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Phase-Locked Arrays of Antiguides: 
Analytical Theory I1 

Dan Botez, Fellow, IEEE, Anatolii P .  Napartovich, and Charles A. Zmudzinski, Member, IEEE 

Abstract-By employing a variational technique on the eigen- 
value equation for finite arrays of antiguides we obtain accurate 
analytical expressions for key parameters characterizing the 
adjacent array modes: the edge radiation loss, the loss caused by 
interelement losses, and the effective index. The upper adjacent 
mode at its maximum-loss point is found to be well approximated 
by the sum of two Bloch waves of wavenumbers f x / [ ( . Y  - 
1).1], where jY is the element number, and -1 is the array 
period. The intermodal discrimination, 10, between the adjacent 
mode and the resonant mode (at the adjacent-mode maximum- 
loss point) is found to be well approximated (<lo% error) by 
n RR,  the resonant-mode loss at resonance. Accurate analytical 
expressions are also derived for the two-dimensional optical- 
mode confinement factor r, and the dispersion between the 
resonant and adjacent modes. The obtained analytical formulas 
are discussed in light of device design, and general design rules 
are presented. 

I. INTRODUCTION 

HASE-LOCKED arrays of antiguides [I]+] are a class P of high-power coherent sources that have been quite 
successful in generating diffraction-limited (D.L.) powers well 
in excess of those available reliably from single-element, 
facet-passivated diode lasers (i.e., 150-200 mW). Using the 
phenomenon of resonant leaky-wave coupling [2], [ 31 record- 
high powers have been achieved from 20-element devices: 
(0.5-1.0) W CW D.L. beam operation, and 2 W pulsed D.L. 
beam operation [7]. Reliable operation at 0.5 W CW output 
power has been obtained, without facet-mirror passivation, for 
over 3500 h [9]. Near-resonant arrays have provided in pulsed 
operation 5 W in beams with lobewidths 3 x D.L. (SO pm- 
wide aperture) [7], and 32 W in beams with lobewidths 2.5 x 
D.L. (180 pm-wide aperture) [8]. Furthermore, it has recently 
been shown both theoretically and experimentally [ 101 that 
quiescent (i.e., temporally stable) behavior can be obtained 
to powers as high as 0.45 W CW. By contrast to recently 
developed “broad-area”-type coherent devices: (flared) master- 
oscillator power amplifiers and unstable resonators, phase- 
locked antiguided arrays, due to their inherent strong built-in 
index profile, are neither affected by thermal- and carrier- 
induced refractive-index variations nor prone to filamentation. 

Theory and experiment [ 11-[5], [lo], [ 1 I] have estab- 
lished that resonant leaky-wave coupling between antiguides is 
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much more effective for achieving stable in-phase lasing than 
evanescent-wave coupling between guides. A comprehensive 
theory for modal content and array-mode discrimination in 
antiguided arrays was developed [4], but it was solely based 
on numerical calculations. For device-design purposes it is of 
interest to have explicit formulas for array-mode eigenvalues 
and structure. By employing the technique of the translation 
matrix [12], we have already analyzed [13] resonant optical 
waveguide (ROW) arrays, and derived accurate analytical 
expressions for key parameters characterizing the resonant 
array modes. Here we derive, for the first time, accurate 
analytical expressions for key characteristics of array modes 
adjacent to the resonant modes (so called adjacent array 
modes): the radiation loss curve as a function of index step; 
the position of the radiation-loss maximum, the influence 
of interelement loss on these modes; the two-dimensional 
optical-mode confinement factor; and the effective index. 
As a result, one can determine analytically the intermodal 
discrimination between adjacent modes and resonant modes, 
and thus formulas are available for all parameters necessary 
for device design and optimization. 

11. ADJACENT-MODE LOSSES 

The effective-index profile under consideration is shown at 
the bottom of Fig. 1. For antiguides the active element has 
the real part of the index lower than that for the interelement 
region. The modulation of the imaginary part of index can 
be connected with the presence of interelement losses (QT 

in Fig. 1 )  or with the variation of the mode (transverse-field) 
overlap ro (top of Fig. 1). High gain in the low-index regions 
(i.e., high l?o in the antiguide-core regions and/or (YT > 0) 
is what favors oscillation of the leaky array modes over the 
evanescent-wave array modes [7]. The translation matrix T 
couples the amplitudes U!:), ui2) of functions corresponding to 
the scattering of lateral plane waves in the core of an antiguide 
[ 131. For vectors consisting of these amplitudes the following 
equation can be obtained: 

For an array of N identical elements this equation can be 
solved: 

Usually the radiation incident on a lateral boundary of the array 
is not reflected. In this case the boundary conditions have the 
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form: a:) = 0, and a$) = 0. To employ these conditions we 
use the well known expression for T" [ 131 

