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ABSTRACT

An interactive program with a graphical display has been developed
for the approximation of data by means of a linear combination of functions
selected by the user. The coefficients of the approximation are deter-
mined by linear programming so as to minimize the error in either the LL '
or LOo norm. Auxiliary conditions such as monotonicity or convexity of
the approximation can also be imposed. This interactive system is des~
cribed (including user instructions) and several examples of its use are

given.
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t. INTRODUCTION

The approximation of functions and the approximate solution of
ordinary differential equations using linear programming (LP) has been
discussed by a number of authors recently [10]. LP is also the com-
putational technique used for the approximate solution of certain types
of partial differential equations [12, 13,3]. In all of these cases the
approximation is obtained as a linear combination of selected functions.
The efficiency and accuracy of these methods therefore depend, in many
cases, on a suitable choice of approximating functions. Furthermore,
error bounds are generally available only after the approximation has
been computed. Once the choice of functions (and possibly other
auxiliary conditions) has been made, the "best" coefficients are deter-
mined by LP. Information about the approximation thus obtained
(including an error bound) will often enable the user to decide whether
to add more functions, replace some functions, or make other changes so
as to improve the approximation. Some of this desired information about
an approximation is most conveniently presented by means of a graphical
display. Thus an interactive graphical display coupled with an appropriate
LP capability should be of great value in the rapid solution of this kind of
generalized approximation problem.

In order to test the feasibility and gain experience in this area, an
interactive program using a graphical display and LP has been developed

for the approximation of data in the LOO and Ll norms. This program
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is used with the Burroughs 5500 andnits associated graphical display unit.
By means of a keyboard input, the user specifies the data set (tj’ yj)’
i=1,2,...,n, with t}, € [tl’ tn] and a set of selected functions P, (1),
i=1,...,m, with m = n. The program will then determine the m

coefficients Q; SO as to minimize either max lv(cz, tj) - yjl (]'_,oo normj,
j

3

n
or & |v(a tj) —yj] (L, norm), where v(a,t) = a; ®,(t). For m =n,

j=1

™M

i=1
and provided the matrix F defined by (2.5) is nonsingular, the approxi-
mation v(a, t) will interpolate the specified data.

At the user's option the minimization may be carried out subject to
additional conditions on the approximation v{a, t). Any or all of the following
conditions may be imposed: (l) lower and/or upper bounds on specified
coefficients, (2) bounds on v(g,t) at any specified points gj € [tl’ tn],

(3) bounds on the first derivative of v(q,t), (4) bounds on the second
derivative of v(a,t). These last two conditions include as special cases
the possibility of requiring that v(a,t) be monotone and/or convex (or
concave) in t .

After specification by the user the optimum coefficients are determined
by an LP solution, and the original data points and the approximating curve
are then displayed on the graphical scope. Other information, such as the
coefficient values and the maximum error, is also available. Based on this
graphical and numerical information, the user may modify his choice of

approximating functions, the number of functions or the auxiliary conditions,

while still at the terminal. This interactive modification enables the user




to rapidly explore the possibilities and to obtain a satisfactory approxi-
mation to his data with a minimum of time and effort. The use of either
the Ll or Loo norm may be preferred to the usual L2 norm in certain
cases. For example, approximation in the Ll norm tends to ignore outliers,
while the Loo norm often permits one to obtain the best bounds on the
absolute error in the approximation [ 15, 2, 3). Advantages of an interactive
system with graphical display for other statistical applications and for
certain types of optimization are discussed in several recent papers [6, 1,9].
In Section 2 the approximation problem is shown to be equivalent to
a primal LP problem. In Section 3 the interactive graphical program is
described, and several examples of its use are given in Section 4. User .
instructions for this system are given in the Appendix.
This on-line interactive program has been designed and implemented
sO as to be convenient and accessible to a user with a minimum of computer
experience. It allows great flexibility to make changes in the functions,

the error norm, the auxiliary conditions and even the data, until a satis -

factory approximation is obtained.
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2. LINEAR PROGRAMMING FORMULATION

