 1
PDIF=PNEG(Q)

RETURN

IF (QeNEWLO) GO TO 2
PDIF=BORROW(P)

RETURN

IF (TYPE(P)eNESO) GO TO 3
PDIF=IDIF(P4+Q)

RETURN

S=1

GO TO 10

PDIF=R

RETURN

R=0

CALL ADV(IsP)

Q=TAIL(Q)

U=pP

CALL ADV(A,sP)

CALL ADV(MsP)

v=Q

CALL ADVI(EB Q)

CALL ADV(N»Q)

GO TO 14

u=p

CALL ADV(A,sP)

CALL ADV(M,P)

IF (M-N) 1541617
R=PFL(PNEG(B) sR)
R=PFA(NsR)

IF (QeNELO) GO TO 12

T=U

J=1

GO TO 25

R=PFL (BORROW(A)sR)
R=PFA(MsR)

IF (PsNE.O) GO TO 13

16

18

20

19

21

22

25

27
28

26

29

11

48

T=V
J==-1
GO TO 25

IF(TYPE(A)eNE.O)GO TO 18
C=IDIF(AsB)

GO TO 19

CALL STACK3(PsQsR)
CALL STACK3(IsMsS)
pP=A

Q=B

5=2

GO TO 10

C=R

CALL UNSTK3(IsMsS)
CALL UNSTK3(P5sQsR)
IF (CeEQs0) GO TO 21
R=PFL(Cs»R)
R=PFA(MsR)

IF (PeNE.0O) GO TO 22
T=Q

J=-1

GO TOo 25

IF (QeNE.O) GO TO 11
T=P

J=1

IF (TeEQ.0) GO TO 26
CALL ADV(AsT)

IF (JeEQe1l) GO TO 27
C=PNEG(A)

GO TO 28

C=BORROW(A)
R=PFL(CsR)

CALL ADV(M,T)
R=PFA(MsR)

GO TO 25

IF (ReEQe0) GO TO 29
R=PFL(BORROW(I)sINV(R))
GO TO (4+20)55

END

SUBROUTINE PERASE(X)

COMMON /TR1/AVAILsSTAKSRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAIL +sSTAKSRECORDsSYMLST
INTEGER TYPE s COUNT

INTEGER XsPsRsVsA

IF (XeEQeOQ) RETURN

P=X

R=1

GO 70 10

RETURN

IF (TYPE(P)eEQel) GO TO 11

CALL ERLA(P)

GO TO (1415)9R

N=COUNT(P)~1

12

13

14

15

16

49

IF (NeEQe0O) GO TO 12
CALL SCOUNT(NsP)

GO TO (1415) R

CALL DECAP(VsP)

CALL ERLA(V)
N=COUNT(P)=-1

IF (NseEQs0O) GO TO 14
CALL SCOUNT(NsP)

GO TO (1s15)sR

CALL DECAP(AsP)

CALL STACKZ2(PsR)

P=A

R=2

GO To 10

CALL UNSTK2(PsR)
N=COUNT(P)~-1

IF (NeEQeO) GO TO 16
CALL SCOUNT(N»sP)

GO TO (1415)9R

CALL DECAP(MsP)

IF (PeNESO) GO TO 13
GO TO (1415)sR

END

INTEGER FUNCTION PGCD(XsY)
COMMON /TR1/ AVAILsSTAKSsRECORDI(72)
COMMON /TR2/ SYMLST

INTEGER AVAIL+STAKSsRECORDsSYMLST
INTEGER XsYsPsQ

INTEGER TYPESPABSsPCGCD

P=X

Q=Y

IF (PeNEe0O) GO TO 1

PGCD=PABS(Q)

RETURN

IF (QeNESO) GO TO 2

PGCD=PABS (P)

RETURN

IF (TYPE(P)«NE4O) GO TO 3
PGCD=1GCD (P4+Q)

RETURN

PGCD=PCGCD(2sPsQ)

RETURN

END

INTEGER FUNCTION PGCDA(XsY)

COMMON /TR1/ AVAIL+STAKsRECORD(72)

COMMON /TR2/ SYMLST

INTEGER AVATIL sSTAKsRECORDsSYMLST

INTEGER CsCIsCJsDsIs NAsSNBsPsQsRsRAsXsY
INTEGER BORROWsPDEGs+PLDCFsPPRODsPSREMSPSQ
P=X

