Nonequilibrium statistics of flexible macromolecules in dilute solutions. I.

Macromolecular configuration
H.H. Saab

Avery International Research Center, Pasadena, California 91107

R. Byron Bird

Department of Chemical Engineering and Rheology Research Center, University of Wisconsin-Madison,

Madison, Wisconsin 53706

(Received 19 August 1986; accepted 18 November 1986)

For a macromolecule modeled as a Rouse chain in dilute solution, we give the exact
nonequilibrium expression for the joint probability density for the configuration of any number
of links of the chain, expressed in terms of the connector vector coordinates. From this
expression we get the probability density for a single link and the joint probability density for
two links. For these two functions we give the associated diffusion equations. We also give the
length-independent probability density for the orientation of a single link. Finally we illustrate

the application of these results in steady shear flow.

I. INTRODUCTION

Polymer solutions and undiluted polymer melts have
flow properties which are quite different from those of New-
tonian liquids. These properties can cause unusual flow be-
havior.! Molecular theory serves as a source of constitutive
equations that provide a connection between the unique flow
properties of polymers and their chain-like molecular struc-
ture.

In most molecular theories, in order to gain an under-
standing of the rheological behavior, it is necessary to devel-
op some knowledge of the distribution of the configurations
of the macromolecules. For flowing polymer fluids, the cal-
culation of macromolecular configurations requires the use
of models which are simple enough to allow nonequilibrium
calculations. Even with the simplest models the calculations
are very complex, and only a few general results are known.
For dilute solutions an important result is the expression for
the distribution of configurations for an arbitrary bead-rod-
spring model given by Curtiss, Bird, and Hassager?; however
“this result is restricted to steady-state, homogeneous, poten-
tial flows. Only for the Rouse model (the flexible chain of
beads connected by Hookean springs) can the distribution of
configurations be found in any general flow. Previous inves-
tigations which used this model took the approach of nor-
mal-modes analysis®>*°; in these studies the distribution of
configurations is given in terms of the normal-mode coordi-
nates of the chain. The normal-mode coordinates are linear
combinations of the connector coordinates. Although the
normal modes may be interpreted as being related to vibra-
tional or “breathing” motions of the chain, they do not give a
clear picture of the stretching and orientation of segments of
the macromolecule.

In this paper we will go beyond the normal-modes treat-
ment and study the distributions of quantities pertaining to
the orientation and extension certain portions of the macro-
molecule under general flow conditions. The macromolecu-
lar model used throughout is the Rouse freely jointed bead—
spring chain. First we review the necessary details of the
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Rouse theory. Then we derive the joint probability density
for any number of links of the chain, from which we get the
probability density functions for one link and for two links.
For these two functions we give the appropriate diffusion
equations. We also show how the one-link probability den-
sity function can be integrated to give a length-independent
probability density function for the orientation of a link. Fin-
ally we show how these functions can be calculated in steady
shear flow.

ll. THE ROUSE MODEL

Two avenues are available for the development of the
Rouse theory for dilute polymer solutions. In one approach,
the Rouse theory is found as a special case of the general
phase-space kinetic theory for polymeric fluids of Curtiss,
Bird, and Hassager.’> A summary of this approach is given by
Curtiss and Bird.® The second approach, pioneered by Kirk-
wood and his co-workers,’ is based on the theory of fluctu-
ations and stochastic processes. Its advantage is that it
makes clear the connection between the Langevin formula-
tion, which forms the basis of the non-equilibrium Brownian
dynamics (NEBD) computer simulation technique,®'° and
the diffusion equation or Fokker-Planck formulation,
which plays a central part in the Rouse theory. In part IT we
make comparisons between the predictions of the Rouse the-
ory and those of NEBD. Therefore we find it advantageous
to discuss the second approach.

The dynamics of the Rouse chain immersed in a flowing
solution can be treated by an extension of the theory of the
Brownian motion of a single particle to the case of N bound
particles. The abbreviated discussion that follows draws on
the discussions of van Kampen,"! Yamakawa,'? and
Hinch'3; in addition, recently Phan-Thien and Atkinson'*
and Edwards'® have given related discussions of the polymer
chain dynamics.

