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The focal point of this paper is a nonlinear model which describes localized magnetohydrodynamic
modes in reversed-field pinch experiments. To date, nearly all experimental and theoretical work in
this area have relied on the use of Fourier decomposition of spatial variations as a function of time.
Moreover, due to the complexity of this nonlinear problem, previous work is restricted to the
analysis of a relatively small number of modes. In contrast, the model studied in this paper, based
on the sine-Gordon equation, addresses the full nonlinearity, does not rely on Fourier decomposition
and does not require the range of the nonlinearity to be small. A specific consequence of working
with the full nonlinearity is the existence of solitary waves in dispersive media. These solitary
waves, a key part of the model, are used to describe the so-adildg-modepropagating in the
plasma. To this end, a remarkable resemblance is seen between the wave forms obtained from
experiments and the mathematical predictions of the modeR0@4 American Institute of Physics.
[DOI: 10.1063/1.1763914

I. INTRODUCTION on several RFP and tokamak devices; among the RFP experi-

, , , _ ddeh ments are the MST'42122the reversed field experiment
The focal point of this paper is a nonlinear modehich (RFX)Y® and the toroidal pinch experiment-RX

describes localized magnetohydrodynariiHD) modes in (TPE-RX).15-17:23|n MST, the dynamo modes, which are
reversed-field pincHRFP) experiments. To date, nearly all yo5nansible for generating the reversed magnetic field, con-

experimental and theoretical work involving these so-called[inua”y exhibit a sawtooth behavior as a function of tras
slinky modeshas relied on the use of spatial Fourier decom-ghown in Fig. 1. In many cases, the sawtooth-mode ampli-

posn]:orr]]_as aft:pcﬂon of tt|)r|ne. Moreover, due;ohthe (t:)omplex—tude gradually increases from small values until a critical
ity of this nonlinear problem, previous work has Deen re- g e js reached at which a rapid magnetic reconnection

stricted to the anglysis of a relatively small number ofgyent termed a sawtooth crash, is triggered. After the crash,
Fourier componentS.n contrast, the model studied in this he mode amplitudes return to their initial values, and the

paper, based on the sine-Gordon equation, addresses the :}:ﬂbcess may repeat itself.

nonlinearity, does not rely on Fourier decomposition, and | shqid be noted that the dynamo action that maintains
does not require the range of the nonlinearity to be small. Ang fie|d reversal is only significant during sawtooth crashes,
specific consequence of working with the full nonlinearity is and this is due to the large amplitude of the fluctuatibhs.
the existence of solitary waves in dispersive media. Thesgy,;g intermittency of the MHD dynamo action is a common
solitary waves, a key part of the proposed model, are used fa¢,re of RFP4S5 This paper is concerned with the time

describe the slinky mode propagating in the plasma. In thig,ieryals between successive sawtooth crashes where the
regard, the motivation for this work is derived from the fact slinky-mode dynamics may be carefully studied.

that the use of linearized models in a dispersive medium

does not result in such solitary waves that sustain themselves _

as they propagate. Support for the model is provided by datg- The slinky mode

obtained from the Madison symmetric tord4ST) reversed- It has been observed that during the sawtooth cycles,

field pinch experiment operated at the University ofye| pefore a crash, the fluctuating MHD modes in a RFP

Wisconsin-Madison. To this end, a remarkable resemblancphay become locked in phase to form a “slinky mode” which

is seen between the wave forms obtained from experiments 3 toroidally localized, rotating magnetic perturbatiéf?

and the mathematical predictions of the model. This then gives rise to a toroidally localized, rotating “hot

A. Previous work spot” induced on the surface of the conducting shell that

11 _ gi2-21 ) _ faces the plasma. Slinky modes have at times been observed

Theoreticdl™™ and experiment work involving 4 |ock to static error fields, and therefore stop rotating in the

mode locking, magnetic field errors, and rotational CoerIIaboratory framé&224 Unfortunately, when this occurs, the

through resonant magnetic perturbations has been performedqqciated “hot spot” also stops rotating and rapidly over-

heats the plasma-facing chamber surface at this point, lead-
dElectronic mail: shohet@engr.wisc.edu ing to an influx of impurities into the plasma, and the even-
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FIG. 1. lllustration of a Sawtooth Crash. The quantity F is a measure of the level of field reversal. The more negative F is, the lower the energy of the
configuration.

