

An Online Student Portfolio System

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin-La Crosse

La Crosse, Wisconsin

by

Steven E. Reich

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

March, 2008

An Online Student Portfolio System

By Steven E. Reich

We recommend acceptance of this manuscript in partial fulfillment of this
candidate’s requirements for the degree of Master of Software Engineering in
Computer Science. The candidate has completed the oral examination
requirement of the capstone project for the degree.

____________________________________ _______________________
Dr. Kasi Periyasamy, Ph.D Date
Examination Committee Chairperson

____________________________________ _______________________
Dr. David Riley, Ph.D Date
Examination Committee Member

____________________________________ _______________________
Dr. Thomas Gendreau, Ph.D Date
Examination Committee Member

Abstract

REICH, STEVEN, E., “An Online Student Portfolio System”, Master of Software

Engineering, December 2007, (Dr. Kasi Periyasamy, Dr. David Riley).

Becoming a teacher is a lengthy process for students in Wisconsin. One major

requirement for state certification is that students complete a portfolio relating to

the ten standards set by the Wisconsin Department of Public Instruction. This

document describes the development of a software system designed to assist

students at the University of Wisconsin-La Crosse in maintaining these portfolios

and allowing faculty members to easily view and comment on each student’s files

independent of face-to-face communication. The software is a web application to

be run from a university server that was developed using JSP pages, a SQL server,

and a file server. Also examined are several important decisions involving the

structure and functionalities of the program as well as the communication

between the developer and the customer over the course of development.

iii

Acknowledgements

 I would first of all like to thank my project advisors Dr. David Riley and Dr.

Kasi Periyasamy, who have proved their worth many times over both as guides

and problem solvers. Without their help, it would not have been possible to

complete this task. Secondly, I would like to thank the various people who

provided input from the education department, most especially the project sponsor

Dr. Ali Ahmed, who was instrumental in helping mold the product. Finally, I

would like to thank all the people at IT that helped make it possible to deploy this

product.

iv

Table of Contents

List of tables/figures ... vii

Glossary ... ix

1. Background Information..1

2. Life cycle models...3

3. Requirements ...4

3.1 Requirements development (Napkins)...5

3.2 User Interface...7

4. Design ..9

4.1 User interface design..10

4.2 Database design ...10

4.3 File server design ...13

4.4 Security design...14

4.5 Changes to the design ..15

5. Testing..18

6. Continuing work ..20

6.1 Limitations ...20

6.2 Campus wide deployment..22

7. Conclusion ...23

8. Bibliography ..24

9. Appendices...25

Appendix A. Screen shots from the portfolio manger interface26

v

Appendix B. Sample screen shots from the requirements document42

vi

List of tables/figures

Figure 1 - Use case diagram for the portfolio manager ...6

Figure 2 - View standard files..8

Figure 3 - Class diagram from portfolio manager design document10

Figure 4 - List of tables and keys in the portfolio manager11

Figure 5 - Tables in the portfolio manager and their relationships........................12

Figure 6 - User login ..26

Figure 7 - Main student..27

Figure 8 - Student view files for standard..28

Figure 9 - Student view artifact information..29

Figure 10 - Upload artifact...30

Figure 11 - Student view reflection information..31

Figure 12 - Upload reflection...32

Figure 13 - Student view special files..33

Figure 14 - Student view special file information ...34

Figure 15 - Upload special file...35

Figure 16 - Faculty main..35

Figure 17 - View pending files ..36

Figure 18 - Faculty view artifact information..37

Figure 19 - Faculty view reflection information..38

Figure 20 - Faculty view special file information..39

Figure 21 - Faculty view student info ..40

Figure 22 - Administrator main ...41

Figure 23 – Student login screen ...42

Figure 24 - Main student page ...43

vii

Figure 25 - Upload artifact...43

Figure 26 - Upload reflection...44

Figure 27 - Student display artifact information..44

Figure 28 - Student display reflection info ..45

Figure 29 - Faculty login screen ..45

Figure 30 - Faculty view pending files ..46

Figure 31 - Faculty view artifact information..46

Figure 32 - Faculty view reflection information..47

Figure 33 - Administrator controls ..47

viii

Glossary

Apache Tomcat

Apache Tomcat is a web server application developed by the Apache Software

Foundation that comes bundled with some versions of NetBeans.

