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Abstract – In testing, people normally use the “golden model” to judge the correctness of 

the tested unit. However, in some cases the golden model is difficult to produce, and in 

some cases the outputs do not need to exactly match the golden model to be considered 

correct. Metamorphic testing was first introduced to software testing to target such 

problems in software. In this paper, we will explore the idea of applying metamorphic 

testing to hardware fault-tolerance. We discuss implementing it using two methods: 

hardware redundancy and time redundancy. During our case study, we will compare those 

implementations with a Double Modular Redundancy (DMR) implementation due to their 

similar functionalities, and discuss the differences in performance, area and fault detection. 

In addition, we will look at the disadvantages of metamorphic testing in hardware such as 

single-point of failure, and its inability to give a rational judgment of the correct output if 

the test fails. Last, we will discuss possible solutions to overcome those disadvantages.  

I. INTRODUCTION  

The most common method of verification is to apply a set of tests to a targeted function unit, 

and verify if the actual output of the function unit matches the expected output of the function that 

it is supposed to implement. An "oracle" is the methodology to determine whether or not the 

output of the function unit is correct based on the expected outputs [17]. However, implementing 

the oracle is expensive and time-consuming. This is also a reason that often times the "oracle" 

procedure is actually done manually; in this case, the testing/verification process becomes time-

consuming and error-prone [17].  

The “oracle problem” can be a challenge. Applications in machine learning [14], scientific 

computing, simulation, optimization, etc. are sometimes “non-testable programs” [18], because 



the expected outputs are hard to find or do not exist. Computer scientists proposed several 

methods to address the oracle problem in software verification. A “niche oracle” [18] is a 

methodology that tests only a subset of all possible test cases where the golden model exists. 

However, that subset of test cases with a known golden model is often the simplest subset among 

all test cases. Oftentimes that subset is not sufficient to fulfill the testing purpose, because the 

more complicated cases are more likely cause errors [18], and the “niche oracle” is unable to test 

those complicated cases. Another proposed solution to the oracle problem is to use a “pseudo-

oracle” [3], where different programming teams are given the same specification of a program, 

and the teams develop independent versions of the program. During execution, all versions of that 

program run with same inputs, and their outputs are compared against each other. If one version 

produces an output different from the rest, then we can decide that version is faulty, and the 

majority answer is correct. Unfortunately, sometimes there is only one (or only one reasonable) 

implementation of a program, and multiple versions of the program simply do not exist [13].  

To target the issues with “niche oracle” and “pseudo-oracle”, metamorphic testing (MT) [4] 

was introduced as an alternative solution to the oracle problem. Metamorphic testing verifies the 

correctness of the program using the outputs of multiple executions of the program on different 

data values, and no oracle is needed. A metamorphic relation (MR) describes the relationship 

between generated output values based on the relationship between input values. This relation is 

used to modify the initial test data to create follow-up test cases, and to transform the initial test 

outputs into a set of expected outputs for the follow-up cases. Metamorphic testing is used with an 

existing test selection strategy to create follow-up test cases based on initial test cases and the 

metamorphic relation. When initial test cases do not reveal any failure, MT can be used to further 

verify the program. 

A simple case study in [5] describes a tested program that has a task that computes the sine 

function. The metamorphic relation of the program uses the property sin x = sin(180 – x), to 

describe a relationship between the output given an input value of x and the output given an input 

value of 180 – x. Let t = 57.3 be an initial test case; the output of the program is then determined 

to be p(t) = 0.8415. However, assume that this output is not initially known to be correct, because 

an oracle is not available. The metamorphic test would use a follow-up input value of t’ = 180 – 

57.3. If the execution of this follow-up test produces the output p(t’) = 0.8402, the test case and its 



metamorph do not produce outputs with the required relationship (i.e., in this case, they do not 

exactly match), and thus a fault is detected.  

Identity-based verification techniques like program checkers [1], which run alongside with a 

program to check the correctness, also compare the outputs of multiple executions of a program 

and check if those outputs match a certain identity. These techniques have also long been used in 

software testing. There are in fact two major differences between MT and the other identity-based 

verification techniques. First, metamorphic testing is only used as follow-up test cases. Before 

applying MT, we must already have a test selection strategy and test cases. We use MT when 

existing test cases are successful and do not reveal any failure. Second, the metamorphic relations 

can be any expected relations among outputs of multiple executions and the given input, not only 

identity properties. An example given in [17], a differential equation solver application uses the 

convergence relation as MR during metamorphic testing.  