tual termination of the discharge. The plasma current in thenodes for a poloidal mode number=1, and toroidal mode
RFX (Ref. 4) experiment, for example, has been shown to benumbersn=5 through 10, when the perturbation is made
limited as a direct consequence of the problems associatadsonant with the Fourier-decomposed magnetic modes. A
with locked slinky modes. perturbation which is not in poloidal resonar(fer example,

Most notably, the dominant mode-coupling mechanismm=0 or 2) produces no locking.
in RFPs, being a consequence of nonlinear interaction, leads In the RFX reversed-field pinch,experiments were per-
to a number of problems involving different Fourier- formed that involved producing an external rotating mag-
decomposed MHD modes inside the plashSince this kind  netic perturbation and locking it to an internal rotating
of coupling is difficult to analyze, in the past, in order to Fourier-decomposed MHD mode. It was found that in addi-
make any progress, previous authors have limited the nuntion to changing the rotation of the targeted Fourier-
ber of Fourier-decomposed modes that are taken into acdecomposed mode, modes of different helicities could be
count. In the tokamak, which also exhibits MHD mode made to rotate in such a way as to satisfy a three-wave non-
locking° a set of nonlinear equations is used to describe thénear resonance conditigh.
amplitude and frequency of Fourier-decomposed tearing
modes and their related phase instabilities. This is based on
experimental measurements of amplitude- and phase-tuned
gscnlatmglé:urrents linked to the measured signals by a feedc-:. Consistency with the sine-Gordon model

ack loop.

In most fusion plasmas, nonlinear interactions are central A main objective of this paper is to demonstrate that our
to the determination of plasma behavior. In particular, wemodel! based on the sine-Gordon equation, produces predic-
argue that the well-known slinky mode itself is a manifesta-tions which are consistent with experimental observations.
tion of a fully nonlinear phenomenon. We now describe theFor example, when we consider the analytical investigation
way in which Fourier decomposition has been used to anasf mode locking® which involves damping due to electro-
lyze what are likely to be nonlinear phenomena in reversedmagnetic torques acting in the vicinity of rational surfaces,
field pinches. we include the effects of the helical eddy currents and other

In MST, three-wave nonlinear coupling of Fourier- damping by incorporating appropriate damping terms in the
decomposed magnetic fluctuations in momentum spéce (model equation. Both the MST and RFX experiments are
spacé was observed! It was found that during the constructed with conducting shells, but RFX also has an in-
sawtooth-crash phase, the nonlinear coupling is strongly emer toroidal resistivelower-conductangeshell. There are
hanced, with a simultaneous broadening of the mod®bserved experimental differences in the rotation of dynamo
spectre! Phase-locked modes were almost always observethodes in MST and RFX. It was found that the vacuum-
to lock to the wall in close proximity to the poloidal gap. vessel eddy currents in the resistive shell are the primary
(Reversed-field pinch devices have a characteristic set of ircause of the observed lack of dynamo-mode rotation in RFX.
sulating intersecting gaps cutting the vacuum chamber in th&he corresponding eddy currents in MST were found to be
toroidal and poloidal directionsin another RFP experiment too weak to cause a similar probléfitheoretical models for
TPE-RX}® it has been suggested that the locking phenomslinky mode locking have been develofédin the presence
enon may be du8 to the braking effect of eddy currents of a resistive vacuum vessel with a locking torque due to a
induced in the vacuum vessel by the growing, phase-lockecesonant error field. These models consist of a set of time-
modes. In addition, it was also proposed that locking is enphase evolution equations which describe the behavior of the
hanced by the presence of a “halo” current, which is theslinky mode in RFP under the influence of the braking torque
current that flows through the plasma “scrape-off” layer into due to eddy currents which are excited in a resistive or per-
the vacuum chamber at the locking locatidr® fectly conducting® vacuum vessel. These models were de-