(3) 
sin(n'S) sin(n - 1)'s 

T"=- T -  I ,  sin S sin S 

where cosS = (T11 + T22)/2. 
The lateral wave vectors, which correspond to the propaga- 

tion in the antiguide core, q, and in the interelement region, 
p ,  are defined by the formulas: 

p = (k'fi? - ,0z)1/2 and q = (k'fi; - pZ)lI2, (4) 

where k = w / c ;  n o  and f i l  are the values of the complex 
effective-index expressions in the antiguide core and interele- 
ment region, respectively, and ,Oz is the propagation constant of 
the array mode. The imaginary part of the index for a typical 
ROW device is much less than the real part, and the real- 
index difference also is much less than the index. It follows 
from (4) that p and q are coupled with each other through the 
relationship: 

The propagation constant can be written by using an effective 
index: ,Of = k 0 n , ~  + ipl ,  where l,Oll << k 0 n , ~ .  Both n , ~  
and PI are connected to the lateral wave vectors through the 
relationships: 

where qR = Re q,  q1 = Irn q , n o  is the real part of no, and 
An = n1 - no is the lateral index step. From boundary 
conditions and the expression (3) the following dispersion 
equation can be obtained: 

"22 = sin[(N - l)S]/sin NS. (8) 

After some algebra the following equivalents of (8) can be 
obtained: 

TI2 0 T21 0 sin' NS/s in2  S = -1, (9) 

Any of the equations (8) to (10) can serve as a basis for further 
analysis . 

Let us turn our attention to the case of the near-resonance 
condition. At the exact resonance the element region and the 
interelement spacing contain integer numbers of correspondent 
lateral half wavelengths. Denoting the lateral wavelength in the 
interelement spacing A1 (i.e., Re p 0 XI = 27~) the resonance 
condition is s = mX1/2; m = l , 2 , . . .  . For the element 
region the resonance condition is Re q 0 d = (1 + Z ) T ,  where 
1 = 0 corresponds to the fundamental element mode. For 
the near-resonance condition I sin qdl and I sinpsl are very 
small, and 1 cos qdJ, 1 cosps) are close to unity. This allows the 

I- 

Lateral Displacement, y L: 
Fig. 1. Schematic representation of antiguided array. Top: lateral variation 
of the transverse optical-mode confinement factor. Bottom: lateral variation 
of the index of refraction. c ) ~  is the interelement loss coefficient. A is the 
array period. 

simplification of (8) through (lo), and to analyze the solutions 
explicitly. 

Taking p = PO + PI; qo + 41 (PO and qo satisfy the 
resonance conditions, and Jpll << PO. 141 1 << 90) the expression 
for S can be written down in the form [ 131: 

(FI << 1, and (9) can be transformed to 

i o x = & F / s i n N F ,  (12) 

where x = y l o d o ( p ;  - 4;)/2poqo. The problem of the correct 
selection of the sign in (1 2) will be discussed later. Using the 
relationship (3, a linear dependence of p l  on 2 can be found: 

- I)], (13) 

where Y = k' 0 no 0 Sn 0 s/po = (47~ 0 no 0 Sn/m) 0 (s/X)', 
where Sn is a complex quantity whose real part is an index 
differential, 6 n ~  = An - Ano. (An0 is the lateral index 
differential at resonance.) Note that the Y defined here is 
different from the Y defined in [ 131, in that it does not contain 
N, the number of elements; and the Sn factor has both real 
and imaginary parts. Equations (1 1)-( 13) for F, x and p l  0 s 
should be analyzed taking as a parameter the lateral index 
detuning from resonance. For the resonant mode this was 
realized in [13]. For the adjacent modes the conditions for 
an approximate theory to be applicable are more stringent. 
In what follows we assume strong optical-mode confinement 
for the antiguides. That means the condition (PO)' >> (qo)' ,  
which can be reformulated as 

p1s = Y + 2 0 2 0 s / [ d .  

( m  d)2 >> [s  (1 + 1)12. 
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It should be noted that the condition d >> s is highly desirable 
since it means good aperture filling, which in tum allows a 
large fraction of the power to reside in the central lobe of 
the far-field pattem 1141. Equation (1 1) can be transformed by 
substitution of (1 3) to a form more convenient for analysis: 

F2 e (Y + z a g2/2) (Y + 2 : ~ ) ;  (14) 

where $ = ( 2 q o / p o ) J m .  At resonance Y = 0, and 
from (12) and (14), one can obtain 

sin N F  = * a $ .  (15) 

wherefore it follows that for the resonant mode Re FO = 0, 
Im FO = - i$/N in accordance with results of [13] (the 
sign in (15) can be chosen taking into account the connection 
between the quantity F and the array-mode loss.) From (15) 
it also follows that there are adjacent modes having the 
eigenfrequency (i.e., the effective index) different from that 
for the resonant mode. Re Fadj = h / N ,  and Im Fadj = I m  
FO = - i$/N.  (We restrict ourselves by considering only the 
nearest adjacent modes, because the condition of smallness of 
(Fl  is broken at N = 10 for the next modes.) It is a remarkable 
fact that at resonance the losses for the resonant mode and for 
the two adjacent modes are equal to each other. This result 
agrees with numerical calculations performed in [3] and [4]. 