API

An Application Program Interface (API) is an interface that provides access to the

operating system and other services.

Cookies

Cookies are small files stored on the user’s computer by web sites, typically used

to maintain login information and user settings. Some cookies are stored

permanently, while others are deleted when the browser is closed.

IEEE

The Institute of Electrical and Electronics Engineers is a professional organization

that establishes some standards, publishes a variety of journals, and sponsors

conferences.

JDBC

Java Database Connectivity (JDBC) is an API that provides Java applications

with the ability to interface with standard database architectures.

JSP

ix

Java Server Pages is a technology that allows for the use of Java code within web

pages, which is compiled upon loading of the page to produce the end result

visible to the user.

NetBeans

NetBeans is an integrated development environment created by Sun

Microsystems for the creation of Java applications, both stand-alone and web-

based. It includes tools for writing, compiling, and debugging Java code.

SQL

Server Query Language is a language used for accessing and modifying

databases.

UML

Unified Modeling Language, currently maintained by the Object Management

Group, is a collection of standard graphical metalanguages used across the

software industry, allowing developers to design programming constructs before

writing code for them. UML diagrams include class diagrams, use case diagrams.

x

1. Background Information

 The process of becoming a professional educator in the state of Wisconsin is

lengthy one, involving numerous steps and milestones, not the least of which are

the ten standards set forth by the Wisconsin Department of Public Instruction,

which students are required to complete in order to become certified to teach in

the state. The collection of information stored in several files relevant to these

standards for a given student is referred to as a portfolio.

 There are two types of files involved in student portfolios: artifacts and

reflections. Artifacts are files that represent a student’s academic progress towards

standards completion. Reflections include the student’s comments on the artifact

or artifacts submitted for that standard.

 Currently, students at the University of Wisconsin – La Crosse (UW-L) are

responsible for maintaining their own portfolios. They must keep a copy of all

files and provide the appropriate files to their advisors for approval at various

times. The approval process is performed on paper copies and requires face-to-

face meetings between students and faculty. This process has three primary

disadvantages: 1) Students must schedule meetings with their advisors to review

these files to prior to approval, 2) it is virtually impossible for the student to make

progress on a portfolio when the school is not in session, and 3) the lack of an

available backup of files leaves students in a vulnerable position if something

happens to their computer.

 While several commercial packages were considered, the Education Department at

UW-L decided to offer the task of developing a portfolio system as a capstone project.

While buying a commercial product would likely have been a faster way to get

1

what the department needed, it also would have cost more and might not be as

well-suited as a product specifically designed for the university.

2

2. Life cycle models

 A variety of development models exist for software development, each with its

own advantages and disadvantages. The one chosen for this project was a

waterfall model with some prototyping elements. The development process

followed a prototyping model in that the first version was developed on a

computer owned by the student and the final version was deployed on a campus

server. In addition, the waterfall sequence (requirements gathering, design, and

implementation) was used to develop each version. This approach allowed the

developer to easily create the initial version on his own computer and then move

it to the campus server for deployment.

 The main advantage of the prototyping model is that it produces a visible

product within a short period of time. This helps give the customer a better idea of

what the final product will look and feel like before the project is truly complete.

The major problem with the prototyping model is that the product is often shown

in an incomplete or rough state, possibly negatively affecting the customer’s

opinion of the project.