The MT technique has been used in software fault-tolerance for over ten years, and it is indeed 

an effective solution to the oracle problem. However, MT has not yet been practiced in hardware 

fault-tolerance. In this paper, we will extend the concept of MT to hardware fault-tolerance, and 

explore the possible implementations and usability of MT in hardware. 

II. METAMORPHIC TESTING IN HARDWARE 

We propose two different implementations of hardware-based metamorphic testing: time 

redundancy and hardware redundancy. Both implementations preserve the properties of MT as 

used in software fault-tolerance. MT, whether implemented for software or hardware, requires a 

test selection strategy. In this case, for hardware-based MT, our test selection strategy is every 

valid input set that enters the system.  

 

 

 

 

 

 



A. Time-Redundant Metamorphic Testing 

Implementing MT using time redundancy is accomplished in a similar approach as 

“Recomputing with Shifted Operands” (RESO) [15], where two operands are added by ALU, and 

during the next execution, those two operands are shifted by one bit, and the two results are 

checked if the latter one is twice the value as the previous one. In our case, MT can be applied to 

much smaller modules or function units than ALU. Implementing MT using time redundancy is 

precisely mapped to the MT procedure in software. As shown in figure 1, the control logic first 

enables the tested unit to process the original test case t, and the result p is temporarily stored in a 

flip-flop. Then the tested unit processes a modified test case t’, and the second output of the tested 

unit is p’. The MR checker compares results from both executions and determines if they match 

the expected metamorphic relation, or else we can conclude a fault is present.  

B. Hardware-Redundant Metamorphic Testing 

The implementation of MT with hardware redundancy has the advantage that executions of the 

original test case and the follow-up test case can generally be accomplished in parallel, and this 

parallelism is relatively easier to achieve than it would be in software. The structure of hardware-

redundant MT resembles the structure of a duplex modular redundant (DMR) system. A DMR is 

the simplest technique of the general N-modular redundant (NMR) system [12], where the system 

detects faults by having two copies of function unit that receive same input, and their outputs are 

compared by a voter that determines if the outputs are identical; if not, then at least one of the unit 

is faulty.  

 
Figure 1. Metamorphic testing with time redundancy 

 



As shown in figure 2, there are two duplicate copies of the tested unit. The original test case t 

is goes to the first unit, and a modified test case t’ goes to the second unit. The outputs of two 

units p and p’ are then checked for the metamorphic relation. If the tested unit is simple enough, 

hardware-redundant implementation of MT requires less control logic and storage than the time-

redundant implementation.  

III. CASE STUDY: CMS CLUSTER WEIGHTING MODULE 

For the purpose of comparing area overhead, performance, overhead, and effectiveness of MT 

and different hardware fault-tolerance techniques, in this article we will perform a case study on 

the Cluster Weighting module, which is a part of the level-1 trigger detector designed for the 

Compact Muon Solenoid (CMS) project at the Large Hadron Collider (LHC).  

A. Large Hadron Collider (LHC) 

At the European Organization for Nuclear Research (CERN) on the border of France and 

Switzerland, thousands of scientists and engineers collaborate to contribute to the Large Hadron 

Collider (LHC) project. The LHC is a large circular tunnel that is 175 meters (574 feet) 

underground and 27 kilometers (17 miles) in circumference, and it is used towards research in 

particle physics. The purpose of LHC is to create frequent “big bangs” in a lab environment, so 

that the particle physicists have the opportunity to discover new particles that are only 

hypothetical [8]. The Large Hadron Collider collides protons at nearly the speed of light. The 

energy of collision is about 7 Tera Electron Volts, which is enough to produce many new 

particles. LHC has four different detectors, and each is an individual project: CMS, ATLAS, 

ALICE, and LHCb [11]. The four detectors are placed alongside the tunnel, and the velocity of 

protons is timed so that they collide at the center of each detector. 

 
Figure 2. Metamorphic testing with hardware redundancy 

 



B. Compact Muon Solenoid (CMS) 

The Compact Muon Solenoid (CMS) project is a general-purpose experiment that studies 

particle physics at high-energy scale. Through the finding of theoretical Higgs Boson particle, we 

can study the mechanism of electroweak symmetry breaking [6].  

Due to the high-speed collision occurrence, it would be too costly to store all the collision data 

and then analyze it. The CMS detector uses different trigger system to only capture interesting 

data, and discard non-eventful data. Figure 3 shows a slice of the 4-story-tall CMS detector, 

where each layer of the detector collects different data from the collision. The level-1 trigger 

 
Figure 3. CMS detector slice [11] 

 
Figure 4. Mapping of ECAL and HCAL [9] 

 



system captures data from Electromagnetic Calorimeter (ECAL) and Hadron Calorimeter 

(HCAL) [7]. ECAL (the green layer) detects energy of electrons and photons passing through it, 

and HCAL (the yellow layer) detects the energy of hadrons and neutrons.  