In the Rouse model the mass of the macromolecule, as
well as its hydrodynamic resistance, are concentrated at N
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mass points, or “beads,” connected by N — 1 Hookean
“springs.” The substitution of springs for sections of the ma-
cromolecule has its basis in the theory of rubber elasti-
city.''8 The chain is freely jointed: there is no restriction on
the orientation of the springs. Each bead is treated as a Brow-
nian particle of mass m with isotropic friction coefficient £.
Its motion follows the Langevin equation:

mi, = —C[t, —v(r,)] +F, + A, () (v=1..N).

(2.1)
In Eq. (2.1) r, is the position of bead “v”’; v(r, ) is the fluid
velocity calculated from the macroscopic flow field at r,;F,
is the spring force acting on bead v; and A, (t) is the rapidly
fluctuating random force, which by definition has the prop-
erties:

(A, () =0, (2.2)
(A, (DA, (t)) =4,56(—1t")B. (2.3)

In the above the angular brackets denote the ensemble aver-
age (that is, the average over all realizations for a given ini-
tial condition) of the enclosed quantity. The tensor B can be
related to the friction coefficient and the temperature by
B = kT, with & the unit tensor.*

For a given set of initial positions of the beads, Eq. (2.1)
can be integrated to give the time evolution of the N-bead
system. In Brownian dynamics simulations, this integration
over time is carried out numerically.>'° However we are not
interested in the explicit time history of the Rouse chain but
in its statistical distribution of configurations. We denote by
W (r,,....,Tx-t) the probability density for the configuration of
the chain; that is, W(r,,...ry,t)dry,...dry is the probability
that the chain is found with each r, in the range fromr, to
r, +dr, (the r, denote the position coordinates of the
beads, whereas the 7, are dummy variables]. It is known
from the theory of stochastic processes that the Fokker—
Planck equation governing W is given in terms of the ensem-
ble-averaged displacement {(Ar, ) and square displacement
(Ar Ar,):

%%=(_ALt) él (ai)

-[(Arv)\l’ — (_;_) (aa )-(Ar,,Ar,)‘I’] . (24)

v

In the long-time regime, where Af>»m/¢ (this condition is
equivalent to the discarding of the inertial terms in the con-
figuration-space kinetic theories), (Ar, ) and (Ar, Ar, ) can
be found as

(Ar,) = [v(r,) + (1/)F, ]At, (2.5a)
{Ar, Ar,) = (2kT /£)dAt . (2.5b)
The diffusion equation for ¥ becomes
N _ X9 {[
at - vzl (3rv) vir,)
+ (l/;)FV]\I' — (kT /E) 3;1'} . (2.6)

Equation (2.6) is generally taken as a starting point of con-
figuration-space kinetic theories for polymeric fluids. Cur-

tiss and Bird® have shown how it can be found in an alterna-
tive way from a general phase-space kinetic theory.?

Hi. THE PROBABILITY DENSITY FOR THE
CONFIGURATION OF THE CHAIN

In this section our discussion follows that of Chap. 12 of
“Dynamics of Polymeric Liquids,”'® referred to as DPL.
For a homogeneous fluid (i.e., no concentration gradients)
subject to a homogeneous flow field [v(r,) = k°r,, with k
the transpose of the solution velocity gradient] ¥ can be
factored as ni, where » is the number density of chains pres-
ent in solution and ¥ is the probability density for the inter-
nal configurations of the chain. The internal coordinates of
the chain can be chosen as the set of N — 1 connector coordi-
nates Q, ,...,Qy_ , denoted by (QV ') and given by

Q=r,, -1 (k=1.,N—1). (3.1)

For the Rouse chain, the spring force acting through connec-
tor “k,” which is the difference between the spring forces
acting on beads “k + 1"’ and k, is given by H Q,, with H the
spring constant. This expression for the interbead force and
Eq. (3.1) can be substituted into Eq. (2.6). After some ma-
nipulation {DPL Sec. 12.2], Eq. (2.6) gives a diffusion
equation for ¥ (g~ ~',¢), which is the probability density for
the internal configuration of the chain [¢(q" ~',r)d¢" ~'is
the probability of finding the chain with each of the Q; in the
range of q; to q; + dq;, where the Q, represent the actual
connector vectors and the q, are dummy variables]:

_Q_ N—1
(at)'//(q £)
N-1
_ J
B j;l (aq,
N-—-1 a¢
V3> Ajk[kT( )+qu¢]]. (32)
k=1 dq;