 By contrast, the waterfall model has been widely used for many years due to its

proven record of success. By carefully completing each stage of development

before moving on to the next, the model seeks to reduce the number of potential

errors and defects within the project by catching them early in the development

process before they have a chance to propagate through the system. Additionally,

the waterfall model produces a group of documents that can be used for later

reference when updating the product or even developing a new product. The main

disadvantage with the waterfall model is that it has problems with projects where

requirements shift rapidly.

3

3. Requirements

 The initial stage of any project is requirements phase. In this phase, the

customers (in this case, the UW-L Education Department) and developers

establish what the software is supposed to do (but not how it is supposed to do it)

in terms desired features. The phase typically begins with a meeting between the

developers and the customers and then the developers write a requirements

document detailing the features of the product.

 Meetings were held in the spring of 2007 to determine the requirements for the

portfolio manager. During a meeting with education faculty and students, a

variety of functionalities were proposed, ranging from simple storage and

retrieval of student files through highly advanced interaction between faculty and

students.

 The initial scope of the project was defined: The software needed to support

archival of student files. However, consultation with Education Department

faculty produced a wide array of additional ideas for features. Several specialized

disciplines (namely Health and Physical Education) expressed a desire to tailor

the application toward their programs. Additionally, in was requested that other

academic data be included. It was clear that features would have to be scaled

down to what could be completed on schedule and within a scope appropriate for

an MSE capstone project.

 After discussion with some of the computer science faculty, it was decided that

the proposed project was too much for a single student capstone project and the

first version should include just core functionalities. In this version, the product

would be a basic archival system that allowed for storage and retrieval of files

with basic access for faculty members allowing for simple approval and

4

disapproval of files with a basic commenting architecture. This would create a

program useful to the students and faculty but also allow the application to be

completed within the specified time frame.

3.1 Requirements development (Napkins)

 Over the summer of 2007, the formal requirements document was developed

using a tool called Napkins created by former UW-L student Ben Garbers. The

Napkins tool allows for the easy compilation of requirements-related data into a

single document that concisely describes what the software is intended to do on

both a procedural as well as on a GUI level. The software is designed to produce a

document conforming to IEEE standard 830-1993.

 The use case diagram in Figure 1 illustrates the main functions of the software:

5

Figure 1. Use case diagram for the portfolio manager

 The portfolio manager software has three user groups, each with its own set of

privileges and responsibilities:

Students

Students are the main users of the system. They need to upload and download

files as well as receive comments from instructors.

6

Faculty

Faculty members are responsible for approving or disapproving student files, as

well as providing feedback to students about their files.

Administrator

The administrator must be able to activate and deactivate the system, as well as

create and suspend student and faculty accounts.

3.2 User Interface

 It was known from the start that the portfolio manager would be a web-based

product, as it would have to be readily accessible from both on and off campus.

The intended audience for the application could only be assumed to have

beginning to intermediate computing knowledge, and therefore the interface

would have to be kept relatively simple.

 The basic interface, as seen in Figure 2 and appendix B, consists of a table with

two rows and one or two columns (depending on the type of user). The first row

contains a logo for UW-La Crosse and the second row contains all data relevant to

the given page. On the student pages, the second row is subdivided into a column

for page data on the right and a column for quick access to individual standards.

This layout achieves the goal of keeping the interface simple and avoids putting

too much information on any single page.

7

Figure 2. View standard files

8

4. Design

 The overall architecture of the application can be divided into three parts:

• A web server that manages the online interface

• A database server that maintains records of uploaded files

• A file server that stores and retrieves files uploaded by the student

Users see only the web interface, effectively hiding the database and file server

from students and faculty.

 Design began with the creation of a class diagram. The initial diagram (see

Figure 3) contained five student-centric classes and a main class. Most of the

functions of the system are routed through the main class. Several things should

be noted about this diagram. Although the artifact and reflection classes are quite

similar (and indeed share quite a bit of code), they do not have a direct subclass or

shared subclass relationship as the potential gains of subclassing seemed to be

outweighed by the potential pitfalls resulting from confusion between the classes.