Experiments that have been carried out on M&Ef.  veloped with the utilization of a Fourier decomposition of
14) show that an externally applied magnetic perturbationthe slinky mode.
produced by a set of eight coils at the toroidal gap, causes In the case of a perfectly conducting vacuum vessel,
locking of the dominant Fourier-decomposed magnetiovhich applies to the MST experiment, one analysis

Downloaded 22 Feb 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 11, No. 8, August 2004 The sine-Gordon equation in rfp experiments 3879

conclude$' that phase locking appears when the magnetidVith existing literature in mind, after development of the

energy of the Fourier-decomposed modes 1, n=5 and model, we compare our theoretical predictions with experi-
m=1, n=4 is maximized and that the phase locking contin-mental measurements by carrying out a time-varying Fourier
ues as long as thm=1, n=5 mode remains dominant. A spatial decomposition.

conclusion to be drawn from such analyses is that phase _ R ) _

locking of these modes is the cause of the localized slinkyF- Nonlinearity in dispersive media

mode formation. However, an alternate conclusion is that For solitary waves in dispersive media, use of linear

when the slinky mode is formed, phase locking takes placgheory leads to periodic propagating disturbances in many
as a “marker” for the presence of the slinky mode. That is,systems, corresponding to the elementary solutionsilexp(
any disturbance which is localized in space will, as a conse=-jt). For waves of moderately small amplitude in what
quence, exhibit phase locking. We address this issue later afight be called “near-linear” or “quasi-harmonic” theory,
in this work. results are obtained by perturbation methods based on small
To summarize, nearly all of the experimental and theoamplitude expansions and a Fourier analysis description. In
retical work in this area has relied on the use of Fourietthe full nonlinear theory, however, while the solutions are no
decomposition of spatial variations as a function of time.jonger sinusoidal, the existence of periodic solutions in the
Nonlinear interactions between the Fourier-decomposegtaveling wave variablg=kx— wt can nevertheless be es-
modes are assumed, but due to the complexity of the prokablished in a number of cases. The main nonlinear effect is
lem, only a relatively small number of such modes are ananot simply the difference in functional form; it is the appear-

lyzed. For example, in Ref. 5 it is stated as follows. ance of amplitude dependence in the dispersion relation. This
“The dominant mode coupling mechanism in RFPs is leads to new qualitative behaviors, which are not merely a
that due to thenonlinearinteraction of different Eou- correction of linear formulas. For such nonlinear forms, su-

rier decomposed MHD modes inside the plasma. Un- Perposition of solutionsmode summationis no longer
fortunately, this type of coupling is far more difficult to ~ available to generate a complete solution.

analyze than the toroidal coupling that takes place in A specific consequence of our nonlinear model is the
tokamaks. In order to make any progress, it is neces- existence of Solitary waves in dispersive media. While waves
sary toseverely limitthe number of Fourier decom- with these profiles disperse in the linear theory, the inclusion

posed modes that are taken into account during the Of nonlinear effects counterbalances the dispersion to pro-
analysis.” duce waves of permanent shape; e.g., the slinky mode in
s . reversed-field pinches. Much previous theoretical work for
The limitations above are necessitated by the fact th . pir P o S
. ) ; . . . e slinky mode is based on plasma dynamics in cylindrical
sinusoids arenot eigenfunctions of a nonlinear equation. As . . . . ;
) : S . geometry. Since the slinky mode is a spatially localized phe-
a result, attempting to use sinusoids in such a representati o ) . o
. . . T .-nomenon and the plasma is dispersive, nonlinearities need to
to find a solution to the nonlinear equation introduces addi-__". : : .
) ) ) be introduced so as to cancel out the dispersive effect. It is
tional mode creation and coupling between all of the com-

o C ; . . our hypothesis that by implementing the full nonlinear
ponents, resulting in a significant increase in the complexn){heory in reversed-field pinches, including the effects of to-
of the problem. ’