In the above 4 is an element ofthe (N—1)X(N—1)
Rouse matrix (4, =2 if j=k, — 1if j=k £ 1, and zero
otherwise). Equation (3.2) can be simplified by the intro-
duction of a set of N — 1 normal coordinates (Q” — 1), relat-
ed to the connector coordinates by a linear transformation:

Ytears

N-—1
Q=) %.Q,, (3.3a)
m=1

Qe = (2/N)? sin(kmn/N) , (3.3b)
where Q,,, is an element of the orthogonal matrix that dia-
gonalizes the Rouse matric [DPL Sec. 12.2]. Separation of
variables then leads to the well-known solution for ¢*>:

Pa" L) =¢¥ = ITII_:[: ¥ (q50) , (3.42)
¥ (q),1) = [det(Zr(Q;Q;); ]_‘”2
Xexp[ — (1/24(Q Q) "qjq)],  (3.4b)
(Q Q) =f f_: 9q T]f[: ¥ (q;,)dg;
= (I:’]:/lH)ﬁ — (1/nH)7;, (3.40)
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T = — (nkT//lj)f_ exp[ — (t —t')/A;]vi0 (827Dt
(3.4d)

1/4 sin®*( jm/2N) .
(3.4e)

In the above @V —! denotes a set of (N — 1) dummy vari-
ables q/ related to the g; in the same way that the normal-
mode coordinates Q! are related to the connector-vector co-
ordinates Q; (ie., q. =32Y¥-10,,.4q,);n is the number
density of polymer chains present in solution; & is the unit
tensor; 7; is the partial stress tensor associated with normal
mode j; the angular brackets denote the average of the en-
closed quantity taken over the entire chain configuration
space; Yo (t,¢') is a codeformational finite strain tensor
which can be found if the flow field is known [ DPL Appen-
dix C]; and 4; is the time constant characteristic of normal
modej, related to A, the fundamental time constant, and ¢;,
the jth eigenvalue of the Kramers matrix [Cj ], inverse of
the Rouse matrix. The probability density for the configura-
tion of the chain is factored as the product of N — 1 probabil-
ity density functions ¢; for the normal modes Q; . Each of the
¥; is of normal Gaussian form. Furthermore the normal
modes are all statistically independent of each other, in the
sense that the moment (Q; Q;) =45,(Q; Q;) (that is,
(Q; Q) = O when i is different from j ). Equations (3.3a)
and (3.4c) lead to expressions for the moment (Q, Q;):

A, =2Ayc;; Ag=5/4H; ¢ =

(Qk QJ>_ k(kT/H)b-(l/nH) z ka "jm jm .
m=1
(3.5)

Some additional relations which will be used later con-
cern the elements and eigenvalues of the Kramers matrix
[DPL Sec. 12.1]:

C; =i(N—-j)/N (i<))

=j(N—0/N @@z, (3.6)
N—1
S ¢ =(N2=1)/6, (3.7)
i=1
N-—-1
S &= (N?—1)(2N?+7)/180, (3.8)
=1
N—1

T = (N2 = 1)(8N* + 20N + 71)/[ (21) (360)] .
=
(3.9)

The general expression for the probability density func-
tion for the configuration of the Rouse chain was first found
by van Wiechen and Booij.” However they did not show the
relation between the moments (Q, Q;) and the partial
stress tensors 1; [that is, they gave Egs. (3.4a) and (3.4b)
but not Egs. (3.4c) and (3.4d)]; they were able to find the
moments explicitly only for specific flows by solving the dif-
ferential equations which result from taking the second mo-
ments of the diffusion equation [Eq. (3.2)]. Their method
required solving a different set of differential equations for
each different flow. Lodge and Wu® soon thereafter pointed
out the relation between the moments (Q; Q;) and the par-
tial stress tensors 7; [ Eq. (3.4¢) ]; furthermore they used the

body tensor formalism to derive the general expression for
the partial stress tensors [Eq. (3.4d)].