In hindsight, it would probably have been better to use the subclass structure since

many of the scenarios the developer sought to avoid could simply have been

avoided by only using the subclass objects in actual code.

 Also of note is the fact that both the faculty and student classes contain only a

single attribute and no methods other than their constructor. Full classes (rather

than just strings) are supplied for potential future work.

9

Figure 3. Class diagram from portfolio manager design document

4.1 User interface design

 The user interface is relatively simple-a series of pages that handle interaction

between the users and the rest of the application. The overall look and feel of the

pages, see Appendix A, is intended to maintain consistency in appearance

between each screen. This interface was fine-tuned through a series of meetings

with Education Department faculty.

4.2 Database design

 The relational database that stores data relevant to student files is very basic.

The database uses a standard SQL query interface accessed using JDBC. The

seven tables shown in figure 3 are used, and there are only four relationships. As

shown in Figure 4, each table roughly corresponds to a class in the class diagram,

and each relationship models a dependency within the system.

Table Name Primary Key Field(s) Class Represented

Artifacts filename/student/standard Artifact

Reflections filename/student/standard Reflection

10

eightDotFourStudent username Student

studentAccounts username Student

eightDotFourFaculty username Faculty

facultyAccounts username Faculty

Table Name: Name of the table in the database

Primary Key Field(s): Field(s) used as the primary key within the table. Each

entry in the table must have a unique key field value (or combination of values if

there is more than one primary key field).

Class Represented: The class for which the table is stores information.

Figure 4. List of tables and keys in the portfolio manager

 The relationships (values from one table used in another) can be seen in Figure

4, where each database table is represented by a box and each relationship is

represented by a black line (with cardinality on each end):

11

Figure 5 - Tables in the portfolio manager and their relationships

 A relationship often indicates that a value from one field in one table should

appear as a value in a field in another table. For example, every record in the

artifacts table must have a value in the student field that is the same as a value in

the username field in a record eightDotFourStudent table (thereby indicating that

the artifact belongs to and was uploaded by that student). The numbers on then

ends of the line indicate that each student may have an infinite number of artifacts

stored in the system. Similarly, the relationship between eightDotFourStudent and

student accounts is one-to-one, meaning that a username from the

eightDotFourStudent table should appear no more than once in the

studentAccounts table.

 Figure 4 does not indicate the directionality (which tables’ keys are being used

as the foreign keys) of the relationships. For the portfolio manager, the

12

eightDotFourStudent and eightDotFourFaculty tables are the originating tables in

all relationships (that is, deleting an entry from the eightDotFourStudent table will

also remove all entries using that username value in the artifacts, reflections, and

studentAccounts tables).

 Several significant details emerge from the relationships diagram. The

relationship between students and their files is independent of the

studentAccounts table. This decision is intentional as it makes it possible to

suspend a student’s account (preventing them from accessing or uploading files)

without deleting all their files. Another significant point is that the artifact and

reflection tables have the same fields and the same relationship with the

eightDotFourStudent table. The two tables could have been combined with the

addition of another key field to indicate whether the file is an artifact or a

reflection, but it was decided to carry the division from the class diagram out to

the database for the sake of consistency.

4.3 File server design

 The final element of the software architecture is the file server, which stores

and retrieves the actual artifact and reflection files. The file server module is also

responsible for keeping track of student disk use.

 As described in the requirements, each file must have a unique combination of

filename, file type (artifact or reflection), standard number, and student username.

To support this, the folder structure is as follows:

 Drive:\portfolio\student username\standard number\artifact or

reflection\filename.ext

Therefore, the artifact file “interview.txt” for standard 5 from student “doe.john”

would be located at:

 Drive:\portfolio\doe.john\5\artifact\interview.txt

When the file is copied onto the web server for download, it will be moved to:

13

 root\TEMP\doe.john\5\artifact\interview.txt

where “root” is the main directory of the server. This structure avoids any issues

relating to naming conflicts.