Given a set of n data points (tj, yj), =1L, ..., n, with
tj € [tl’ tn], it is desired to determine a continuous function vie, t) for
t e [tl’ tn], which approximates the data so as to minimize the error in
a specified norm. The approximation v(a, t} is given by a linear combination
of m selected functions cpi(t), i=1,...,m, continuous on [tk’ tn], Yol
that
m

Vi, t) = 2 a, ¢ (t) (2.1)
i=] 1
where ¢ € Em denotes a vector with elements a; -

The two error norms considered are the discrete LL norm

n
[viwt -yv], = 2 |vit) -y (2.2)
i=1 i

and the discrete Loo norm

]

[ via, t) -yl max | V(s tj) - yji ‘ (2.3)

]

We first consider the formulation of the LOo norm minimization as

an LP problem. We assume that the m functions (pi(t) have been

chosen and we introduce a new scalar variable Y , and consider the
problem
-7 = v{a, tj) - YJ =7
min Y (2.4)
(oM Y ] = l-, [P ¢

It is easy to see that if y* is an optimum solution to (2.4), then

v = | v t) - v|,» since otherwise a smaller value of v could be ob-

tained without violating any constraints.




In order to obtain a concise statement of the problem we define the

mxn matrix

e (t) @ (L) P ()
Fo= lo,(t) o,(t) P,(t ) (2.5)
Pmlt) @ (t5) P “)_j

We will consider vectors to be defined as column vectors and denote the
transpose of a matrix or vector by a prime. Thus @ 1is a column vector

. n
and ¢ is a row vector. We let y € E~ be the vector with elements

m+!

yJ,, and let c' = (y', -y'). Alsolet w' =(a',y)e E , and
. m+1 . n
b'=(0,...0,1)e E . Finally let e € E denote the sum vector,
e' = (1,1, 1), and
F -F
A = = (m+l) x 2n (2.6)
e' e'
Then we can write (2.4) in the concise form
min  {b'w|A'w z ¢} (2.7)

w

If we consider this as the unsymmetric dual LP problem [7], the equivalent
2
primal problem in terms of a primal vector x € E n is given by
Ax = b

max c'x (2.8)
X X

"
fe]

This primal problem has only m+ 1l rows, and is in the form suitable for
the most efficient solution by the ALPS LP system [4]. The optimal solution

to the primal problem also gives an optimal nonsingular (m+!)X (m+!) basis
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matrix B, and its inverse B . The optimal dual vector is then given
-1 — m+ L ‘

by w=(B '} ¢, where Ce¢ E consists of those elements of ¢
which correspond to the optimal basis activities. The first m elements
of w give the desired coefficient vector a ,» and the last element gives
the minmax error =y .

The formulation of the Ll norm minimization as an LP problem

is similar. We now consider the problem

=Y. =via,t) -~y . Sy,
] J J J (2.9)

OL:'y Jl j=1,....n

n , L
where ¥ € E is now a vector with elements 7}. . Again it can be seen -

that if 7* is the optimal vector obtained by (2.9) we have

¢
via, t,) ~v.| =v., =1, ... n
| via J) YJ‘ Y, j
and therefore

n >k ]

5 v, = vt -y, (2.10)

-y

J

. ‘ ' m+n . + m+n
We now define b' =(0,...0,e') € E , W= (', Y') e E , and

F ~-F

A = = (m+n) x2n (2.11)
I I
n n

Then it follows that (2.9) is represented by (2.7). We again solve the
equivalent primal given by (2.8) and obtain the optimal dual vector w
as part of the optimal primal solution. It has been shown [15,2] that this

can be reduced to an upper-bounded variable LP problem in only m




constraints. Since the ALPS code does not have the upper-bounded
variable capability this further reduction was not used.

In the remainder of this section we show how auxiliary conditions
on the approximation can be imposed as part of the LP problem. Since

this is done in essentially the same way for both the LOO and L. approxi-

1
mations, only the LOo case will be discussed here. There are four types
of auxiliary conditions to be considered.

Lower and/or upper bounds may be placed on any of the coefficients.

If Zk and/or W, are given and it is desired that

= = L, 2,..., ,
£, s a = for any k e {I, 2, m)

then the following constraints are added to the dual LP problem:

e! 0 al Ek

v

e 0 0 ~LLk

. ‘ , , th
where ek is a unit vector with unity as its k element,

The corresponding primal problem would have additional columns in A,

A = (2.12)

c' = (y' -y' L, )

Each bound, lower or upper, adds a column to the primal problem (2. 8).