L . . . . riodicity, and recognizing the fact that magnetized plasmas
Similar to theory, in experiments, spatial Fourier decom- : . )
S . : support helical waves, the sine-Gordon equation naturally
position is often performed as a function of titnend the : ) .
. . emerges. The sine-Gordon equation has an inherent balance
evolution of the mode amplitudes and phases are then an

lyzed in order to predict the behavior of the system as %_e tl\(Neen nonllner? rity and d|sfper5|cr)]|j Ir:aladlngl_to soh(tjary-wgve
function of time. ink structures that emerge from highly nonlinear dynamics

in dispersive media but does not require the introduction of

D. Limitations of Fourier decomposition any other nonlinearities.

In view of the discussion above, we build upon existing!l- EXPERIMENTAL CONFIGURATION AND THE

results for classes of systems for which linearization argu-’\lo’\“-"\‘EAR MODEL

ably does not apply. To this end, we introduce a technique This section reviews our nonlinear motethich we
that does not require mode analysis and thus is not limited tpropose as a description of the motion of the slinky mode
the interaction of a small number of modes. We view this aghat has been observed to travel in a helical path around the
a critical point not only because our analysis does not requireeversed-field pinch experiment at the University of
Fourier decomposition, but also because modal analysis fdiisconsin-Madison, MST. In previous wotkthis model
nonlinear systems is only valid for time and space restricwas introduced to study the conditions for locking of the
tions which limit the range of nonlinearity to be snfalind  MHD mode based on experimental results and the probabil-
eliminates the emergence of fully nonlinear phenomena. Saidy of a discharge locking as a function of key variables. In
another way, such models, based on a linearizing assumptia@ontrast to our previous results, this work solves the key
or a restriction of the number of modes, imply that a linear omonlinear partial differential equation numerically rather than
small combination of mode amplitudes will adequately rep-with a perturbation method. Use of the numerical technique
resent the solution to a nonlinear equation. The nonlineaallows details of the shape and dynamics of the slinky mode
model studied here does not rely on this assumption, and d@e be readily apparent, conveniently examines the dynamics
a result, significant differences in the solutions can emergeof multiple kinks, and permits spatial Fourier decomposition.
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FIG. 2. A conceptual drawing of the slinky mode in the MST torus. The

mode threads its way along the torus passing both the poloidal and toroid#|G. 3. A kink soliton ¢(x,t) with no driving, damping or gap terms and
vacuum chamber gaps. v=0.5.

The latter, which is a key objective of this work, provides a
means to consider this modék-a-visthe existing literature C. Derivation of the basic sine-Gordon model

on Fourier decomposition. . .
P We further assume that both the toroidal and poloidal

magnetic fields at the location of the island vary poloidally

and the variation is given by the following expression:
The MST experiment is a large reversed-field pinch with

A. Experimental configuration

a minor radius of 0.52 m and a major radius of 1.5 m. The _ Boj _ r
aluminum toroidal vacuum chamber wall is 0.05 m thick ~ Bi~ r =Boj| 1= A;(r) gcose|,
except for two insulating gaps—one that cuts the vacuum 1+A;(f)§COS¢

chamber toroidally and one that cuts the chamber poloidally.

Depending upon the values of various parameters, the prolyhere, as shown in Fig. 2, is the minor radiusR is the
ability of locking (the mode becomes stationary and causesnajor radius of the torus, anglis the poloidal angle that can
the discharge to expel its enejgshanges. A set of 32 mag- be used to locate the island at each position along its length.
netic fluctuation pickup coils are spaced uniformly around; is eitherT for toroidal or P for poloidal. The terms(r)

the torus toroidally at a fixed poloidal angle that is used toare less than 1A p is negative which ensures that the poloi-

detect the presence and dynamics of the slinky mode. dal field is larger on the outside of the torus.
The magnetic energy of the slinky mode in these fields
B. Slinky mode and kink soliton can be expressed as