Y is proportional to the complex lateral-index detuning, the 
real part of which describes the deviation from the resonance, 
and the imaginary part is connected with the spatial modulation 
of loss and gain. 

For strong optical-mode confinement ?1, << 1, and IRc Fadjl 

>> IImF,djI. Let us consider (12) and (14) in the vicinity of the 
resonance point, where the real part of F remains much greater 
than the imaginary part. In this region we approximate the sin- 
function by a linear function: sin N F  = (. - N F ) .  Then the 
substitution of F from (12) gives the algebraic equation 

where < = N z ,  y = N Y .  It can be proved that IReEl >> IIrri[I 
in some vicinity of the resonance. Then one can solve (16) 
approximately. As a result we obtain: 

Re < = (r/li/)[(t2 + 1)”’ - t]  (./$)R. (17) 

where t = (Re y)/~?1,, and 

Im < = -211 + N(Im Y)R2/?1,2]/(1 + R2). (18) 

These solutions are applicable only when lRe<l >> IIrn<l. The 
adjacent-mode loss /?I can be calculated (see (7)) from Ini[ 
by the formula 

Pind, = -[(l + I ) 2 X ~ / ( ~ ~ n O N d 3 ) ] I ~ i  E -,/301111 < (19) 

where is the resonant-mode imaginary part of the dielectric 
constant at resonance. (Note that the ,BO defined here is Po/N 
of [13]). 
Then: 

1 + N(Im Y ) R 2 / g 2  
l + R 2  ,Blad,/P0 = 2 

At resonance t = 0 and R = 1, and then for coupled 
fundamental (element) modes (i.e., 1 = 0): 

By comparison for the resonant mode: ( , f ? ~ / , # o ) ~ ~ ~  = 1 + 
(N/3)Ini Y .  (see [13]). It follows that modulation of gain 
or loss has a much stronger influence (at and near reso- 
nance) on the adjacent-mode losses than on the resonant-mode 
losses. This fact and its implications will be discussed in the 
subsection on interelement loss. 

The quantity R depends on detuning from resonance for 
“upper” and “lower” adjacent modes in opposite direction, 
growing to one side and diminishing to the other side. Ac- 
cordingly, the mode losses are diminishing or growing de- 
pending on the mode type and the sign of the detuning from 
the resonance. As was demonstrated numerically in [4], the 
adjacent-mode loss is maximum for a certain value of An. 
Such a behavior is not given by (20). Instead, as the detuning 
increases, the ratio of adjacent-mode loss to resonant-mode 
loss monotonically grows reaching an upper limit of 2 as 
fin + cc. This, of course, is not what happens when numerical 
calculations are performed [4]. However, the general trend is 
correct: away from resonance the adjacent-mode loss increases 
with increasing Sn, and reaches a maximum which is almost 
twice the value of the resonant-mode loss at resonance [4]. 
To obtain an approximate value for the maximum adjacent- 
mode loss one has to calculate (20) at the Sn value where 
the adjacent-mode loss reaches its maximum on numerically 
calculated plots [4]. 

111. THE MAXIMUM-LOSS POINT 

The Bloch wavenumber, Q .  for an infinite-extent array with 
1 = 0 is 0 for the in-phase mode and ~ T / A  for out-of-phase 
modes. (A is the array period as shown in Fig. 1.) For an 
adjacent-like mode (e.g., mode 19 in [7]) the phase changes 
from one element to the other by ./[(N - 1)A], thus giving 
a T / A  total phase difference between the end elements. One 
could then assume that qB,acij = ( T / ( N  - 1)A). Furthermore, 
as it wil be shown below, it is safe to assume that the value of 
the adjacent-mode effective index at its maximum-loss point is 
equal to the effective index of the resonant mode at resonance. 
Then by using the eigenvalue equation from [13]: 

c o s ( q ~ A )  = cos qd cosps - px sinps a sin qd (22) 
2pq 

for the adjacent mode, and taking into account that at reso- 
nance p a s = m~ and q a d = ( I  + l ) ~ ,  (22) becomes: 

cos (fi) = cos ( ?Asm) 

where As, is the deviation in s with respect to sres = r n X 1 / 2 ,  
the resonance points. Then one obtains: 
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"I 
- Upper Adjacent Mode - - -  Resonant Mode 

An = 0.023 

h = 0.86 pn 
N =10 

19 

Fig. 2. Edge radiation losses for resonant and upper-adjacent modes of a 
IO-element array (An = 0.023; A = 0.86 pm) as a function of interelement 
spacing, s. sres are s values corresponding to the resonances for each resonant 
mode, while smaX are s values corresponding to the maximum-loss points 
for each upper-adjacent mode (see (25)). 