Recently King and James* used the two-sided Laplace
transform technique to rederive the expression for the prob-
ability density ¢, and they demonstrated the usefulness of
this technique in the calculation of mean values of configura-
tional quantities for the chain. Although their methods are
very powerful and inspired much of this work, their work
does contain a few errors: Their use of the substantial deriva-
tive instead of the usual partial time derivative in the diffu-
sion equation for ¥ is inconsistent with the form of the con-
tinuity equation which results from statistical mechanics; in
addition Booij*® has shown that their expression for the ener-
gy storage is incorrect and has given the correct expression,
which had been given earlier by Sarti and Marrucci.?!

A novel use for the Rouse chain has been demonstrated
by Armstrong and Jhon.??> They used the Rouse model to
study the turbulence-induced change in the conformation of
polymer molecules, and, although they carried out detailed
calculations only for the case of the two-bead dumbbell, they
found that the effect of the stochastic velocity field on the
macromolecule can be interpreted as a renormalization of
the connector potential.

IV. THE JOINT PROBABILITY DENSITY FOR THE
CONFIGURATION OF SEVERAL LINKS

In this section we develop a general method for finding
the joint probability density for the configuration of any
number of links expressed in terms of the “natural” connec-
tor vector coordinates.

The normal-mode coordinates of the chain constitute a
set of independent, normal Gaussian distributed variables;
furthermore the means and variances of any set of » connec-
tor vectors (Q,, ,...Q,, ) can all be found directly from those
of the normal-mode coordinates, of which they are linear
combinations:

N—1
Q)= Q,(Q;) =0 (4.1a)
k=1

-1

8uye, (KT /H)S — (1/nH) z Qg Qs 7 -
(4.1b)

Wedenote by £, ., (qy,---,4,,t) the joint probability density
for finding the r connector vectors (Q,,,...Q, ) with
Q., =4:,Q,, = q,-,Q,, =q, (the Q, represent the con-
nector vector coordinates while the q; are dummy vari-
ables); r is not greater than the total number of links
(N — 1) and the a; denote a set of r distinct indices between
1 and N — 1. This joint probability density function can be
expressed as a contraction of the function # for the configu-
ration of the entire chain:

Q. Q)=

f ..... (ql’ 1qr,t)
=UMJ ¢(q”“t)—1'[dq,]
N—-1-— j#a 9o
(i=1,.,r)
=fw.f ¢(q”",t)[1'[ 8(q,, — q,)][ H a’qj]
N—1/—= i=1 i=1
(4.2)
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The above integration is performed with the variables q, set
equal to the q;, for the index / ranging between 1 and r. Using
standard arguments of probability theory,?® we can infer di-

= [det(270")] /2

X exp [ ~(172) 3 ¥ (2N, qj] . (4.3)
i=1j=1

In the above o is the r X7 tensor matrix whose elements
("), are the moments (Qa,Qaj )}, and 27 is the inverse of o”.
sented is similar to the method of finding multivariate Gaus-
sian distributions at equilibrium first formulated by Wang
and Uhlenbeck® in one dimension and extended to the
three-dimensional case by Fixman.?®

general expressions for " and det(¢”) for any number of
connector vectors 7. To do so we follow Aguirre?® and de-
compose o* as the product of two matrices of tensors:

o = (L)~ L.U". (4.4)

The tensor matrix U” is upper diagonal and its elements are
given by
U, =0 U>j)
=u_10; (). (4.5)
The tensors , 07 are determined by the recurrence relation
given by Aguirre:

r r -1
k0 = (k-1 ij—(k-l)ofk.[(k—l)o'kk] '(k_l)o'fq,
(4.6a)

o0 = (67, = (Q, Q) - (4.6b)

Aguirre also shows that the tensor matrix L is lower diag-
onal, with all its diagonal elements given by the 3 X 3 identity
tensor, and the last two elements of row 7 given by

r — . r -1
Lo-v=t-2%c-nle-c-ne-1]""

L =5. 4.7)
J
Ji(@u@t) = [fmf 0N | | qu]
N—3/— > k F#i
k #j 2:=q, ¢ =4

3035

Aguirre shows that two of the elements of 2" can be deter-
mined immediately:
2. =le-a%e_ne-n]""
2:,(r— 1)

= [(r—l)o.:r]_l'[(r—Z)o'r(r—l).(r—l)]_1' (4'9)

All of the remaining diagonal elements X’; can be found by
interchanging the indices / and  in Eq. (4.8). The off-diag-
onal elements X can be found by interchanging the indices i

(4.8)