Based on the observed properties of the slinky mode Weo = 4-B= oBot u-B
along with an analysis of the torques around the magnetic ' mag~ 4" B~ #pPEPTATET:

axis acting on the mode, we argue that it behaves as a kink A torce in the direction results from th& (.- B) force

soliton, which is a solution of the sine-Gordon equation.,ting on the magnetic moments of the island with a result-
S_UCh solutions have been studied in the case of the pr_OPfigﬁfg torque around the magnetic axis of the torus given by
tion of a fluxon along a Josephson-junction transmission

line?®=2°and we shall follow a similar analysis here. r
In order to develop the sine-Gordon equation model, we T=(APMPBOP+ATMTBOT)(§
make the following physically reasonable plausibility as-

sumptions about the nature of the slinky mode: First, weThus the torque can be generated by both the toroidal and
assume that the mode is gerjerated b){ magnetlc reconnectiggloidal fields. Nevertheless, we assume that the slinky-
and is an isolated magnetic island of finite length that wrapsnode poloidal cross section is such that it is not located

around the magnetic axis of the torus as shown in Fig. Zexactly at the toroidal-field reversal layer where the net
Second, just as is the case in the main magnetic confinemegrque would be very small.

surfaces, we assume that there is a component of the current \We assume that the island is long enough so that the

in the island that flows poloidally around its magnetic sur-cjrculating current around its magnetic surfaces may be con-
faces producing magnetic moments along the length of theidered to be a solenoid; each incremental section of the
island. The mode threads its way along the torus passingland is considered to be a circular loop around which cur-
both the poloidal and toroidal vacuum chamber gaps, and thgant flows. Since the magnetic forces on each loop act so as
equation of motion for the slinky mode can be obtained byto produce alignment of the loops, any twisting of the loops

summing torque’s”**°acting on the mode around the mag- wil result in a springlike restoring torque which we model in
netic axis. In particular, these torques, which are proportiona} finite-difference form as

to the confining magnetic fields, vary sinusoid&llaround
the mode trajectory due to the toroidal effect. Trestoring= K[ @i+1—20i+ ¢i 11,

sing=Tgsin¢.
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-50 0 50 100 150 200 250 FIG. 6. Aplot of a kink with driving and damping terms that cannot pass the
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gap and locks there. Simulation parameters targ=15 000, «=0.01, B

FIG. 4. The derivative of¢(x,t) with respect to the distance =0, y=~0.01, andor=30.

with v=0.5.

2 2
whereK is the torsional spring constant ag is the angular @ = % —sing
displacement of theth loop. Passing to the limit as the sepa- at IxX

ration between the loops tends to zero and summing torques

. . . . and note that an exact analytic solution to this equation is a
around the magnetic axis, we arrive at the sine-Gor(&iB Kink solitor?® of the form y a

equation
P 2¢ x—ut
T _kIT Tt g x,t)=4tan ! zexp ——
M—z =K—7 ~Tosing, B(x,t) N

where M is the moment of inertia per unit length of the
slinky mode, T, is the torque constant described above, an alized with respect to the Alfvevelocity. This normalized

X is the helical distance along the mode trajectory. In the\/elocity can take any value betweerl and+ 1. The factor

equation abpve, '.f the torque term is zero, we obtain a Ilnealr) also determines the width of the soliton. It is customary to
wave equation with phase velocity

call the “+” solution a kink and the “—" solution an anti-

(i/;/]ith parametery denoting the velocity of the soliton, nor-

K kink.
Uphase— \/; Figure 3 shows a succession of plots @fx,t) corre-
sponding to increasing time along the vertical axis. Figure 4

which is, in this formulation, assumed to be the Alivee-  shows a plot of the derivative(x,t) with respect tax. We
locity. shall use this derivative representation henceforth because

We now normalize the sine-Gordon equation above bthis plot shows interaction details more clearly, and also be-
measuring distance in units oK(To)“? and time in units of  cause as the kink passes a magnetic loop sensor, it introduces
(M/T)"2 We obtain a current pulse, whose integral with respect to time is similar
to what is shown in Fig. 4.