That is, for upper adjacent modes, the interelement spacing at 
their respective maximum-loss points is: 

Equation (25) is indeed a good approximation when we 
compare to numerical data for a 10-element array (Fig. 2). 
All (upper) adjacent-mode maxima occur a ninth of the way 
between subsequent resonance points. The same holds true for 
lower adjacent modes, but on the low-s side of resonance. 

However, if one employs the qB,adj and s,,, values in 
the near-field amplitude expressions for array modes [ 151, the 
result is a curve without nulls. 

We then realized that in effect the upper adjacent mode 
can be thought of being composed of the sum of two waves 
of Bloch wavenumbers q B  = .rr/[(N - l)A] and qB = 
-.rr/[(N - l)A], respectively. One sums the amplitudes of 
these two waves, using expressions from [ 151, and then squares 
to find the intensity. Shown in Fig. 3 is the result for the 
case: N = 11, d = 3 pm, s,,, = 1.1 pm, An = 0.024. 
Note that the intensity-profile envelope has a periodicity of 
( N  - 1)A. Over one period the mode looks virtually identical 
to the adjacent mode of a finite array at its maximum-loss 
point (upper right-hand and lower left-hand comers of Fig. 13 
in [4]). This result validates our assumption that neff for the 
adjacent mode at its maximum-loss point is virtually the same 
to the n,ff of the resonant mode at resonance. Furthermore, the 
maximum-loss point for the upper adjacent mode( s) acquires 
a new meaning: it corresponds to the mode of an infinite- 
extent array composed of the sum of two waves of Bloch 
wavenumbers qB = .rr/[(N - l)A] and -.rr/[(N - 1)A], and 
of the same effective index as the single-antiguide index in 
the limit An -+ oc). 

20 40 60 80 

3. 

2. 

; 2. 
2= a 1. 

1. 

0. 

60 80 
Lateral Displacement. pm 

Fig. 3. Near-field intensity and phase profiles for a mode of an infinite-extent 
array. The mode is composed of the sum of two wavefunctions [I51 of 
Bloch wavenumbers ?r/10.1 and-rrllO.4, respectively. The field between 
two intensity-profile-envelope peaks is virtually identical to the field of the 
upper adjacent mode of an 1 1-element array at its maximum-loss point (for 
example, see Fig. 13 for S = 10 in [4]). 

Strictly speaking there is no specific reason why the adja- 
cent modes' loss maxima should occur when their near-field 
profile is identical to the sum of Bloch wavefunctions. Having 
maximum field intensity at the array edges means maximum 
edge radiation losses only for devices with N 2 10. A better 
definition is that the adjacent modes correspond to the sum 
of Bloch wavefunctions of wavenuber f .rr/[(N - 1)A] when 
the ratio of the peak field intensities in the end elements and 
the central interelement region(s) is ( m d / s ) 2  [17] (i.e., just as 
for resonant modes at resonance). For example, calculations 
on 3-element arrays [28] show that (25) does not correspond 
to adjacent-mode loss maxima, but rather to when ( m d / ~ ) ~  is 
the ratio of the peak field intensity in the end elements and 
the interelement regions. 

Now that we know, for N 2 10, where the maximum-loss 
points occur on a loss versus s diagram (i.e., (25)) one can 
find the maximum-loss points on a loss versus An diagram 
by using the relationship [4]: 

Upon differentiating (26), and taking into account that N >> 1 
one obtains: 

6AnreS = (27) 

In the limit of strong confinement, we get 

The negative shift in Anres is the same as a positive shift 
in An corresponding to a positive shift in s. Therefore, the 
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difference in An between the adjacent-mode maximum loss 
and resonance is: 

We find this equation to be in very good agreement 
with numerical data from [3] and [4]. (A more exact 
treatment by using (24) and (26) gives: 6nadj ,max = 
hn,,, [(2mN - l ) / ( m ( N  - 1) f l)’], where + and - signs 
correspond to upper and lower adjacent modes, respectively. 
For N 2 10 this expression is in excellent agreement with 
results from [3] and [4].) 