Q=BORROW(Y)

R=PSREMI(P,+Q)

Ul W

10

11
12

13

50

IF(R.EQ-0)GO TO 1
NA=PDEG(P)

P=Q

Q=R

R=PSREM(P,Q)
IF{ReEQs0)GO TO 2
NB=PDEG(P)
D=NA—-NB
C=PLDCF(P)

CALL PERASE(P)
CI=BORROW(C)
IF(D«EQs0)GO TO 5
DO 3 I=14D
CJ=PPROD(CIsC)
CALL PERASE(CI)
CI=CJ

CALL PERASE(Q)
RA=PSQ(R,CI)

CALL PERASE(R)
CALL PERASE(CI)
R=RA

NA=NB

GO TO 4

CALL PERASE(P)
PGCDA=Q

RETURN

END

INTEGER FUNCTION PIP(XsY)
COMMON /TR1/AVAIL ¢STAKSRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILsSTAKsRECORDs SYMLST
INTEGER BORROWsINVsPFASPFLSsTYPE
INTEGER XsYsPsQoRsSsVsAsB

p=X

Q=Y

pIP=0
IF(PoEQoe0eORsQaEQeCG)IRETURN

Ss=1

GO TO 10

PIP=R

RETURN

IF (TYPE(P)eNELO) GO TO 11
R=IPROD(PsQ)

GO TO (1s13),s5S

CALL ADV({VsP)

R=0

CALL ADV(A,P)

CALL STACK2(PsR)

CALL STACK2(SsV)

P=A

$=2

GO TO 10

B=R

CALL UNSTK2(SsV)

51

CALL UNSTKZ2(PsR)

R=PFL(BsR)

CALL ADV(AsP)
R=PFA(AsR)

IF (PeNE«O) GO TO 12
R=INV(R)

R=PFL(BORROW(V)sR)
GO TO (1913})4S
END

INTEGER FUNCTION PLDCF(X)

COMMON /TR1/ AVAILsSTAKsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILsSTAKsRECORDsSYMLST
INTEGER XsYsZ

INTEGER BORROWsFIRSTsTAIL

Y=X

z=0

IF(YeNEeO) Z=BORROW(FIRST(TAIL(Y)))
PLDCF=Z

RE TURN

END

INTEGER FUNCTION PMERGE(PsQ)
COMMON /TR1/ AVAILsSTAKSRECORD(T72)
COMMON /TR2/ SYMLST

INTEGER AVAIL sSTAKsRECORDsSYMLST
INTEGER AsBsFsGsl sMIMERGE sNysPsQsRsRT 9SsTsUsUPsVIVPsW
INTEGER BORROWsINVIPFASPFL
PROCEDURE CALL

F=P

G=Q

R=1

GO TO 24

PMERGE=MERGE

END PROCEDURE CALL

RETURN

RECURSIVE PROCEDURE MERGE=PMERGE(FsG)s RETURN TO R
S=F

T=06

MERGE=0

CALL ADV(AsS)

CALL ADVI(BsT)

MERGE=PFL (BORROW(A) sMERGE)

I=1

M=S

CALL ADV(UsS)

CALL ADV(UPsS)

GO TO (1e2)s1

N=T

CALL ADV(VST)

CALL ADV(VPsT)

IF(UP.EQsVP) GO TO 6
IF(UP«LTeVP) GO TO 5

26

52

MERGE=PFL ({BORROW(U) sMERGE)
MERGE=PFA(UP s MERGE)
IF(SeNEe«O) GO TO 3
W=MERGE

MERGE=INV (W)

CALL SSUCC(BORROWI(N)sW)

GO TO 20

I=2

GO TO 4

MERGE=PFL (BORROW(V) sMERGE)
MERGE=PFA (VP sMERGE)
IF(T«NEsQ) GO TO 1
W=MERGE

MERGE=INV(W)

CALL SSUCC(BORROW(M) sW)

GO TO 20

RECURSIVE PROCEDURE CALL RT=PMERGE(U»V)
CALL STACK3(MERGEsUPsR)
CALL STACK2(S.T)

F=U

G=V

R=2

GO T0O 24

RT=MERGE

CALL UNSTK2(SsT)