Lower and/or upper bounds may be placed on the first derivative with

respect to t, of the approximation v(a,t) at all the points t

(1)

i

1’ tz, ...,tn.

Let @' '(t) denote the first derivative of cpi(t), and let ¢ and/or | be

given. Suppose that it is desired that
m
L= Z a9 (tys uw for j=1,2,...,n.

i=1

These derivative bounds are imposed by adding 2n columns in the primal

(1) (1)

1
problem. Define the mXxn matrix F as in (2.5) with cpi (tj)

replacing cpi(tj). Then let

1
A = (2.13)
e' e' 0 0
and
c = [vy -y oL ]

The optimal solution to (2.8) will now give v(a,t) satisfying the auxiliary
derivative bounds. If only lower or upper bounds are desired it is necessary
to add only n columns. For an appropriate choice of the Q{)i, imposing these
bounds at the points tj will insure that v(a, t) satisfies similar derivative
bounds for all t € [tl’ tn]. In particular £ > 0 gives v(a,t) monotone
increasing and W < 0 gives v(a,t) monotone decreasing.

Lower and/or upper bounds may be placed on the second derivative of
the approximation v(a,t) at all the points t

(2) (1)

l
replaces F

. tn’ in the same manner.

(2)

Lt

For such bounds F in (2.13), where the elements of F




(2)

are cpi (tj), the second derivatives of the qu . Special cases are again
obtained when ¢ = 0 giving v(a,t) convex, and W < 0 giving v(a, t)
concave.

Finally we can impose a lower and/or upper bound on the approximation
v(a,t) at any set of points t = g},. Thus if !Zg and/or ugj are given

j
and it is desired that

then one or two columns are added to A and corresponding elements to ¢!
in the primal problem for each point {-ij . For example, if lower and upper

bounds are imposed at one point € we get

F -F P(€) ~¢(€)
A =
e' e' 0 0
c = (y % Zg —Uvg)
where
¢, (€)
P(E) = e E"
¢ (€)

It should be noted that all four of these auxiliary conditions increase the
number of columns in the primal problem, but do not change the number of rows.
Therefore, these additional conditions will normally increase only slightly the

number of iterations required to solve the primal LP problem.



3. INTERACTIVE PROGRAM

The program, which shall be referred to as CURVFIT, is written in
ALGOL and can be executed from any of the teletype terminals linked to
the Burroughs 5500. However, if the graphic display is to be used, a tele-
type which is located next to it must be selected.

When CURVFIT is executed it will request the user to type in the data
to be fitted. When all of the data points have been received CURVFIT will
both display them on the graphic unit and type them out on the teletype.
This allows the user to check for possible errors. If any errors are found
they may be corrected, and this process may be continued until the user
is satisfied with the data.

The user is then requested to type in the functions cpi(t) that he
wishes to use in approximating the data. The following class of functions,
which will be called elementary functions, are accepted. Let an elementary
function be defined to be a function which is obtained by addition, sub-
traction, multiplication, division, exponentiation, and composition starting
with the real variable t, the rational numbers, and the functions ev,
sin(v), cos (v), arctan(v), In(v), and |v| where v may itself be an

elementary function. The following is an example of an clementary function

esin(’c)

wir

+

(t2 + arctan (In(t)))

Note that quite a large class of functions can be represented by the above

elementary functions. (For a more general definition of elementary functions
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see [8]. The user may also add to, delete, or change any of the functions
he has previously typed in. If the user types in a function which is not
recognized as an elementary function, CURVFIT will reject it and ask the
user to try again.

A class of functions which are known to be important in approximation
are spline functions [ 14, 5]. These are not now included as part of the
system capability, but it is planned to add splines to the available class
of functions.