It is interesting to note that for 6n = h n a d j , m a x , R e Y  2 
T / N ,  which simplifies (20) to: 

“1.2 

(30) 

If d / s  > 3, which is in the spirit of strong confinement, with 
an error of < lo%, (20) becomes: 

This equation shows two relevant trends: 1) in the absence 
of interelement loss (i.e., Im Y = 0) the ratio of maximum 
adjacent-mode loss to the maximum resonant-mode loss ap- 
proaches the value of 2 the stronger the confinement is; 2 )  at 
its maximum-loss point the adjacent mode, just as the resonant 
mode, is hardly affected by interelement loss. The latter feature 
is understandable, in that, just as for resonant mode at its 
resonance, the adjacent mode at its maximum-loss point has 
negligible interelement field [4]. 

Iv. EDGE RADIATION LOSS AND 
INTERMODAL DISCRIMINATION 

In the case of no interelement loss (i.e., Im Y = 0), the 
loss of the adjacent mode is purely edge radiation loss. From 
(20), we get 

‘3 

We plot it for the case N = 20,m = 1, 1 = 0 , d  = 3 pm, 
s = 1 pm, A = 0.86 pm in Fig. 4. The approximation is very 
good from resonance (An = 0.0245) to the maximum-loss 
point (An = 0.027). At the maximum-loss point the error 
is +7.9%; that is the ratio PladJ//30 is 1.78 by comparison 
to the numerically calculated value of 1.65. Table I displays 
numerically calculated and approximated values of PlndJ 
at the maximum-loss point. 

With the sole exception the 10-element array of d = 3 pm, 
s = 1 pm, m = 1, the error is at most 7.9%. Two trends are 

Approximation - _ _  ,- 
I 

I - Exact 

d = 3 p m ,  s = 1 p m  

h = 0.86 pm 
a T = O  

N =20 

I , , , , I  I , , ,  I ,  , I >  I >  I I I I  

0.01 0.02 0.03 0.04 0.05 
Anadi,max 

0.00 

An = n, - no 
A n  10s 

Fig. 4. Edge radiation loss versus lateral index step for a resonant mode 
( L  = 38)  and the upper adjacent mode ( L  = 39)  of a 20-element array 
(d  = 3 pm, .< = 1 Ltm, X = 0.86 Itm) with no interelement loss. The 
dashed line corresponds to the approximation formula given by (32). At the 
adjacent-mode maximum-loss point (i.e., A I ~ , , I , . , , ~ ~ ~ )  the error is 7.9%. ACI 
is defined as the intermodal discrimination. 

TABLE I 

TO THE RESONANT-MODE MAXIMUM RADIATION LOSS 
FOR VARIOUS ARRAY PARAMETERS. THE APPROXIMATED 

VALUES ARE OBTAINED FROM (20) WITH Im I .  = 0 

RATIOS OF THE ADJACENT-MODE MAXIMUM RADIATION LOSS 

*Calculated employing the exact value for bnaclJ,,,,ax (see comment after 
(29)). Basically in (30) L . ~  is multiplied by (2-\-/(/(2S - 

evident: better accuracy with higher number of elements, and 
with stronger confinement (i.e., higher m d / s  ratio). Also, as 
predicted by (31), the ratio of losses is closer to 2 the larger 
the m d / s  ratio is (i.e., strong confinement). 

The intermodal discrimination, Aa, defined as the differ- 
ence in loss between the adjacent-mode loss and the resonant- 
mode loss at the point of maximum adjacent-mode loss (see 
Fig. 4), is given by 

= 2 ( P l , d J . m a x  - A,,, ( A n a d j , m a x ) ) .  (33) 

Its relative value with respect to the resonant-mode loss at 
resonance (YRR = 2/30 is 

(34) 
- Aa - ~- /31adJ.Illax P O  (ArLadj,max) 

- 

nRR P O  PO 
By using (31) (i.e., strong confinement) with Im Y = 0, and 
the approximation formula for [jo as a function of A71 (i.e., 
Po/N as defined in [13]) one obtains for N 2 10: 

- 1.2 - (35) 
A0 2s’(1+ 1)**, 

- N  

@ R R  7n”d” 
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Discounting the low confinement cases from Table I (i.e., the 
top two structures) one obtains for A ~ / C X R R  values between 
1.06 and 1.14. Taking into account that the error in calculating 
,f31,d,,max/Po varies between +4% and +8% it can be said that, 
with a maximum error of lo%, one has: 

ACU 2 CURR.  (36) 

That is, the intermodal discrimination is to a good approxi- 
mation equal with the resonant-mode loss at resonance. Since 
Q R R  E CXR/N,  where Q R  is the single-antiguide loss, the 
derived relationship tells us very clearly the limitations of 
discriminating via edge radiation losses. The larger the num- 
ber of elements and/or the larger An value the smaller the 
effect of edge loss on intermodal discrimination will be. This 
explains why, at the present time, diffraction-limited beams 
are generally obtained for N _< 20 and An 5 5 x lo-’, at 
an emission wavelength X 2 0.85 pm [7]. Since An,,, 0: X2 
and CYRR c( X2/dK,  it follows that Aa 0: A. That is, 
by increasing the emission wavelength the maximum number 
of elements for a diffraction-limited-beam array will increase 
accordingly. For instance, if X = 1.55 pm one can conceive of 
a 40-element array with An = 0.1, d = 5 pm and s = 1 pm 
emitting in a diffraction-limited beam from a 240 pm-wide 
aperture. 