_with r and j with 7 — 1 in Eq. (4.9). In addition we can use

Eq. (4.4) and the properties of the lower and upper diagonal
matrices L” and U’ to show the following identity?®:

det(0) = [ det[q_ 1, "] - (4.10)

i=1
With this we have completely specified all of the terms which
appear in Eq. (4.3) for the r-connector joint probability den-
can be"i;sed to show that Eq. (4.3) reduces exactly to the
probability density for the entire chain when 7 is taken as
N-1

V. ONE AND TWO-LINK PROBABILITY DENSITY
FUNCTIONS

the one-link probability density /; and the two-link probabil-
ity density f;;. The one-link function £; results from f, .,
when r is taken as 1 and «, is set equal to /, and the two-link
function f; results when 7 is taken as 2 with @, =/ and
a, = j. For f; we find:

fi(ah = Umf: v ] qu]

N — ki 7i=q

o N—1
=fmf ¥(g"~'18(q; —q) T] dgx

N—1Y— k=1

= [det 27(Q, Q:))]~'?
Xexp[ — (1/2){Q.Q;) " “:qq] - (5.1)

The above integration is performed with q; set equal to q.
For f; the result is

. N—1
- MJ P(g"~08(g; — a,)8(g; —a) [ da
N -]

Y- K=

= (27) *[det(o;)det(0,00; o;,; — 0,)] "2 Xexp[ — (1/2) (0, — 62057 o) "hiq, qy ]

Xexp[ — (172)(0;; — 00, l"-"','J')_I:qz(lz] Xexp[ — (1/2)(q;;°0; oy, — o'ij)_13Q2Q1]

Xexp[ — (1/2) (o005 “0;; — 0;) " :q,q,] -

In the above we have introduced the convention o
= (Q; Q;). Proof of Eq. (5.2) requires the identities:

-1
oy,

(5.3)

—1 —1 -1 __ wer— Lo
C; 0y (0;; — 000 *0;) " = (0;;°0; 0y —

(5.2)
r
(0;; — o007 a;) o0 = (0,07 oy, —0a;) 7,
(5.4)
o; '+ o7 oy (0;; — 0,0 hoy) hoyee !
= (0 — 00055 o) 7", (5.5)
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det(o;)det(o;, — 0,0, "0;)
= det(o, )det(0, 057 o, — ;) . (5.6)

In the form given Eq. (5.2) satisfies the symmetry condition
i (Q,828) =f;(02,0,,1).

VI. CHARACTERISTIC FUNCTIONS

Previous investigators have found transform and char-
acteristic function methods to be very useful in the treatment
of Rouse chains.*>?” There is a relatively simple relation
between the characteristic functions of the one-link prob-
ability density f; and the ~-link probability dens1ty f,,,l ,,,,,
Define the r-connector characteristic function f,, _as

.....

(6.1)

Use of the two-sided Laplace transform rather than the
Fourier transform makes it possible to avoid imaginary ar-
guments. The reader interested in the two-sided Laplace
transform is referred to the comprehensive treatise by van
der Pol and Bremmer.”® Equation (6.1) leads to

S, (Prone ,p,,t)—exp[(l/z) > 2 (Qq, Q) p,]-

i=1j=1

(6.2)
The one-link characteristic function can be found as
fo(pt) = f fa, (@) exp[ — peqldq
= exp[ (1/2)(Qg, Q.,):PP] - (6.3)

Therefore the r-connector characteristic function can be fac-
tored as

Frrr, (P1reeByst)

- i—1

= [Hfai (pist) HH H F, a,(p,,p,,t)] ,  (6.4a)
i=1j=1

Fopa, (0:0;) = €xp [(Q,, Qu)p: b ] - (6.4b)

The r-connector characteristic functions is the product of
the r corresponding one-link characteristic functions times
rX (r — 1) coupling terms F, .. For the two-connector
characteristic functionzj (pl,pz,t)

T (pupast)
= f f £ (a:1,82,2) exp[ — p;-q,]

xexp[ — p,*q;1dq, dg,

_ —f(ppt)f(l’zat) (Pppzyt),
F;(py, p2?) = exp| (Q; Q,):Pi p].