C. Cluster Weighting (CW) 

The Cluster Weighting module is a relatively small module within the level-1 trigger system, 

and we will conduct a case study of metamorphic testing on this module. As shown at left in 

figure 4, the calorimeters form a hollow cylinder. The detector transmits data to the processor 

after mapping the cylindrical coordinates into 2-D Cartesian coordinates, as shown at right in 

figure 4. The smallest element of the calorimeter is a tower, and every 2x2 grid of neighboring 

towers is a cluster [9].  

When a particle hits the calorimeter, the 2x2 grid of towers at that location detects a certain 

amount of energy. Figure 5 shows a 2x2 grid of neighboring towers, which together form a 

cluster. When a particle traverses through the region of tower 1 and interacts with the calorimeter 

crystals, tower 1 would measure a higher energy than tower 0, 2, and 3. The CW module 

determines particle interaction point on a cluster with 4x4 position resolution. As shown in figure 

5, each red dot marks a possible interaction point, and table 1 shows the numerical representation 

of those locations, each representation is a 4-bit binary string. The algorithm to calculate the 

particle hit location has been designed to optimize the hardware by using only division by powers 

of two (due to the 16 sub-locations in each 2x2 tower cluster; this is because division by powers 

of two can be accomplished by shifting the binary value.  

 
Figure 5. Mapping of 4x4 position points on a cluster 

 

 
 

0 4 8 12 

1 5 9 13 

2 6 10 14 

3 7 11 15 

Table 1. Numerical representation of 4x4 position 
points on a tower 

 



Let w be CW’s output weighting (particle hit location), and let t0, t1, t2, and t3 be CW’s input, 

the energies measured by tower 0, 1, 2, and 3, respectively. 

Let deta  = sum of right towers – sum of left towers  

            = (t1 + t3) – (t0 + t2) (1) 

Let dphi = sum of bottom towers – sum of top towers 

           = (t2 + t3) – (t0 + t1)  (2) 

Let sum = sum of all towers 

           = t0 + t1 + t2 + t3  (3)  

• If deta ≥ 0, then w is within the right region, else it is within the left region. 

• If | deta | > sum/2, then w is on the far left/right edge, else it is on the inner layer. 

• If dphi ≥ 0, then w is within the bottom region, else it is within the top region. 

• if | dphi | > sum/2, then w is on the far top/bottom edge, else it is on the inner layer. 

D. Metamorphic Relation for Cluster Weighting Module 

Let us design the follow-up test case to be reversed original test case, this way we can explore 

the symmetrical property of the CW module. For example, if the original test case {t0, t1, t2, t3} 

= {a, b, c, d}, and the calculated weight is w0; then let us make follow-up test case {t0, t1, t2, t3} 

= {d, c, b, a}, which is the previous inputs in reverse order, and the next calculated weight is w1.  

Let us first look at the simplest scenario: both deta and dphi, which are calculated from the tower 

energies, are non-zero. This means that the sum of the right two towers does not equal the sum of 

the left two towers, and the sum of the bottom two towers does not equal the sum of the top two 

towers. In other words, the particle interaction point is neither on the vertical nor horizontal center 

of the cluster. In this scenario, the two weights calculated for the original and morphed cases (w0 

and w1, respectively) are mirrored (with respect of each other) about the center point of the 

cluster. For example, if w0 is at location 0 (far top and far left), then w1 is at location 15 (far 

bottom and far right), as shown in table 1. 

The second scenario is when deta is non-zero but dphi is zero. In this case, the sum of the bottom 

two towers equals the sum of the top two towers, but the sum of the right two towers does not 



equal to the sum of the left two towers. In other words, the particle interaction point is on the 

horizontal center of the cluster. This scenario is special because the algorithm gives priority to the 

bottom region when dphi is zero. In this scenario, w0 and w1 are mirrored about the central vertical 

axis of the cluster. For example, if w0 is at location 2 (inner bottom and far left), then w1 is at 

location 14 (inner bottom and far right). 

The third scenario is when dphi is non-zero but deta is zero; this means the sum of the right two 

towers equals the sum of the left two towers, but the sum of the bottom two towers does not equal 

to the sum of the top two towers. In other words, the particle interaction point is on the vertical 

center of the cluster. This scenario is special because the algorithm gives priority to the right 

region when deta is zero. In this scenario, w0 and w1 are mirrored about the central horizontal axis 

of the cluster. For example, if w0 is at location 11, then w1 is at location 8. 