CALL UNSTK3(MERGEsUPsR)
END RECURSIVE PROCEDURE CALL
MERGE=PFL(RT ¢ MERGE)
MERGE=PFA(UP ¢y MERGE)
IF(SeNEoQOaANDoTeNE-OC) GO TO 7
W=MERGE

MERGE=INV(W)

IF{SeNEsO) GO TO 8

CALL SSUCC(BORROW(T) sW)

GO T0O 20

CALL SSUCC(BORROW(S) sW)
PROCEDURE RETURN

GO TO (25926) R

END

INTEGER FUNCTION PMPNV (PsVsE)
COMMON /TR1/ AVAILsSTAKSsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILsSTAKSRECORDsSYMLST
INTEGER AsBYEsFEsFPsFVsNsPsPPMPNVsRIRESULT sV e X
INTEGER BORROWs INVsPFAsPFL
PROCEDURE CALL

FP=pP

FVv=vV

FE=E

R=1

GO TO 24

PMPNV=PPMPNV

END PROCEDURE CALL

RETURN

NN

26

10

11

53

RECURSIVE PROCEDURE PPMPNV=PMPNV(FPsFVsFE)sRETURN TO R
A=FP

X=FV

N=FE

PPMPNV=0

CALL ADV(B»sA)

PPMPNV=PFL (BORROW(B) sPPMPNV)
IF(BeNEeX) GOTO 2

CALL ADV(BsA)

PPMPNV=PFL (BORROW(B) s PPMPNV)
CALL ADV(B,A)

B=B+N

PPMPNV=PFA(B,PPMPNV)
IF(A«NEeO) GO TO 1

GO TO 20

CALL ADV(B»sA)

RECURSIVE PROCEDURE CALL RESULT=PMPNV(BsXsN)
CALL STACK3(AsPPMPNV,yR)

FP=8B

FV=X

FE=N

R=2

GO TO 24

RESULT=PPMPNV

CALL UNSTK3(AsPPMPNVsR)

END RECURSIVE PROCEDURE CALL
PPMPNV=PFL(RESULT +sPPMPNV)
CALL ADV(B,sA)
PPMPNV=PFA(BsPPMPNV)
IF(A«NE«O) GO TO 2
PPMPNV=INV (PPMPNV)

PROCEDURE RETURN

GO TO (254+26) R

END RECURSIVE PROCEDURE,s RETURN TO R
END

INTEGER FUNCTION PNEG(X)

COMMON /TR1/AVAILsSTAKSRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILsSTAKsRECORD» SYMLST
INTEGER BORROWsTYPESINVsPFAWPFLINEG
INTEGER AsBsEsPsQsReXsV

p=X

IF (PeNEsO) GO TO 1

PNEG=0

RETURN

R=1

GO T0 10

PNEG=Q

RETURN

IF (TYPE(P)eNE&O) GO TO 11
Q=INEG(P)

GO TO 14

Q=0

CALL ADVI{VsP)

12

13

14

54

CALL ADV(AsP)

CALL STACK2(P,Q)
CALL STACK2(RsV)

P=A

R=2

GO TO 10

B=Q

CALL UNSTK2(R»sV)
CALL UNSTKZ2(P,Q)
Q=PFL(BsQ)

CALL ADV{(E,P)
Q=PFA(E»Q)

IF (PeNE0O) GO TO 12
Q=PFL(BORROW(V) s INV(Q))
GO TO (2513)4R

END

INTEGER FUNCTION PONE(X)

COMMON /TR1/ AVAILsSTAKRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAIL+sSTAKsRECORD»SYMLST

INTEGER UsVaeX
INTEGER FIRSTSTAILSTYPE
U=X

IF(U«EQe0)GO TO 1
IF(TYPE(U)eEQ.0)GO TO 2
V=TAIL (U)

U=FIRST(V)
IF(FIRST(TAIL(V))eEQeQ)GO TO 3
PONE=0

RETURN

V=TAIL(U)

IF(VeNE-0O)GO TO 1
U=FIRST(U)

V=1

CALL ADD3(UsV,s0)
IF(VeNE«QO)GO TO 1
IF(UeNE-0)GO TO 1
PONE=1

RETURN

END

INTEGER FUNCTION PORDER(PsL)
COMMON /TR1/ AVAILsSTAKSsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILsSTAKsRECORD s SYMLST