 Keeping track of student use of disk space is another important function of the

file server module. When a file upload is attempted, the server checks the amount

of disk space the student is currently using and the size of the incoming file

against the predetermined disk space limit (defined as a constant, in bytes, in the

FileServer class). If the file fits within the allotted space, it is stored. If not, an

error message is returned to the user.

4.4 Security design

 While the portfolio manager dos not process highly sensitive information (as

would be seen in a health care application), the data still requires a significant

amount of safeguarding to maintain confidentiality. This need for security is

carried over from the real-world domain where portfolio activities are generally

private matters between students and faculty.

 The most basic protection is the login system. At UW-L, each student and

faculty member is uniquely authenticated by a username (also known as an 8.4, a

rigid format containing the first eight letters of the user’s last name and the first

four letters of their first name) and password. In order to simplify the life of the

users, many campus online services use this username for login purposes.

However, simply knowing that a student or faculty member exists is not enough

for the purposes of the portfolio manager, as the system must also know which

students and faculty are authorized to use the system. These lists are maintained

by the studentAccounts and facultyAccounts tables inside the database and may

be edited by the administrator (as mentioned previously, deactivation of a

student’s account will only prevent the student from logging in-it does not delete

14

the files they have stored). Every page checks if the user accessing the page is

authorized, redirecting them to the login screen if he/she is not.

 The second major concern is the security of artifact and reflection files. The

system needs to keep these files in a secure location on the web server that is not

accessible from other computers, moving them to the web server only when

requested, and then removing them from the web server once they have been

downloaded by the user. While the process sounds simple and straightforward,

actually doing it proved quite difficult, as many attempts at solving the problem

resulted in the file either being deleted before the user could access it or not being

deleted at all. In the end, the most viable solution was to have the previous file

deleted before the next one is retrieved, achieved by having each new file retrieval

begin with a call the page’s jspDestroy() method, which was overridden in order

to complete the task.

 One last security feature has to do with the way the database is accessed. In

most cases, an SQL statement is a string that the server parses and returns the

requested material or performs the requested update. However, using appended

strings in this manner permits SQL injection attacks. To mitigate against SQL

injection attacks, the portfolio manager uses prepared statements with a specific

number of parameters and expected parameter types, thus preventing

unauthorized access and modification to database files.

4.5 Changes to the design

 As actual coding began, changes to the class structure were required. One of

the first changes was the conversion of the database interface class from an object

class into one composed entirely of static methods. This permitted the functions

inside the class to be implemented without initialization data from the calling

code. The change to static methods also allowed for all of the database login code

15

to be stored in a central location, which eased the transition from the prototype to

the deployed version.

 Another early design change was the elimination of the main class from the

project. Due to the JSP architecture, each page effectively took care of the

relevant actions previously assigned to the main class. As a result of this change,

the system no longer kept track of which users were logged into the system at any

given time. This was determined to be a reasonable change, as it was not

necessary to keep track of this data for any mandated function of the product.

 When implementation of the file server began, another class was included to

manage storage, retrieval and deletion of files. The class also assisted in building

links to files for the web pages and monitoring each student’s use of disk space.

Like the database interface class, this class contained only static methods, as no

initialization parameters were required for operations.

 After initial demonstrations of the web interface, several changes were made to

the pages. In order to make the interface more usable, the font size was increased

and various HTML elements were realigned. Additionally, several new features

were added, including the ability for staff to view all of a student’s files on one

page.

 A late major addition to the project was the ability to store three additional

documents, including: A personal statement, an educational philosophy, and a

resume. These documents were added as artifacts for DPI standards eleven

through thirteen, avoiding the need to create a new set of tables in the database.

16

17

5. Testing

 The portfolio manager offers several interesting challenges to the testing

process. Unlike a stand-alone application, it has multiple interaction points and

does not necessarily follow a predictable path of execution. It also frequently

supports multiple users at any given time, raising many concurrency issues.