For the kink soliton, the solutio(x,t) corresponds to
an angular displacement that changes from 0#or&dians

time (increases downward)

time (increases downward)

.50 0 50 100 150 200 250 5 00 200 300
distance (arbitrary units) distance (arbitrarv units)

L
[=]
o

FIG. 5. A plot of a kink with driving and damping terms that passes a gap.FIG. 7. The trajectories of four kinks launched at separate positions toward
Simulation parameters atg,,,=6000, «=0.04, =0, y=—0.02,v=0.5, the gap. The conditions were set to achieve locking. Simulation parameters
ando=7.075. aret =10 000, «=0.04, =0, y=—0.01, 0=30, andv=0.5.
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360 ' " ' ' ' D. Extended model to include damping, driving, and
vacuum chamber gaps
,‘;’\308.4> g
2 We now turn our attention to the effects of damping,
g 257755 ~= ] driving terms, and the vacuum chamber gaps. To study these
B 2056 | effects, the sine-Gordon equation is modified as shown be-
2= low:
8
E-1542 B
[=3
c 2 3 2
S 1028 1 ¢ d¢ ¢ ¢ .
M—+D———F =K——=—-Tsing+G

3 at? gt atax® T oxe ¢
g 51.4F B
8 +Vg8(X—Xp)Sin ¢,
- |

-51.4; 1000 2000 3000 2000 5050 5000 whereD andF are damping coefficient§ is a driving term,

time (arbitrary units) and theé function at locatiorx= X, represents the presence

) ) ) ) f “ " in the v m chamber wh interaction
FIG. 8. A time sequence of thirty-two separate sampling points spacec? a ‘gap the ‘vacuu chambe ose Interactio

uniformly around the torus. The gap is the solid horizontal line and theStrength with the slinky mode ¥ . .
vertical axis is toroidal angle. More specifically, the effect of the gap can be studied by

modeling the interaction of the slinky mode with the gap in

the following way. First, during RFP operation, a toroidal
centered about the point where its argument is zero as showmage current is induced along the conducting shell. When
in Fig. 3. This corresponds to the motion of a set of coupledhe current in the shell travels near the gap, continuity of the
pendula®® The analog of this trajectory as applied to a toruscurrent is made through an external set of windings that al-
is as follows. The axial trajectory is the path of the slinky lows the current to flow around the gap. As a result, the
mode as it moves helically around the torus and the center afurrent in the conducting shell becomes a poloidal surface
the trajectory represents the toroidal magnetic axis. Withouturrent that flows in opposite directions on each side of the
damping or driving terms, the kink moves with its initial gap. The result is a magnetic field in the minor radial direc-
velocity along its trajectory without change. This property istion. Second, due to the same toroidal effects that cause the
the result of a balance between nonlinear and dispersive eferoidal magnetic field to vary poloidally, the poloidal sur-

fects. face currents, and hence the radial magnetic field, exhibit a
15 3 2
[} ) [}
° ° ° q
2 9 2 215
3 1 2 X a
£ £ £
© < s 1
[ (] ]
= 05 ‘= 1 =
3 THTT g 3 05
(' [ w
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FIG. 9. The fundamental and the first 16 harmonics of the 32 sampled signals for nine separate times. Time increases from left to right and then from top to
bottom.
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FIG. 10. The overlay of the fundamental and the first 16 normalized har-
monics of the kink soliton shown in Fig. 5. The slowing up of the kink '51'40 \ . ‘
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soliton as it passes the gap is clearly evident. time (arbitrary units) 10"

FIG. 12. Thirty-two sampled signals obtained after calculating the trajecto-
similar sing variation with poloidal angle as does the toroi- ries of four kinks passing the gap without locking. Simulation parameters
dal magnetic field. are given byt,,=20 000, «=0.04, =0, y=—0.01, 0=1.733, andv

Finally, the radial magnetic field crossed with the toroi- -05
dal component of the current flowing in the slinky-mode
island produces a force in the poloidal directi@md hence a ] ] ) ) ) )
torque about the RFP magnetic axishich can be in the action _of the kink W|th_ the tor0|dal_and poloidal gaps is
same or opposite direction as tNd x - B) torque depending Proportional to the proximity of the kink to the gap
on the direction of the toroidal current in the slinky mode W& now turn to the combined effect of the driving and
and/or the direction of the radial magnetic field produced byd@mping terms. The driving term will accelerate the kink.
the surface currents at the gap. Since this torque is localize#® Velocity will increase until the deceleration produced by
toroidally to the region at the gap, we model it with the the damping termx( d¢/at) will just balance the accelera-

function as shown in the preceding equation. Normalizingion Of the driving term. Then the kink will proceed at a
the preceding equation we obtain steady-state velocity which is generally not equal to the ini-

tial velocity that was used to set it in motion.
P o g P

7_’_ —_

a2 Yot Potax?
(?2
:W—sin¢+y+u—sin¢5(x—xo).