The last scenario is when both deta and dphi are zero. In other words, the particle interaction 

point is at the center point of the cluster. In this scenario, because our implementation does not 

have a central point, then both w0 and w1 are at location 10, which is to the right and bottom of 

the center of the grid. 

E. Overhead Comparison 

We have implemented metamorphic testing for CW with both hardware-redundant and time-

redundant techniques. We also created a DMR system of CW for comparison. All designs were 

synthesized on a Vertex-5 FPGA board. 

Table 2 shows the area overhead of different implementations, where the first column is a 

single CW without any fault-tolerant features. We can observe that a simple DMR does not cost 

much area overhead, because besides a duplicate copy of CW it requires only simple “voter” 

circuitry to compare the two results.  

 Single 
CW DMR 

HW-
redundant 

MT 

Time-
redundant 

MT 

# of LUTs 60 73 112 108 

# of FFs 17 33 32 57 

Table 2. Area overhead of HW fault-tolerance techniques 

 



Both hardware-redundant MT and time-redundant MT require much more logic than DMR, 

because the process of MR checking is more complicated than a single equality comparator. 

Meanwhile, time-redundant MT costs more storage area, due to the fact that we need to 

temporarily store previous executions’ results before checking MR.  

Table 3 shows the performance overhead comparison among the three fault-tolerance 

techniques, and the simulated cycle time is 50 ns. We can see that MT with time-redundancy 

draws a major performance overhead because it takes multiple executions. Due to this nature, MT 

with time-redundancy will produce the output always one or more cycles later.  

F. Fault Detection 

To test the effectiveness of each fault-tolerance technique, eleven different single stuck-at 

faults are inserted to each fault-tolerant system, one at a time. For every fault, an exhaustive test is 

performed, where we tested the system with all possible input sets. However, in the actual 

operation of the system, the inputs will be the real experimental data sets instead of exhaustive.  

Therefore a higher amount of inputs are being tested in this project than in the real system. For 

each fault, the total number of test cases that successfully detect that fault is collected. A higher 

number indicates that it is more likely to detect that fault in real operation. Due to the fact that the 

CW module’s output the result of comparison on different sub-modules’ outputs, each fault is 

chosen to be a stuck-at fault on the least significant bit along the path of computation so that the 

fault is hard to detect. Faults are distributed throughout the CW module: close to the primary 

inputs, close to the primary outputs, and on different computation paths in the middle.  

Table 4 shows the overall effectiveness of the different fault-tolerant systems. Each entry is 

calculated by the equation:  

 Single 
CW DMR 

HW-
redundant 

MT 

Time-
redundant 

MT 

Latency (ns) 7.698 8.791 9.757 58.108 

Performance 
overhead 0% 14.20% 26.75% 655.78% 

Table 3. Performance overhead of HW fault-tolerance techniques 

 



 # of test cases!detect fault ! f
total #!of !exhaustive!test !cases

 (4) 

In the above equation, f is an arbitrary fault. This measurement is a statistical calculation of the 

probability of the system detecting a specific fault for any given input.  

These results demonstrate that for the CW circuit, a DMR system and hardware-redundant MT 

have identical fault detection effectiveness for all tested faults. The reason for that is if a test case 

is able to excite and propagate the fault to the output of the faulty unit, and that output is checked 

with the output of the fault-free module (assuming the system only contains a single fault) with a 

comparator or MR checker, then both DMR and hardware-redundant MT systems would reveal 

that a fault is present.  

In comparison, time-redundant MT is nearly twice as effective as the other two systems in 

 
DMR HW-

redundant 
MT 

Time-
redundant 

MT 
Fault 1 1.73% 1.73% 3.46% 
Fault 2 21.82% 21.82% 33.12% 
Fault 3 42.78% 42.78% 80.66% 
Fault 4 5.70% 5.70% 11.40% 
Fault 5 39.45% 39.45% 78.90% 
Fault 6 39.45% 39.45% 74.94% 
Fault 7 1.58% 1.58% 0% 
Fault 8 32.38% 32.38% 0% 
Fault 9 16.57% 16.57% 28.84% 
Fault 10 13.58% 13.58% 13.58% 
Fault 11 14.39% 14.39% 20.77% 
Average 20.86% 20.86% 31.41% 
Average 
without f7 

and f8 21.72% 21.72% 38.40% 

Table 4. Percent of tested inputs where faults were detected using each  HW fault-tolerance technique 

 



detecting faults for most cases. It is due to the fact there is only one unit of CW in this system, and 

if there is a fault and the original input fails to excite and propagate that fault, then the reversed 

input might have an opportunity to do so in the re-execution. It can be seen as having two 

attempts to reveal the fault for any given input.  