Additionally, due to the open nature of the web architecture, careful testing must

be done to ensure that the software blocks unauthorized access to the system.

Finally, the disk space limit is difficult to test since it is difficult to find files of

specific size.

 While the portfolio manager poses some interesting problems as a result of

being a web-based application, it does have some features that actually make it

easier to test. Very little of the data sent into the system has to be interpreted in

any way. Other than the login parameters and standard numbers, the software has

only to take in data from the user and store it in the database or on the file server.

Also, none of the tasks performed by the software requires more than two or three

inputs to be directly supplied by the user, greatly reducing the number of required

test cases for each action.

 The portfolio manager was tested on two levels: First, unit testing was

performed each time a new functionality was added to the project. Once all the

major functionalities were added, the project was retested, also known as system

testing, in its entirety to ensure that the project worked as desired.

 Before the system tests, a full test document was created containing the details

of every test to be performed. Each test case contained inputs as well as expected

results. In all, over 250 cases were generated and compiled into a Microsoft Excel

18

document, covering all functionalities implemented at the time. The tests were

designed to cover at least single fault assumption (and where feasible, multiple

fault assumption) for all functionalities within the product. [1]

19

6. Continuing work

6.1 Limitations

 One key limitation of the current portfolio manager software is the lack of

advanced communication between faculty and students. Currently, faculty

members are limited to attaching brief comments to student files, and students are

not able to directly respond to these comments through the system. Hopefully a

later version will expand the program to allow for more complete communication

support.

 Another concern is the possible concurrency issues of the file retrieval portion

of the software. In order to protect student privacy, files copied to the web server

are deleted once they have been downloaded. This is achieved by deleting the old

file before the new one is moved to the web server. Since the speedy deletion of

the previous file cannot be guaranteed, there is a delay between when the new file

is requested by the user and when the file begins to download. While this delay

would likely be minimal for a small number of users, it is not known what it

would be during peak usage times.

 A side effect of the race condition potential is that files may occasionally not be

deleted from the server after downloading. The file server cannot wait indefinitely

to see if the previous file has been deleted before retrieving the new one, and so

the possibility exists that the server may have to give up on deleting the old file

entirely. Additionally, the old file will not be deleted if no new file request is

made before the server crashes, is restarted, or is otherwise interrupted. As a

result, the temporary directory on the web server may need to be periodically

“cleaned out”.

20

 Another concern is the lack of full security on the faculty side. As it stands, any

faculty member with an account may view any student’s files at any time. While

this may prove helpful at times, it would be preferable to have multiple levels of

faculty access so that only authorized faculty can view each student’s files.

 One shortcoming of the current administrator interface is the lack of a

mechanism to add student and faculty accounts in bulk. Currently, accounts can

only be added one at a time. It would be preferable if the administrator could add

a list of names, and even better if students could be added automatically to the

system upon registration for a specific required class. Hopefully a later version

will add this capability.

 A related limitation of the administrator interface is the way the usernames of

students and faculty are presented. Each list is presented as a pop-up menu (sorted

alphabetically) on the administrator controls page. While this interface is fairly

easy to implement on the programming side and should be sufficient for a small

number of initial users, it will not scale effectively to large numbers of users. A

later version of the product should redesign this portion of the interface.

 One suggested change that was not completed involves the communication

between students and faculty. As designed, the comments left by faculty members

are associated directly with an artifact or reflection. As such, if the student is to

delete the artifact or reflection file from the server, the comment is deleted with it.

Although comments could be made more permanent, it would require a

fundamental restructuring of the database and was deemed not worthwhile at this

time.

 It is hoped that eventually another graduate student will have the opportunity to

extend the software to include a variety of communication features between

students and faculty, possibly integrated with coursework and other academic

items, transforming the product into a full student assessment tool.