E. Simulation results

We solve the modified SG equation using a finite-
difference alogrithni® Figure 5 shows the effect of the driv-
ing and damping terms on a kink launched with an initial

The coefficientsx and 8 above represent the coefficients of Value ofv=0.5. In this case, the driving term accelerates the
normalized damping terms, the normalized driving term ha&ink until it reaches its “terminal” velocity as it approaches
coefficient y and the normalized strength of the gap-slinky the® 9ap. The gap region is shown as a straight line in the
mode interaction is denoted ly Igure. _ .

We assume that the damping is produced by plasma tur- N€Xt, we examine the effects of the gap. We view the
bulence and is proportional to the velocity of the kink. For9@P @s the equivalent of a potential hill or potential well. A
simplicity, we limit the damping terms to the coefficiemnt ~ POSitive value foro results in a potential hill for a kink and

That is, we assum@=0. We also assume that the driving & potential well for an antikink. Figure 5 also shows the
term is proportional to the plasma currdnt and the inter- mode trajectory with the gap simulated by a potential hill of
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FIG. 11. Thirty-two sampled magnetic pickup signals from the MST experi-FIG. 13. Thirty-two sampled signals obtained from MST while the slinky
ment showing the slinky mode moving with a nearly constant velocity. mode locks.
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360 ‘ ‘ v=0.5 but at different positions around the torus. It can be
seen that the kinks are preserved as separate entities and no
crossing of their trajectories is observed, even during reflec-
257¢ T tions from the gap.

w

o

o

»
.

lll. FOURIER DECOMPOSITION OF THE RESULTS

Experimental measurements of phenomena that occur in
toroidal geometry are typically Fourier decomposed in the
1 toroidal and poloidal directions. This has been used to deter-
mine which Fourier modes are “dominant” and the analysis
of the Fourier modes is often used to predict whether a par-

5145 5000 10000 15000 ticular phenomenon will occur. One of the main contentions
time (arbitrary units) of this paper is that when such phenomena obey the sine-
FIG. 14. Thirty-two sampled signals obtained after calculating the trajecto- Gordon equation, a Fourier analysis is not necessary and can
ries of four kinks that lock just before crossing the gap. Simulation param©€ replaced by the full nonlinear solution. Nonetheless, it is
eters are,,=15000,a=0.04, =0, y=—0.01, 0=6, andv =0.5. of interest to make a comparison of the theoretical prediction
of the sine-Gordon equation with the classical Fourier analy-
sis in the literature.
strengtho. At low values ofe, the kink slows down before it For the experiment in question, MST, the slinky mode is
reaches the potential hilap, and after the kink passes the detected with an array of 32 magnetic field pickup coils
potential hill, it then accelerates and again eventually reachespaced uniformly around the torus at the same poloidal
its terminal velocity. angle. Accordingly, in our theoretical model, we also sample