Of course edge radiation loss is only one of the intermodal 
discrimination mechanisms in antiguided arrays [7] .  In order 
to get diffraction-limited beams from arrays of N > 20 and/or 
high An values (An 2 0.l), one will have to resort to 
other discrimination mechanisms such as Talbot-type spatial 
filters [7] for near-resonant arrays or interelement loss and the 
I?-effect [ 161 for perfectly resonant arrays. 

v. THE EFFECT OF INTERELEMENT LOSS 

Interelement loss is usually an effective way to suppress 
nonresonant out-of-phase modes [4]. However, close to reso- 
nance it helps suppress the adjacent modes as well [4], [18]. 
Now we can estimate this effect analytically. 

Using (20) we plot in Fig. 5 the adjacent-mode losses 
for a case previously analyzed numerically (Fig. 17 in [4]): 
N = 10,d = 3 pm, s = 1 pm, X = 0.86 pm, and an 
interelement loss coefficient, CYT,  that varies between 70 and 
75 cm-’ from resonance (An = 0.023) to the adjacent-mode 
maximum-loss point (An = 0.0276). For the (upper) adjacent 
mode 19 the approximation is good within 8% from resonance 
to the adjacent-mode maximum-loss point. At resonance there 
is large discrimination between the adjacent mode and the 
resonant mode. That is, as stated before, interelement loss 
affects the adjacent mode significantly more than the resonant 
mode. Taking Im Y = -(nos2/mX)(g - a) ,  where g - a is 
the net interelement gain, one obtains for the resonant mode 
(at resonance) the following expression for the ratio of modal 
loss with and without interelement loss: 

(37) 

For the case shown in Fig. 5 one obtains a value of 1.093. 
When plotting the computed pres (dot in the figure) the value 

9- } Approximation 
- Exact 40.0 - 

d=3pm, s = l p m  

h =0.86pm 
aT = 70 - 80 cm-l 

N =10 

- 30.0 - 
r 

v E 

An res Anadj. max 

I I I 

0.02 0.04 0.06 0.0 
0.00 

An = nl - no 

Fig. 5. Modal loss versus lateral index step for the resonant mode ( L  = 18) 
and the upper adjacent mode ( L  = 19 ) of a IO-element array (d = 3 pm, 
s = 1 pm, X = 0.86 pm) with an interelement loss of 70-80 cm-’ (see 
Fig. 17 in [4]). The dashed line for mode 19 and the solid circle for mode 18 
correspond to approximations given by (20) and by [13], respectively. 

is found to be only 0.8% higher than the numerical value. For 
the adjacent mode at resonance, (20), becomes 

Nmd3no 
4(1 + 1)2XA - - + ( a  - 9) .  

For the case in Fig. 5 the value of Plad,/po is 1.467. The 
calculated Pladj value is 8% below the numerical value. In any 
event, the interelement loss has -5 times stronger effect on 
the adjacent mode than on the resonant mode. That is because 
at and/or near resonance the adjacent mode has significant 
interelement field (see [4] and [181). 

It is instructive to look at the relative effect of interelement 
loss on adjacent and resonant modes by taking the ratio of the 
coefficients multiplying the Im Y quantity in the relative-loss 
equations (37) and (38). Then one obtains 

3 m2d3 
- Elres = 4 (1 + 1)2s2A’ (39) 

which is plotted in Fig. 6 as a function of element width for 
the case m = 1, 1 = 0, s = 1 pm. The curve is almost 
proportional with (d /s ) ’ .  This behavior is a reflection of the 
fact that the amount of interelement field for the resonant 
mode decreases very fast as the d / s  ratio decreases [16]. In 
particular, for d / s  = 5/1, which are structures proven to 
give up to 75% of the energy in the central far-field lobe 
[14], the effect of interelement loss is 15 times stronger on 
the adjacent mode than on the resonant mode. This fact has 
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3 4 5 6 7  

Element Width, wm 

1 um 

Fig. 6. The relative effect of interelement loss on the adjacent mode versus 
the resonant mode as a function of element width, d, for the case I ) )  = 1, 
I = 0 (see (39)). As d increases the curve is well approximated by the 
expression (3/4) ( d / ~ ) ~ .  

c 

? _ .  0.03 

0 Approximation [Eqn. (40)] 
- - -  Approximation [Eqn. (43)] 
- Exact (Ref. 16) 

N = 20 

0.030 0.035 0.040 0.045 0.050 0.055 

Lateral Index Differential, An 

Fig. 7. The two-dimensional confinement factor for array modes adjacent 
to resonant mode L = 38 in a 20-element array [16]. The open circles are 
approximations using (40)-(42). The dashed lines are approximations given 
by (43). 