INTEGER C9sDUMSE sL sORDER sP sPPyPPDsRSRETsR1 sV eVL sVLDsV1sXPPsXVL
INTEGER BORROWsIPFASsPFL sPMERGE sPMPNV s TYPE

PORDER=0
IF(P.EQs0) RETURN
PROCEDURE CALL
XpPp=p

XVL=L

RET=1

GO TO 24

[@ YL

55

PORDER=0ORDER

END PROCEDURE CALL
RETURN

RECURSIVE PROCEDURE ORDER=PORDER(PP,sVL)sRETURN TO RET
PP=XPP

VL=XVL

ORDER=0
IF(TYPE(PP)eNELO) GO TO 2
VLD=VL

PPD=BORROW(PP)
ORDER=PFA(0,0)

ORDER=PFL (PPDsORDER)
CALL ADV(VsVLD)
ORDER=PFL (BORROW(V) sORDER)
IF(VLD.EQeOQ) GO TO 20
PPD=0RDER

GO 70 1

CALL ADV(V1,PP)

CALL ADV(C,PP)

RECURSIVE PROCEDURE CALL
CALL STACK2(ORDERsPP)
CALL STACK2(V1sRET)
xXpPp=C

RET=2

GO TO 24

R=0RDER

CALL UNSTK2(V1,sRET)

CALL UNSTK2(ORDERsPP)
END RECURSIVE PROCEDURE CALL
CALL ADVI(E,PP)
R1=PMPNVI(RsVI1IsE)

CALL PERASE(R)
IF(ORDER.NE«0O) GO T0O 4
ORDER=R1

GO TO 6

DUM=0ORDER

ORDER=PMERGE (DUMsR1)
CALL PERASE{(DUM)

CALL PERASE(R1)
IF(PPeNE.O) GO TO 5
PROCEDURE RETURN

GO TO (25926)RET

END RECURSIVE PROCEDURE
END

INTEGER FUNCTION PPP(X)

COMMON /TR1/ AVAILsSTAKsRECORD(72)
COMMON /TR2/ SYMLST

INTEGER AVAILsSTAKsRECORDsSYMLST
INTEGER XsPsQsA

INTEGER PCONTPSQsPABS

p=X

A=PCONT(P)

Q=PSQ(PsA)

CALL PERASE(A)

56

PPP=PABS()
CALL PERASE(Q)
RETURN

END

INTEGER FUNCTION PQ(XsY)
INTEGER GoHsMsNsQsRsSeTosUsVeXaXXsYsYYsW
INTEGER BORROWsSFIRSTsINVsIQRsPDEGIPDIF sPFASPFL
INTEGER PLDCFsPPROD,PREDSPVBLsTYPESTAIL
XX=X
YY=Y
Q=-1
IF(YY.EQoQ) GO TO 99
Q=0
IF (XXeEQe0) GO TO 99
R=1
GO 10 1
99 PQ=Q
RETURN
C BEGIN RECURSIVE PROCEDURE Q=PQ(XXsYY)s RETURN LOCATION Ro
1 XX=BORROW (XX)
IF(TYPE(XX)eNEO) GO TO 3
M=IQR{XXsYY)
CALL ERLA(XX)
CALL DECAP(QsM)
CALL DECAP(SsM)
IF{SeEQeQ) GO TO 11
CALL ERLA(Q)
CALL ERLA(S)
Q=-1
GO To 11
3 H=PDEG(YY)
U=PREDI(YY)
Q=0
4 V=PVBL (YY)
G=PDEG({XX)~H
IF(GeLTe0) GO TO 7
C RECURSIVE CALL USING LEADING COEFFICIENTS OF XX AND YY AS ARGUMENTS.
CALL STACK3(XXsYYsQ)
CALL STACK3(UsVsR)
CALL STACKZ2(H+G)
XX=FIRST(TAIL(XX))
YY=PLDCF (YY)
R=2
GO T0 1
5 M=Q
CALL PERASE(YY)
CALL UNSTKZ2(H»G)
CALL UNSTK3(UsVsR)
CALL UNSTK3(XXsYYsQ)
C END RECURSIVE CALL WITH QUOTIENT M AND DEGREE Ge
IF(MeEQe~1) GO TO 7
N=PFL(VsPFL{BORROW(M) sPFA(G»0)))
T=PPROD(N,sU)