21

6.2 Campus wide deployment

 As a final step, the prototype will be adapted to run on the campus’s web

server. Several notable differences exist between the prototype version of the

software and the final deployment platform, which will have to be smoothed out

prior to making the product available to students. Most importantly, the database

interface will have to be integrated into the existing campus database system. The

campus uses an Oracle-based SQL client, as opposed to the Microsoft Access

SQL client used in the prototype.

 Like many large-scale projects, the portfolio manager will be rolled out in

stages. Initially, the program will be used by a small group of education students.

Eventually, the software will be rolled out to all students within the major. There

are several reasons for not making the software immediately available to a large

audience, one of the most important being the amount of resources the system

uses. Although the total amount is not yet known, creating a brand new system

and making it available to over one thousand users on a single day is sure to cause

massive bandwidth usage with a massive detrimental effect on the campus

network’s performance.

22

7. Conclusion

 The software product whose development is described in this paper is designed

to simplify the process of creating and maintaining a portfolio for a student

educator. By removing a substantial bottleneck in the portfolio-building process,

both faculty and staff will be saved a significant amount of work. Additionally,

students will be provided with a safe backup of their progress toward certification.

 The portfolio manager system is a complete functional program. It uses a

database, file server and JSP server to easily store and retrieve student files as

well as allow faculty to comment on the files without requiring time-consuming

face-to-face meetings. This is a significant step forward in usage of both time and

resources.

 The university will be moving the project onto the school’s web servers for use,

likely within the next year, eventually being used by over one thousand students.

Moving the project to a deployment server should only require some

modifications to the database interface and the file server, all of which should be

minor.

23

8. Bibliography

1. P. C. Jorgensen, Software Testing: A Craftsman’s Approach, (2nd

Edition), CRC Press, 2002.

2. S. Joshi, “SQL Injection Attack and Defense”, SecurityDocs.com,

http://www.securitydocs.com/library/3587, 2005.

3. M. Hall and L. Brown, Core Servlets and Javaserver Pages: Core

Technologies, Vol. 1 (2nd Edition), Prentice Hall, 2003.

4. Sun Microsystems, “JavaTM Platform Enterprise Edition, v 5.0

API Specifications”, java.sun.com, http://java.sun.com/javaee/5/docs/api/, 2007.

24

9. Appendices

25

Appendix A. Screen shots from the portfolio manger

interface

Figure 6. User login

26

Figure 7. Main student

27

Figure 8. Student view files for standard

28

Figure 9. Student view artifact information

29

Figure 10. Upload artifact

30

Figure 11. Student view reflection information

31

Figure 12. Upload reflection

32

Figure 2. Student view special files

33

Figure 14. Student view special file information

34

Figure 15. Upload special file

Figure 16. Faculty main

35

Figure 3. View pending files

36

Figure 4. Faculty view artifact information

37

Figure 5. Faculty view reflection information

38

Figure 20. Faculty view special file information

39

Figure 6. Faculty view student info

40

Figure 22. Administrator main

41

Appendix B. Sample screen shots from the requirements

document

Figure 23. Student login screen

42

Figure 24. Main student page

Figure 7. Upload artifact

43

Figure 8. Upload reflection

Figure 9. Student display artifact information

44

Figure 10. Student display reflection info

Figure 11. Faculty login screen

45

Figure 12. Faculty view pending files

Figure 13. Faculty view artifact information

46

Figure 14. Faculty view reflection information

Figure 15 - Administrator controls

47

	
	1. Background Information
	2. Life cycle models
	3. Requirements
	3.1 Requirements development (Napkins)
	3.2 User Interface

	4. Design
	4.1 User interface design
	4.2 Database design
	4.3 File server design
	4.4 Security design
	4.5 Changes to the design

	5. Testing
	6. Continuing work
	6.1 Limitations
	6.2 Campus wide deployment

	7. Conclusion
	8. Bibliography
	9. Appendices
	Appendix A. Screen shots from the portfolio manger interface
	Appendix B. Sample screen shots from the requirements document