Several options are available to the user. He may instruct CURVFIT
to give him the best approximation to the data in the sense of the LOo norm
or the Ll norm. If he wishes to bound any of the coefficients a, of the
functions he can type in the desired bounds. If he wishes to constrain the
first or second derivative of the resultant approximation v{a,t), he must
type in the desired bounds and the first or second derivative of all of the
functions cpi(t). As shown in Section 2, this will guarantee that the first
or second derivative of the approximation lies between the specified bounds

at the points tl, tz, e tn . The derivative may or may not be within the

specified bounds between the points. This depends on the number and pos -
ition of the data points and the "smoothness" of the functions (pi(t). The
user may also constrain the approximation v(g,t) at any other point £ by
typing in € and the desired bounds. The possibility of improving the
approximation by imposing one or more of the above types of auxiliary con-

ditions is illustrated in Section 4.
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Given the above information (the data points, functions, the norm, and
any additional conditions) CURVFIT generates the appropriate LP problem
as input for a LP code called ALPS [4]. CURVFIT then puts this input
on the magnetic disc, initiates the execution of ALPS, and puts itself "to
sleep", checking intermittently to see if ALPS has finished. When ALPS has
obtained an optimal solution, CURVFIT retrieves the results which ALPS has
placed on the disc and presents them to the user.

In this manner, the "“dirty work" of generating and solving the LP
problem is accomplished without any intervention by the user. When the
B5500 is not too busy, the user will seldom have to wait more than three

b .
minutes before receiving the results ., CURVFIT prints out the coefficients

Qs Choys v s .,G,m and the minimized value of the error norm. If the L, norm

L 2 1
is being used, the user may have the absolute deviations Vj’ j=1,...,n
printed out. The graph of the "best" approximation v(a, t} is superimposed
on the data points which are still being displayed on the graphic unit.

After examining the displayed points and the approximating curve, the
user may change any of the functions or constraints (or even the data points)
and have CURVFIT try again. This on-line interactive process may be re-

peated until the user is satisfied with the approximation obtained. If the

user wishes to obtain a hard copy of the information displayed on the graphic

*A large number of batch jobs will not make this wait-time appreciably
longer, but if there are five to ten remote jobs queued up waiting to be exe-
cuted, it may take fifteen or twenty minutes before ALPS is executed. This
can be avoided by running during non-peak hours.
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unit he may instruct CURVFIT to write this information out on a magnetic
tape, which can later be plotted with a Calcomp Plotter. In its present
form, CURVFIT allows a maximum of fifty data points and twenty functions,

but these limits can be easily expanded.



4. EXAMPLES
In this section we discuss three examples in order to show how the

system operates and to illustrate the effect of imposing auxiliary conditions.

Example 1
. t
The data shown in Table 1A represents the function e + R X L0
where R is a random integer, 0 < R =< 9. After receiving these data

points, CURVFIT displayed the graph in Figure lA. The functions e- 8t,

e'gt, et, el'lt, and el et were typed in and CURVFIT was instructed to
find the best fit in the L norm with no additional conditions. After 1.5
minutes the coefficients a; shown in the third column of Table LB were ‘_typed
out and the graph in Figure lB was displayed. This approximating curve,
which has a maximum deviation of .0650, appears to be reasonable. How-
ever the large coefficient values are not reasonable, and reflect the fact that
the cpi chosen are almost linearly dependent. The same problem was then
solved with the additional condition that all the coefficients must be non-
negative. After 2.5 minutes CURVFIT displayed the graph in Figure LC

and typed out the coefficients shown in the last column of Table LB. This
approximating curve, which has a maximum deviation of .077l, has coef-
ficients that are much more reasonable. Note that in this case only two of
the five functions are being used. Furthermore, the sum a, + ag = L.0Ll34,

t .
so that v{g,t) is very close to e , the unperturbed function.
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) L Y J i Y
l 0.00 0.988 L2 0.55 .657
2 0.05 1.140 L3 0.60 .830
3 0.10 1.170 L4 0.65 .839
4 0.15 1.124 L5 0.70 .945
5 0.20 1.166 ) 0.75 .088
6 0.25 1.297 L7 0.80 172
7 0.30 1.378 18 0.85 .376
8 0.35 1.367 L9 0.90 . 488
9 0.40 1.411 20 0.95 .603
10 0.45 1.573 2l 1.00 .756
11 0.50 1,709
Table lA. Data for Example 1.