allowed recently the design of a novel type of single-mode 
high-power device: the 3-core ARROW laser [ 191. 

we note from (39) the m2 dependence Of the At the maximum-loss point for the adjacent mode t = I/$, 
influence of interelement loss. Structures with 7ri = 3 have 
been demonstrated [20] and proposed [21] as a means to obtain 

and thus (41b) becomes 

coherent arrays of relatively high index step (An > 0.1). It 
now appears that for such high-An structures interelement 
loss could play a crucial role for intermodal discrimination. 
Assuming a high-An structure with d = 3 pm, s = 1.25 pm, 
and m = 3,  the interelement loss impact is 27 times stronger 
on the adjacent mode compared to the resonant mode! Of 
course this effect happens only near resonance, but it could be 
a highly effective discriminator in 3-5-element devices, such 
as the 3-core ARROW [19], for which the range in A n  over 
which interelement loss is a factor (i.e., An  4A7~,,,/rriN) 
is relatively large. 

VI. THE r EFFECT 

Analytical expressions have been deduced for the two- 
dimensional optical-mode confinement factor, r, of resonant 
modes [16], but not for adjacent modes. We start by using a 
similar formula as employed in [16]: 

r = (1 - ri)rzo + rlrsl (40) 

where rzo and rzl are transverse optical-mode confinement 
factors in the element and interelement regions, respectively; 
and ri is the percentage of the adjacent-mode intensity that 
resides in the interelement regions. If interelement loss is 
present its contribution to the adjacent-mode loss is simply 
the product of ri and the loss coefficient in the interelement 
regions, “-9. We can equate this product with the contribution 
of the interelement loss to the adjacent-mode loss as obtained 
from (20). That is, 

After expressing Im Y the equation simplifies to 

4 a ~  nos2 R2 r. - - 
g 2 ’  I -  1 + R2 mX 

Using the case N = 20,d = 3 pm, s = 1 pm, X = 0.85 pm, 
n o  = 3.40, An,,, = 0.04 (i.e., [16]) one obtains a value of 
0.08 for ri. Reference [16] has rzo = 0.06 and rzl = 0.03, 
which using (40), provides r % 0.058. This calculated value 
is plotted in Fig. 7 (open circles) and the agreement with the 
exact calculated values is excellent (i.e., < 1 %). At resonance 
we obtain r = 0.054, also shown in Fig. 7, which is only 1% 
higher than the numerical value. 

Since the r effect, just like the interelement loss, is a factor 
affecting adjacent modes only between resonance and their re- 
spective loss maxima, we propose the following approximation 
for I?. For the upper adjacent mode: 

3 mN 

r = rol for An 2 An,,, 1 + - , ( A) (43) 

where rlo and rol are functions of An for the infinite-extent 
array modes (1 ,  0) and (0, l), respectively [ 161. As shown in 
Fig. 7 this is an excellent approximation. Note that rol for 
An 2 A71,,,( 1 + (2/rnN))  can be replaced with a good deal 
of confidence by the r value given by (40) and (42). Similar 
relationships hold for the lower adjacent mode, as evident from 
Fig. 7. 
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The r effect is a factor in intermodal discrimination only 
over a 4Anres/mN range in An around resonance. Then, 
just as for interelement loss, its usefulness as a discriminator 
against adjacent modes will be best exploited for arrays of low 
element number (3-3, such as the 3-core ARROW [19]. 

VII. THE EFFECTIVE INDEX 

Equation (6) gives a relationship for the effective index, 
ne'. Since qR = Reqo + Req1,Reqo = 7 r ( l  + l ) /d ,  and, 
Reql << Reqo, (6) becomes 

just as originally derived in [ 131. Equation (17) gives us Regl: 

which for the strong confinement condition (i.e., $, 2 q i )  
becomes 

Inserting Reql in (44) gives 

This is the analytical formula for adjacent-mode effective 
index. We study and compare it with numerical calculations 
[22] at two points: maximum-loss and resonance. 

At the maximum-loss point t = l/+ and R becomes 
( T / $ ~ )  ( d w  - 1). For the strong-confinement condition 
R = 7r/2. (Even in the extreme case d / s  = 3, m = 1, 1 = 0, 
the error introduced by making this approximation is only 
13%. All cases of practical interest give smaller errors.) Then 
(46) becomes 

The quantity no - (l/2no)(X(l + 1)/2d)2 is simply the 
effective index of the resonant mode at resonance [ 131, which 
is also the  ne^ for a single antiguide in the limit A n  --f 03 [4]. 
For a simple case such as no = 3.4,s = 1 pm, d = 3 pm, 
m = 0, l  = 1, and N = 10, the deviation of neffladj,max 
from is only 0.0002. That is, our assumption that 

neffl,dj,max neff,res was well founded. In the limit N -+ 00 

the two quantities are identical, as considered in Section 111. 
Excellent agreement is found with numerical results [22] for 
the above-mentioned case (i.e., a 3.39980 calculated value 
versus a 3.39967 numerically obtained value). 