57

5=PRED(XX)
W=PDIF(S,T)
CALL PERASE(N)
CALL PERASE(T)
CALL PERASE(S)
CALL PERASE(XX)
XX=W
Q=PFA(GsPFL(Ms»Q))
IF(XXeNEeO) GO TO 4
Q=PFL(BORROW(V)sINV(Q))
GO TO 10

7 CALL PERASE(XX)
IF(QeNE«O) GO TO 8
CALL ERLA(V)

GO TO 9
8 CALL PERASE(PFL{VsINV(Q)))
9 Q==-1

10 CALL PERASE(U)
11 GO TO (99+5) R
C END RECURSIVE PROCEDURE PQ WITH QUOTIENT Qe
END

INTEGER FUNCTION PPROD(XsY)
INTEGER FIRSTsTAILBORROWICINVSTYPE
INTEGER PFASPFLsPSUM
INTEGER XsYsPsQosRsSsVIPIsQIesPTsTsAsBsCHU
IF (XeNE«O«sANDeYeNELO)Y GO TO 1
PPRCOD=0
RETURN

1 IF (TYPE(X)eNEeQ) GO TO 2
PPROD=IPROD(XsY)
RETURN

2 P=X
Q=Y
s=1
GO TO 10

3 PPROD=R
RETURN

10 R=0
V=FIRST(P)
PI=CINV(TAIL(P))
QI=CINV(TAIL(Q))

11 T=0
CALL DECAP({N,QI)
CALL DECAP(B,QI)
PT=PI

12 CALL ADV(MsPT)
CALL ADVI(ALPT)
IF (TYPE(A)«EQel) GO TO 13
C=IPROD(A+B)
GO T0 15

13 CALL STACK3(PIsQl,PT)
CALL STACK3(VsMaN)
CALL STACK2(R»sS)

14

15

16

58

CALL STACK2(TsB)
P=A

Q=8B

5=2

GO 10 1o

C=R

CALL UNSTKZ2(T»B)

CALL UNSTK2(R»S)

CALL UNSTK3(VsMsN)
CALL UNSTK3(PIsQIsPT)
T=PFA(M+N,T)
T=PFL(CsT)

IF (PTeNEe0O) GO TO 12
T=PFL(BORROW(V),T)
CALL PERASE(B)
U=PSUM(RST)

CALL PERASE(R)

CALL PERASE(T)

R=U

IF (QIeNE-O) GO TO 11
CALL DECAP(MsPI)

CALL DECAP(AsPI)

CALL PERASE(A)

IF (PIeNEsQO) GO TO 16
GO TO (35141) 45

END

INTEGER FUNCTION PREAD(U)
COMMON /TR1/AVAIL ¢STAKSRECORD(72)
INTEGER AVAILsSTAK,RECORD
INTEGER IsXsU

CALL READ(USRECORD)

I=1

IF(RECORD(1)eEQe-1)GO TO 1
CALL PREADS(XsUsI)

PREAD=X

RETURN

PREAD=-1

RETURN

END

SUBROUTINE PREADS(XsUsI)

COMMON /TR1/ AVAILSsSTAKsRECORD(72)
INTEGER AVAIL+STAK.RECORD

INTEGER XoUsIsYeVsJoRsWsLsCsEsN
INTEGER PFASINV» IDTOBsPFLsPROSYMSFIRST
V=U

J=1

R=1

GO TO 10

X=Y

I=J

RETURN

RECURSIVE PROCEDURE PREADS(Y)s RETURN VARIABLE R

10

12
11

13

20
27

21

22

23

25

59

Y=0

IF(RECORD(J)«EQe40)GO TO 20
READ INTEGER

W=0

L=RECORD(J)
IF(LeEQe36e0ReLeEQe37)GO TO 11
IF(LelLTe0eOReLeGT«9)GO TO 50
GO 70O 11

IF(RECORD(J) eLTe0eOReRECORD(J)«GTe9)GO TO 13
W=PFA(RECORD(J) sW)

CALL NEXTCH(VsJ)

GO TO 12

W=INV(W)

Y=IDTOB(W)