(6.5a)
(6.5b)

Vil. ONE- AND TWO-LINK DIFFUSION EQUATIONS

The diffusion equation for the entire chain, Eq. (3.2)
can be contracted to give the diffusion equations which gov-
ernf; and f;. For f; both sides of the equation are multiplied
by 8(q; — q) and integrated over all connector coordinates.
The resulting diffusion equation is

H. H. Saab and R. B. Bird: Flexible macromolecules in solutions. {

(—g—t)ﬂ (1)

- —(;)-[[«-qm— (1/0)

XNil A [kT&a(%{li) +H(Q,|Q, = q))}] (7.12)

k=1

(Qk!Qi = q)
= (Q8(Q;, —q))

=f;;'.r Y(g¥ " 1)g,6(q; — @) 1'[ dq,] (7.1b)
N—1Y— =

The conditional average (Q,|Q; = q) denotes the average
of Q, with Q; set equal to q, and results from the average of
the product of Q, with the delta function as shown in Eq.
(7.1b). To calculate the conditional average (Q,|Q; = q)
we need the identity:

(QBQ =3 (Q Q,) (

n=1

, 2
o ) (1.2)

where B(Q" —!) is a function of the set of connector vector
coordinates. With §(Q, — q) substituted for B(QV~!) in
Eq. (7.2), an explicit expression is obtained for the condi-

tional average (Q; |Q; = q):

a
(Q|Q; =q) =(Q, Q; )
and Eq. (7.1) becomes

(%)fi(q,t) = —( 9

X Z A [kT8,,6 — H(Q, Q)] (af)]

(7.4)

f (7.3)

)-{[-«-qm — (/D)

=D (qQf:.

In the above the notation D; (q) is introduced for conven-
ience.

In a previous treatment of flexible chain models, Kovac
and Fixman® used a “Gaussian correlation” closure ap-
proximation for calculating the conditional average
(Q; |Q; = q). On the basis of linear response theory, they
assumed.:

<Qk|Qi = (I> = [5k,~8 +2(1 —(sk.')ckiK]'in , (7.5).

where &, is the Kronecker delta and the ¢;; are “coupling
factors.” This assumption leads to an approximate diffusion
equation of the form:

(—(%)ﬁ(q,t)
= _( d

_ (l/g)A,,[kT( )+qu”

LI - awa)

(7.6)

where the a; are coefficients found from a, =S¥ ! A,.c -
Kovac and Fixman then used this approximate diffusion
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equation (with appropriate constraining forces substituted
for the Hookean force expression)as a basis for calculating
linear viscoelastic functions for a freely rotating chain of
rigid rods (their Gaussian correlated chain). However com-
parison of Eq. (7.6) with the exact Eq. (7.4) shows that the
Gaussian correlation closure approximation of Kovac and
Fixman may result in an unwarranted coupling between the
hydrodynamics and the connector forces. This coupling is
not to be confused with the usual preaveraged Oseen hydro-
dynamic interaction, which would require simply that the
Rouse matrix [4;, ] and the Kramers matrix [Cj ] be re-
placed by modified matrices [4; ] and [ C; ] that contain
information about the hydrodynamic interaction [ DPL Sec.
12.4]. Rather it appears as a modification of the macroscop-
ic velocity field by a factor (1 — @; ). Aside from this modifi-
cation, the approximate Kovac-Fixman diffusion equation
is identical in form to the diffusion equation for a dumbbell
[see DPL Chap. 10]. However the exact diffusion equation
for a single link [Eq. (7.4)] is different in form from the
dumbbell equation, with the coupling between hydrodyna-
mics and connector forces entering through the moment
terms (Q, Q,).

Kovac and Fixman also gave a formal version of an ex-
act diffusion equation for two links. For the sake of com-
pleteness, we here give the exact diffusion equation for f;
Eq. (3.2) multiplied by the product
8(q; — q;) X8(q; — @) and integrated over all the coordi-
nates. The result is

(_a_)f;'j(qth)t) = Di(‘h)f;j +Dj(q2)f;'j + Dij(q19q2)f;'j s

at
(7.7a)
Dij(quqZ)
N—1
— (/0 [zA,.,. KTO—H'S (4,(Q.Q))
k=1
d d
A. ; ]: —_ (——) 7.76
+4,(Q, Q) (aq‘) o (7.76)

The two-link diffusion equation for links i and j includﬁ]

8157 (C2)y +8; Ay Cy
(Q; Q) = (KT /H) 257 C; 8;
0 0
1
(Q, Q) ' = [(kT/H)*/det(Q, Q) ]| — 24x7C,
0

det (Q, Q) = (KT/H)*{1 + 44,*[2(C?); — (Ci)?]}.