At resonance R = 1, and (46) becomes 

1 A(l+ 1) 2 
ne' = no - (T) [I + (1 + 1)" 

'(48) 
This is also in excellent agreement with numerical data [22] 
(3.39946 calculated value versus 3.39944 numerically obtained 

__ 
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value). We can now obtain a quantity of interest, the difference 
in effective index between the resonant mode and the adjacent 
mode at resonance: 

(49) 

Equation (49) gives in effect the dispersion. For the case 
1 = O,N = 10,s  = 1 pm, d = 3 pm, 1 =0.86 pm, no = 3.4, 
one gets SneR = 5.2 x lop4,  only 4% less than the figure 
obtained from the numerical plots of [22]. In this case 6neR 
corresponds to a wavelength dispersion of 0.23 A, a typical 
value for phase-locked arrays. As expected the dispersion is 
inversely proportional with the number of array elements. 

Finally, the dispersion at the adjacent-mode loss maximum 
can be obtained by using the neff formula for the resonant 
mode ((26) in [13]), (29), and (47): 

It is immediately evident this quantity (for the case 1 = 0) 
is smaller by at least a factor of 1.5 than the SneE value at 
resonance (i.e., (49)). That is, typical dispersion values for 10- 
element arrays with An at the adjacent-mode loss maximum 
will be around 0.15 A. There is experimental evidence that 
this value for dispersion is in the right ballpark for antiguided 
arrays. Specifically Van de Ziel et al. have recently obtained 
[23] a dispersion value of 0.15 8, for GaAs 13-element gain- 
guided arrays, which after all are antiguided arrays. 

VIII. CONCLUSION 

Considering our previous work [13], and the results obtained 
here we have obtained analytical approximations for all pa- 
rameters affecting intermodal discrimination in (longitudinally 
uniform) antiguided arrays: the 2-D optical-mode confinement 
factor I?, the edge radiation loss, and the interelement loss. 
It is now a simple exercise to compute the threshold-current 
densities for the various array modes [24], [25], and determine 
over what range in A n  is the desired mode, the in-phase 
resonant mode, favored. 

There is still the issue of how to compute losses for arrays 
with Talbot-type spatial filters [24]. As pointed out in [24] 
a good approximation for the resonant-mode transmissivity 
can be obtained from the work of Leger et al. [26]. For 
adjacent modes the situation is more complicated. One either 
has to use beam propagation through the filter and compute the 
overlap integral [4], [ 181, or approximate the adjacent-mode 
envelope as two adjacent half raised-cosine curves (see Fig. 3) 
and weigh this fact in Leger's formula [26]. In any event, 
Talbot-type filters are not absolutely necessary [6] if the proper 
mixture of intrinsic antiguided-array modal discrimination 
mechanisms is employed. 

The analytic formulas derived here not only help in device 
design, but also provide some useful design guidelines. In 
order to obtain diffraction-limited-beam operation to high 
powers: 
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1) 

2) 

For arrays of large element-number ( N  = 20-40), one 
has to employ either relative low An values (3-5 x 

at 
resonance in devices with large interelement loss. In- 
creasing the emission wavelength will proportionally 
increase the maximum number of elements for coherent 
operation. 
For arrays of low element number ( N  = 3-5), high- 
An values (S10-’) coupled with large interelement loss 
(sZm200 cm-’ and large element width/interelement 
spacing ratios (>3) are preferred, as long as ARROW- 
type terminations are provided. 

or, if technologically feasible, operate right 

The latter are particularly attractive since the resonance 
condition is significantly eased, and thus it should be relatively 
easy to achieve 1 W coherent power from 20 pm-wide- 
aperture devices [ 191, [29]. Furthermore, 3-core ARROW 
devices can be used as efficient master oscillators for an- 
tiguided MOPA’s [19], [27], [29], which hold the promise 
for 3-5 W coherent CW power without the inherent prob- 
lems (filamentation; drive-dependent astigmatism) that plague 
broad-area (flared) MOPA’s [25]. 

Note Added in Proofi We have recently realized that for 
arrays of small element number (i.e., N < lo), the factor 
N multiplying I7nY in formulas expressing the effect of 
interelement loss should be replaced by N - 1. This fact has 
been confirmed by comparing results of analytical calculations 
to results of numerical calculations for 3-element arrays with 
interelement loss 1281. 
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