One thing to note is that, despite higher fault detection effectiveness on most faults, the time-

redundant MT system fails to detect fault 7 and fault 8 on all test cases. This particular incident is 

caused by the fact that both fault 7 and fault 8 modify the result of comparison between sum/2 and 

the absolute value of deta or dphi (equation (1) and (2)). Due to the symmetrical property of CW, 

deta (or dphi) is identical for any input and the reversed input. This incident is in fact unavoidable 

because our MR is built based on the symmetrical property of the CW module. Therefore, even if 

the fault is excited and propagated, both executions will converge to outputs that satisfy the 

metamorphic relation regardless.  

IV. ISSUES WITH METAMORPHIC TESTING IN HARDWARE FAULT-TOLERANCE 

After conducting our case study in MT implementation in Cluster Weighting unit, we can 

conclude several disadvantages with MT in hardware fault-tolerant systems. In this section, we 

will discuss some of those issues, and our proposed solution to those problems. 

A. Limited Output Information 

Unlike the triple modular redundant (TMR) system, DMR and the proposed MT 

implementations in hardware are only able to detect the presence of a fault, but they cannot 

provide an output that is most likely to be correct. In a TMR system [12], three copies of tested 

unit are compared against each other, and the voter decides the majority result is the correct 

output. In other words, TMR or other NMR (where N > 2) systems are able to mask of one or 

more faults.  



The proposed solution to this problem is a variation of pair-and-spare [10], where each pair is a 

MT system, and there are two pairs. As illustrated in figure 6, the MT system on top is the 

operational pair, and the MT system at the bottom is used as a spare pair. Once there is a fault in 

the operational pair, the switch determines that the operational pair is faulty and switches the 

spare pair to be the operational pair, which would produce the correct outputs if the system only 

tolerates a single fault.  

B. Unable to Detect Certain Faults 

In our case study, we observed that although the overall detection effectiveness is better, there 

are fault 7 and fault 8 who do not affect the metamorphic relation in time-redundant MT, thus 

those faults cannot be detected in that system. It is to our convenience that those particular faults 

are likely to be detected by the DMR system, because DMR only compare the outputs of the 

tested units, and it is not affected by the bottleneck of checking metamorphic relation.  

 
Figure 6. MT pair-and-spare system 

 



A hybrid MT system in figure 7 is a possible solution to this problem. One part of the system is 

a time-redundant MT, and the extended part is similar to a DMR system. The MT part of the 

hybrid system performs re-executions and MR checking as usual, where the DMR part of the 

hybrid system compares outputs of Unit 1 and the execution output of original input on Unit 2. 

The switch could determine that a fault is present when either MR checker or DMR comparator 

fails.  

C. Implementation Issues 

Metamorphic testing has been used in software fault-tolerance for over ten years. However, it 

has not yet been introduced in hardware fault-tolerance. One of the reasons is that metamorphic 

relation is hard to find in most hardware units, especially non-computational units (e.g. register 

files). Another reason is that sometimes it is too expensive to implement MT. As demonstrated in 

our case study, despite of the simplicity of our MR, metamorphic testing still creates a large area 

and performance overhead in comparison to a traditional DMR. Needless to say, hardware-

redundant MT only demonstrated an identical capability as the DMR system. Although time-

 
Figure 7. Hybrid MT system 

 



redundant MT is more effective in detecting faults in our case study, it suffers a significant 

performance bottleneck due to re-execution.  

To summarize, metamorphic testing should only be conducted when applicable and necessary. 

MT is most applicable towards the oracle problem, and small computational units where the 

performance is not critical. As a part of further reading, [5] describes metamorphic relation 

selection techniques in software, which could be a reference when choosing a MR in hardware.  

V. CONCLUSION 

In this project, we have presented the basic concept and applications of metamorphic testing 

in software as an effective solution to the “oracle problem”. We have then explored the idea of 

applying metamorphic testing in hardware by developing two implementations of MT for 

hardware fault-tolerance: time-redundant MT and hardware-redundant MT. We conducted a case 

study on the CMS level-1 trigger system’s Cluster Weighting module. Hardware-redundant MT 

and time-redundant MT were compared with a traditional DMR, and the cost and performance of 

these options were evaluated and compared. The results indicate that hardware-redundant MT and 

DMR are both fast and cost-effective, but that time-redundant MT performs better at revealing 

faults. Finally, we discussed several limitations of using MT in hardware fault-tolerance and 

provided possible solutions to them. Future research could develop a more efficient hardware 

implementation of MT to address remaining performance and cost concerns.  
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