In the above (C?),; denotes the jjth element of the square of
the Kramers matrix and can be found as

(€Y =[i(N—j)/6N][j(2N—j)— (=D} (<))
=[j(N—1i)/6N]

X [{(2N —i) — (2= D] (9.5)

=) -

With these expressions it is possible to get explicit expres-

g (u2) = (1/4m) [1 + 4452 P[2(C?), —
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both corresponding one-link operators D, and D; defined as
in Eq. (8.4), which arise from the independent behavior of
the two links. In addition it includes the pair operator D,
which reflects the interactions between the two links.

It can be verified that our expressions for f; and f; do
satisfy the diffusion equations given in this section.

VII. LENGTH INDEPENDENT ONE-LINK ORIENTATION
PROBABILITY DENSITY

The one-link probability density f; (q,?) can be integrat-
ed over the length of the link to give a function which de-
pends only on the orientation of the link and not on its
length. We define

& (wt) = f fi(qt)g*dg
0

= (1/47) [det(Q; Q;)] ~'*[(Q, Q;) ~'am] 32,
(8.1)

In the above u is a unit vector whose rectangular Cartesian
components are (sin & cos ¢,sin 0 sin ¢,cos 8). The func-
tion g; (u,t) is the dilute solution analog of the single-link
probability density used in the melt theories of Doi and Ed-
wards®! and Curtiss and Bird,*> and used by Lawrey,
Prud’homme, and Koberstein®® for the calculation of poly-
mer chain orientation during stress relaxation.

IX. STEADY SHEAR FLOW

The expressions for the probability density functions
which we have given in the foregoing sections can be used to
calculate functions in any flow. We will illustrate how this
can be done for steady shear flow. In a steady shear flow with
the components of the velocity v given as (¥,0,0), where y is
the shear rate, the partial stress tensors 7; can be found as

LYy ¢ ¢ O
= —2nkTAgy | ¢ 0 0 (9.1)
0 0 0

The moment tensors {(Q; Qj) can be found from Eq. (3.5):

, (9.2)
— 257C; 0
1+ 8/7.H2‘}./2(C2)ﬁ 0 , (9.3)
0 1+ 44,%2[2(C?); — (Ci)?)
(9.4)

J

sions for the functions we have given. For example, the com-
plete expression for g, (u,?) is

(€)?]

X [14 845%2(C )42 + My

X [2(C?)y — (Cy)? |42 — 4Au¥Ciucn, ],
(9.6)
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where u,, u,, and u, are the x,y, and z components of the
vector u. Similar expressions can be developed for either f; or

fir

X. CONCLUSION

Our principal result is the exact expression for the joint
probability density for any number of links, Eq. (4.3), which
we used for finding the probability density for a single link,
Eq. (5.1), and the joint probability density for two links, Eq.
(5.2). For these two functions we gave the exact Fokker—
Planck-Smoluchowski diffusion equations, Egs. (7.4) and
(7.7). We also gave the length-independent orientation
probability density for one link, Eq. (8.1), and an exact
expression for the characteristic function of the multilink
joint probability density, Eq. (6.4). Our work is not restrict-
ed to any particular kinematics or flow field; by way of exam-
ple we have shown, in Sec. VIII, how our results may be
applied in steady shear flow.

Our results are based on, and constitute an extension of,
previous studies of the Rouse chain by Lodge and Wu,? van
Wiechen and Booij,” and King and James.* Our exact results
for the diffusion equations can be compared with the pre-
vious approximate work of Kovac and Fixman.*®

For simplicity we have used the free-draining Rouse
chain; however our results can be extended to include the
effect of equilibrium-averaged hydrodynamic interaction.
To do so, we replace the Rouse matrix [A4, ] and the
Kramers matrix [Cj ] and the eigenvalues ¢; by modified
matrices [4; ] and [Cj ] and eigenvalues ¢; that contain

. information about the hydrodynamic interaction [ DPL Sec.
12.4]. Aside from these replacements the entire develop-
ment remains the same.
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