CALL ERLA(W)

GO TO (1+21+25) R

READ PROPER POLYNOMIAL

READ COEFFICIENT

CALL NEXTCHI(V,sJ)

CALL STACK2(YsR)

R=2

GO TO 10

C=Y

CALL UNSTK2(YsR)

IF{CelLT40)GO TO 51

Y=PFL(CsY)

IF(RECORD(J) eEQe41)CALL NEXTCH(VsJ)
READ VARIABLE
IF(RECORD(J)eLTe1l0e60OReRECORD(J)eGTe35)G0 TO 51
W=0

GO TO 23

CALL NEXTCH(VsJ)

IF(RECORD(J) eLT«0eORCRECORD(J)«GT35)G0 TO 24
W=PFA(RECORD(J) sW)

GO TO 22

READ TWO ASTERISKS
IF(RECORD(J)eNE«38)GO TO 50
CALL NEXTCH(VesJ)
IF(RECORD(J)eNE«38)GO TO 50
CALL NEXTCHI(VsJ)

READ EXPONENT
IF(RECORD(J)eEQe37)GO TO 50
CALL STACK3(WsYsR)

R=3

GO TO 10

E=Y

CALL UNSTK3(WsYsR)
N=0

IF(E«EQe0)GO TO 28
N=FIRST(E)

CALL ERLA(E)
Y=PFA(NsY)

ARE THERE MORE TERMS
IF(RECORD(J)«EQs41)GO TO 30

26

50
51

60

IF(RECORD{J)eEQe37)G0O TO 26
IF(RECORD(J)aNE«36)GO TO 50
CALL NEXTCH({VsJ)
CALL ERLA(W)
GO T0 27
NO MORE TERMS
W=zINV(W)
E=PROSYM(W)
CALL ERLA(W)
Y=PFL(Es INV(Y))
GO TO(1921925)5R
ERROR RETURN
CALL ERLA(W)
CALL ERASE(Y)
=-2
GO TO (1921925} R
END

INTEGER FUNCTION PRED(X)
INTEGER WeXsY sl

INTEGER BORROWsFIRSTsPFLsTAIL
Y=X

2=0

IF({YeEQe0) GO TO 1
W=TAIL(TAIL(TAIL(Y)))
IF(WeEQeO) GO TO 1

Z=PFL(BORROW(FIRST(Y))sBORROW(W))

PRED=Z
RETURN
END

INTEGER FUNCTION PROSYM(X)
COMMON /TR2/ SYMLST

INTEGER SYMLST

INTEGER AsBsDsL X

INTEGER STOI,IDIF +BORROWSsPFL
A=STOI(X)

L=SYMLST

IF(LeEQs0)GO TO 2

CALL ADV(B,L)

D=IDIF(A,B)

IF{DeEQ.0)GO TO 3

CALL ERLA(D)

GO TO0 1

SYMLST=PFL (BORROW(A) s SYMLST)
PROSYM=A

RETURN

CALL ERLAC(A)
PROSYM=BORROW(B)

RETURN

END

61

INTEGER FUNCTION PSIGN(X)
INTEGER P,X

INTEGER FIRST»ISIGNL,TAILsTYPE
p=X

IT(P«EQ.0)GO TO 1
IF(TYPE(P)«EQe0)GO TO 2
P=FIRST(TAIL(P))

GO TO 3

PSIGN=ISIGNL(P)

RETURN

PSIGN=0

RETURN

END

INTEGER FUNCTION PSPROD(XsYsN)
INTEGER PsQsRsXsY

INTEGER BORROWsPFA,PFL+PPROD4PVBL
P=X

Q=Y

PSPROD=0
IF(PeEQeOsOReQeEQ«Q)RETURN
R=PFL(PVBL(P)sPFL(BORROW(Q)sPFA(N+0)))
PSPROD=PPROD(PsR)

CALL PERASE(R)

RETURN

END

INTEGER FUNCTION PSQ(XsY)

INTEGER PsQsRsXsY

INTEGER BORROWsFIRST+PFASPFLPQ

P=X

Q=Y

R=PFL{BORROW(FIRST(P)) sPFL(BORROW{(Q)sPFA(0,0)))
PSQ=PQ(PsR)

CALL PERASE(R)