?;(t) a4 20

e'8t -4668.9107 .6265

e’ ?t  17686.2941 .0

et -25109.2169 .0

el 1t 15836, 1280 .0

el'Zt -3743.2838 .3869
max. error Y .0650 L0771

Table 1B. Approximation for Example L.
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DATA
28E+OD r +
+
+
+
N
-
Y +
1.9€+00 |
.
+
+
"
+
+ +
*
+ +
M *
. : J
330 S o0 1.0E+00
T

Figure 1A, Data for Example |,




2.8E+00

1
“+

1.SE+00

3.9E-01 4 p
0. E+00 1. 0E+00

Figure 1B. L00 Approximation with no Conditions for Example 1.



2.8E€+00

1
4+

1.9€E+00

9.9E-01 0. 0E+00 1.0E+00

Figure L. Loo Approximation with Qg z 0 for Example 1.




Example 2,

The data points shown in Table 2A were typed in. CURVFIT then dis-
played the graph shown in Figure 2A. CURVFIT was first instructed to find
the best fit in the LOo norm using a polynomial of degree 7 with no additional
conditions. After 2.7 minutes the coefficients in the third column of Table
2B were typed out and the approximation in Figure 2B, which has a maximum
deviation of .3422, was displayed. It was desired to eliminate the "camel
back" shape of this curve. Therefore a concavity requirement was imposed
by means of an upper bound L =0 on the second derivative of vi{a, 1), as
discussed in Section 2. After 2.7 minutes the coefficients shown in thg last
column of Table 2B were printed out and the approximating curve in Figure 2C,
with maximum deviation of .3789, was displayed. It is seen that the un-

wanted hump has disappeared.
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’J' 3 Yj J 15 Y
1 0.00 0.0 L2 0.55 6.2
2 0.05 2.4 L3 0.60 6.3
3 0.10 2.7 L4 0.65 6.4
4 0.15 3.5 L5 0.70 5.8
5 0.20 4.5 L6 0.75 6.3
6 0.25 5.2 L7 0.80 5.9
7 0.30 5.5 18 0.85 6.0
8 0.35 6.0 L9 0.90 5.5
9 0.40 5.6 20 0.95 3.6
10 0.45 6.2 21 L.00 0.5
L1 0.50 5.9

Table 2A. Data for Example 2.
i b, (1) ay o, when v'(a,t) <
1 l 0.3422 0.3789
2 t 46,2386 41,0742
3 t2 -298.2415 ~-193.5385
4 t3 1360.5003 633.7902
5 t? -3450.9916 -1156.7482
6 t5 4620.4595 10l4.8607
7 t6 -3045.7410 ~-295.,4402
8 t7 768.2757 -43.498l1
max. error vy .3422 .3789
Table 2B. Approximation for Example 2.
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DATA
6.4E+00 ¢ +
+ +
+ +
+ +
+ +
+
.
+ +
+
4
.f.
+
+
+
+
0. QE+Q0 + ;
0.0E+00 1.QE+D0
T

Figure 2A. Data for Example 2,
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_ t

6.4E+Q0

_DE+00 :
0. BE+ 00 ¥ 00 1.0E+00

Figure 2B. Loo Approximation with no Conditions for Example 2.
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6. 4E+00 +

0. DE+00 ’
0. 0E+00 1.0E+00

Figure 2C. LOo Approximation with Concavity Condition for Example 2.
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Example 3. .

The data points used for the example were obtained from a test
problem proposed in [11], and are given in Table 3A. The data points
were displayed by CURVFIT as shown in Figure 3A. CURVFIT was first
instructed to find the best fit in LDo norm using a polynomial of degree
10 with no additional constraints. After 1.7 minutes the coefficients
in the third column of Table 3B were types out and the approximation in
Figure 3B, which has a maximum deviation of .0294, was displayed. In
order to increase the "smoothness" of this curve a monotonicity require-
ment was imposed by means of a lower bound £ =0 on the first derivative
of v{(a,t), and CURVFIT was instructed to find the best fit in the Ll nofm
using a polynomial of degree 10. After 2.6 minutes the coefficients shown
in the last column of Table 3B were printed out and the approximating curve

in Figure 3C, with maximum deviation of .0971 and Ll error of .3607,

was displayed.
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J tj Y J B Y

| 0.00 0.431 L4 0.52 0.669

2 0.04  0.409 15 0.56 0.746

3 0.08 0.429 16 0.60 0.760

4 0.12  0.422 17 0.64  0.778

5 0.16 0.530 18 0.68  0.828

6 0.20  0.505 19 0.72 0.846

7 0.24  0.459 20 0.76 0.836

8 0.28 0.499 21 0.80 0.916

9 0.32  0.526 22 0.84  0.956

Lo 0.36 0.563 23 0.88 1.0l4

11 0.40 0.587 24 0.92 1.076

12 0.44  0.595 25 0.96 L. 134

13 0.48  0.647 26 1.00 1,124

Table 3A. Data for Example 3

i Cpi(t) ay a4 when v'(qg,t) = 0

1 L 0.4016 0.4300

2 t ~1.9340 0.0

3 2 43.9516 1.6323

4 £3 ~233.,2457 -53.2872

5 t4 -11,4299 613.8906

6 £5 4073.3973 ~3125.5384

7 t6 ~-15799. 1401 8672.5449

8 ¢’ 29007.0965 -14006, 6647

9 £8 ~29117.4944 13128.6814

10 t? 15423.7168 -6616.1851

i1 ¢10 -3384.2252 1385.6326
max. error - .0294 L0971

Table 3B. Approximation for Example 3.
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OATA
1.1E+00 ¢ .
.
+
+
.
+
+
+
+
7.76-01 | ¥
N
%
+
+
+ F
.*.
+ +
* +
+.
9 +
. 1E-01 - '
’ 0.0£+00 1.0E+00
T

Figure 3A. Data for Example 3.
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1.2E+00

r

7.8£-01

1

3.8E-01 :
1.0E+00

Figure 3B. LOo Approximation with no Conditions for Example 3.
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1. 1E+00

7.7E-01

L*.].E“Ol D.BE.',OO 1-05{_00

Figure 3C. L1 Approximation with Monotonicity Condition for Example 3.
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APPENDIX. USER INSTRUCTIONS

Since the program CURVFIT has been designed so that it would be
easy to use, a User Manual is not really necessary. There are, however,
a few things that should be mentioned.

L. Before executing CURVFIT make sure that CURVFIT/ALPS is on
the disc. It is this program that CURVFIT uses to solve the LP problem.

2. To execute CURVFIT type:

?? EXECUTE CURVFIT/CURVFIT«

3. The first question CURVFIT will ask is IS THE GRAPHIC DOWN.,
If one replies NO, then the graphic will be used for output. If the reply
is YES, then the user must give a magnetic tape to the operator with the
instructions that it is a plotter tape and is to be mounted at a density of
200 BPI. In this case the graphic will not be used.

4. When requesting the function cpi(t), CURVFIT will type the
index number i of that function. Next to this index number, on the same
line, the user should type the desired function. Later on, if any function
1s to be deleted or changed, the user can indicate to CURVFIT which function
is to be altered by typing its index number.

5. When the user is finished typing the set of data points or functions
he should type DONE.

6. All questions, unless explicitly stated otherwise, should be

answered with YES or NO.
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7. If the user types a blank when CURVFIT requests the upper or
lower bounds for the first or second derivative of the approximation, then
no bound will be enforced.

8. CURVFIT will accept numbers of the following three types:

TYPE EXAMPLES
INTEGER 216, ~72
FLOATING POINT 0.00L, -532.763
SCIENTIFIC 6.007E+07, -12.42E-22

The arithmetic operations which are accepted by CURVFIT and the symbols
which must be used are listed in the following table. Tie operations are

listed in increasing order of precedence.

SYMBOL OPERATION
+, - addition, subtraction
N, / multiplication, division

- negation (unary)

3 exponentiation
SIN, COS, ARCTAN, sin( ), cos( ), arctan( ), In( ),
LN, FXP, ABS el ), absolute value

Parentheses may be, and should be used freely if there is any doubt about

the precedence relationships of the operators. For example, the function

on page L0 would be accepted by CURVFIT if it were typed in the following
form:
L/3 4+ EXP(SIN(T) )/(T*2 + ARCTAN(LN(T) ) )

Note that the variable in all of the functions cpi(t) must be T .
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