RETURN

END

INTEGER FUNCTION PSREM(X»sY)

INTEGER XsYsPsQsNsKsQLIQRsI»JsPLIPRsAsB
INTEGER BORROWsPDEGsPLDCF»PREDsPSPRODsPDIF
P=BORROW(X)

Q=Y

N=PDEG(Q)

K=PDEG(P)~-N+1

QL=PLDCF (Q)

QR=PRED(Q)

DO 2 I=1sK

IF(PeEQeDIGO TO 3

J=PDEG(P)~N

IF{JeLTe0)GO TO 1

PL=PLDCF (P)

PR=PRED(P)

A=PSPROD(PRsQL»0)

W N

62

B=PSPROD(QRsPLsJ)}
CALL PERASE(P)
CALL PERASE(PL)
CALL PERASE(PR)
P=PDIF(A,4B)

CALL PERASE(A)
CALL PERASE(B)
GO TO 2
A=PSPROD(P,QL+0)
CALL PERASE(P)
P=A

CONTINUE

CALL PERASE(QL)
CALL PERASE(GR)
PSREM=P

RETURN

END

INTEGER FUNCTION PSUBST(PsQ)

INTEGER DUMPSEJsFLAGsIsIPsPsPXsQsQI»QJsQX

INTEGER PERASEsPPRODsPSUM
pPX=p

AxX=Q

PSUBST=0

IF{QXsEQeO) RETURN
FLAG=0

CALL ADV(DUMP,QX)
CALL ADV(QIsQX)

CALL ADV(IP,QX)
IF(QXeNEoO) GO TO 1
FLAG=1

GO TO 2

CALL ADV(QJsQX)

CALL ADV(EJLQX)
IP=IP-EJ

DUMP=PSUBST
PSUBST=PSUM(DUMPsQI)
CALL PERASE(DUMP)
IF(IP+sEQ.O) RETURN
DO 3 I=1sIP
DUMP=PSUBST
PSUBST=PPROD({DUMP sPX)
CALL PERASE(DUMP)
IF(FLAGeEQel) RETURN
Ql=QJ

IP=EJ

GO T0 6

END

10

11

12

13

14
15

17

16

18

20

63

INTEGER FUNCTION PSUMI({XsY)
INTEGER BORROWsTYPESTAILsPFAPFLINVISUM
INTEGER XsYsPsQsRsSaToUsVsWsAsBsCsIsMeN
P=X

Q=Y

IF {PeNEs0O) GO TO 1
PSUM=BORROW(Q)
RETURN

IF (QeNELO) GO TO 2
PSUM=BORROW(P)
RETURN

IF (TYPE(P)}eNEe«Q) GO TO 3
PSUM=ISUM(PsQ)
RETURN

S=1

GO TO 10

PSUM=R

RETURN

R=0

CALL ADV(I.P)
Q=TAIL(Q)

u=pP

CALL ADVI{ASP)

CALL ADV(MsP)

vV=Q

CALL ADVI(BsQ)

CALL ADVI(NsQ)

GO TO 14

U=pP

CALL ADV(AsP)

CALL ADV(MsP)

IF (M=N) 15416917
R=PFL(BORROW(B) sR)
R=PFA(NsR})

IF (QeNE«Q) GO TO 12
T=U

GO TO 25
R=PFL(BORROW(A)sR)
R=PFA{MsR)

IF (PeNESO) GO TO 13
T=V

GO TO 25

IF (TYPE(A)eNE«O) GO TO 18
C=ISUM(A,B)

GO TO 19

CALL STACK3(PsQsR)
CALL STACK3(IsMsS)
P=A

Q=8B

S$=2

GO TO 10

C=R

CALL UNSTK3(1sMsS)
CALL UNSTK3(PsQsR)

19

21

22

25

26

=N

64

IF (CeEQe0) GO TO 21
P=PFL(CsR)

R=PFA(MsR)

IF(PeNE«0O)GO TO 22

T=Q

GO TO 25

IF (QeNEoO) GO TO 11
T=P

IF (ReNEoO) GO TO 26
IF(TeNE«O)IR=PFL(BORROW(I)sBORROWI(T))
GO TO (4520)+S
W=PFL(BORROW(IJsINV(R))
CALL SSUCC(BORROW(T)sR)
R=W

GO TO (4420)5S

END

INTEGER FUNCTION PVBL({X)
INTEGER XoYsZ

INTEGER BORROWsSFIRST

Y=X

=0

IF(YeNEo«O) Z=BORROW(FIRST(Y))
PVBL=Z

RETURN

END

INTEGER FUNCTION PVLIST(P)
INTEGER AsBsP

INTEGER BORROWsPFL,TYPE
A=P

PVLIST=0

IF(A«EQe0) RETURN
IF(TYPE(A)eEQs0) RETURN
CALL ADV (BsA)
PVLIST=PFL(BORROW(B) sPVLIST)
CALL ADV(BsA)

A=8B

GO 10 1

END

SUBROUTINE PWRITE(USP)
COMMON /TR1/ AVAILsSTAKsRECORD(72)
INTEGER AVAIL sSTAK,SRECORD
INTEGER PsUsIsJ

I=1

CALL PWRITS(PsUsI)
IF(I1eEQe72)GO TO 1

DO 2 J=1,71
RECORD(U+1) =44

CALL WRITE(U+RECORD)
RETURN

END

65

SUBROUTINE PWRITS{XsUs!)
COMMON /TR1/ AVAILSTAKsRECORD(T2)
INTEGER AVAILsSTAKSRECORD
INTEGER XsU>sl
INTEGER PsRsAsVsSsLsQsVRIEST
INTEGER TYPE+PFASIBTODsITOS
P=X
IF(P«EQe0)GO TO 100
IF(TYPE(P)W4EQel1)GO TO 200
100 ASSIGN 110 TO @
A=IBTOD(P)
CALL DECAPI(LsA)
GO T0O 2
110 IS{A«EQe0)GO TO 120
CALL DECAP(LA)
GO TOo 1
120 L=44
ASSIGN 999 TO Q
GO T0 1
200 ASSIGN 210 TO Q
L=40
A=0
R=1
GO TO 2
210 CALL ADV(vVsP)
V=ITOS(V)
CALL ADV(TsP)
IF(TYPE(T)«EQeQ)GO TO 300
220 CALL STACK3(VsPsR)
P=T
R=2
L=40
ASSIGN 210 TO Q
GO TO 1
300 S=IBTOD(T)
ASSIGN 310 TO Q
320 CALL DECAPI(LsS)

GO TO0 1
310 IF(SeNE«0)GO TO 320
400 VR=V

ASSIGN 410 TO Q
420 CALL ADV(L»VR)
GO TO 1
410 IF(VReNEZ0O)IGO TO 420
L=38
ASSIGN 500 TO Q
GO TO 1
500 ASSIGN 600 TO Q
GO TO0 1
600 CALL ADVI(E,yP)
ASSIGN 610 TO Q
620 L=E/10
E=E~L%*10
A=PFA(EsA)

630

610

700
710

999

66

E=L

IF(EeNE«0O)GO TO 620
CALL DECAP(LsA)

GO TO 1

IF(A«NE-0Q)IGO TO 630
L=41

ASSIGN 700 TO Q
IF(P.EQs0)GO TO 1
CALL ADV(T,P)
IF(TYPE(T)eEQe0)GO TO 300
ASSIGN 220 TOo Q
L=36

Go T0 1

CALL ERLA(V)

GO TO(9995,710)sR
CALL UNSTK3(VsPsR)
GO TO 400

RETURN

I=1+1

IF(IeLEe72)GO TO 2
I=1

CALL WRITE(UsRECORD)
RECORD(I)=L

GO TO Q9(1109210522053109410+50056005610+700+5999)
END

INTEGER FUNCTION STOI(X)
INTEGER SsYsXsEsBsRsT
INTEGER PFASFIRSTSTAIL
Y=X

CALL ADVI(E»Y)
S=PFA(Es0Q)
IF{YeEQeQ)GO TO 3

CALL ADV(E,Y)

B=E

R=S

E=FIRST(S)

T=64

CALL MPY(EST)

CALL ADD3(BsTs50)

B=B+E

CALL ALTER{(TsS)

T=S

S=TAIL(S)

IF(SeNESD)GO TO 2

IF (BaNEeO) CALL SSUCC(PFA(BsQ)sT)
$=R

GO TO0 1

S5T0I=S

RETURN

END