Figure 6 shows the results obtained for similar condi-the solutions obtained in the preceding section at 32 uni-
tions with o being increased. Now, the kink cannot overcomeformly spaced points, where we assume that one complete
the potential hill and is reflected. The kink turns around afterevolution around the torus is represented by the same hori-
reflection because the driving term eventually overcomes theontal dimension in, for example, Figs. 5 and 6. Figure 8
effects of the reflection. Consequently, the kink returns to theshows the 32 sampled signals as a function of time for the
vicinity of the hill where it is reflected again. However, be- same conditions shown in Fig. 5. Note that in Fig. 8, consis-
cause damping is taking place, the reflected kink moves &ent with experimental data, time is on the horizontal axis
shorter distance away from the gap before the kink’s velocityand distance around the torus is the vertical axis.
again reverses. This type of slinky-mode dynamics has, in  The set of these sampled signals can now be Fourier
fact, been observed experimentally in MST. After a numberdecomposed in space at various times giving a sequence of
of these reflections, the kink becomes “locked” to a region“snapshots.” Figure 9 shows the spatial Fourier decomposi-
directly in front of the hill. For sufficiently high damping, the tion of the sampled signals of Fig. 8 for nine separate times.
kink does not reflect and it is locked immediately at the hill. Since only 32 sample points are used, only the fundamental

It is also possible to see these effects when more thaand the first 16 harmonics are meaningful. The apparent os-
one kink is present. Figure 7 shows locking at the gap for aillations observed in the Fourier spectra are due to the fact
set of four kinks, all launched with the same initial velocity that the harmonics above the 16 were not obtained from the

- a2 N

[6)] o (4] o

= N & O

N o (8] [o)]
.

toroidal location of pickup coil(degrees)

180 _‘_W,_,-\M,* e _/ T /\JW\.—_W_-V—«——M\, 7 ‘/V, (_/\, H—'\—"M 360 . . . r . . .

AR A e A e SISt A [ gvu\v‘\n iy
e ) A

AR a084E 1
— - —
2 Porarssssmeamesimen :g;:,.m Wmﬁqu 7
O et e i g P 0y P et o Nttt e i aiid il @ 257 = i
[ o % — = — — —
[+] PR e e W VR, VL W ] I 7 /<
8 TR R SO P —
St e P g R W\WAWJWKMW—W o 205.6EF 4
-] e P SN gttt i P e A I i I i %
=) ¥ P IRIAPSVA, ‘1"\/"‘.”-4*%. (s =
c oo a 1542 " X A
: R 5
= P N - [T ———
0 % ; = 102.8F .
= f)vv \m«?x ¢ 5
o mrendl GAR S j—
= "’N =]
B VR N R IR A R e e -
= 4 8 s14 |
g
«~w—~~:,-ﬂ,.¢<><}\§ *{)(r‘{‘w BN/ raeeol R
B0  bemrmemermaWNAN Coomm e NNMOD ST Re D I 1
i P I ) 51.4 1 1 1 [ I 1 1
9 20 21 i 0.5 1 1.5 2 25 3 35 4
time

Time [msec)

FIG. 15. Experimental vs theoretical comparison of multiple reflections of the slinky mode from the gap followed by reversal of the trajectoryedue to th
driving term.
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o B ®) yocas reb of the modes is quite apparent, both before and after the
N e DA odes 519 mode interacts with the gap. The calculation is made for the
e A same conditions as shown in Fig. 5.
18.3/ 5
Té; IV. COMPARISON WITH EXPERIMENTAL RESULTS
~ B 4 Vi V(/’A" R - - - | |
t V= This section provides a comparison of the theoretical
3 work described above with measurements of the slinky mode

181 in the MST experiment. In MST, consistent with the theory

in Sec. lll, we observe the slinky mode at the locations of the
32 toroidally spaced pickup coils that are placed at a fixed
Toroidal Azimuth (radians) poloidal angle around the MST toroidal conducting shell. We
investigate cases where the slinky mode locks and where it
FIG. 16. Overlay of the normalized sixth through the tenth harmadihicas does not lock.
take_n fr_om t_he sampled experimental data shown on the(&ftPhase Figure 11 shows an experimentally measured slinky
locking is evident. . . . . .
mode moving with constant velocity and viewed exactly in
the same format as for the theoretical calculations of Fig. 8.
We model the structure of the slinky mode shown in this
simulation. If a higher number of harmonics are obtained byfigure with a chain of multiple kinks, each one rotating about
additional sampling, it is seen that the spectrum remains corthe magnetic axis by2radians. To represent this, we use, as
stant throughout the simulation. an example, four kinks passing the gap that are represented
Using the Fourier coefficients obtained as above, it isas 32 samples in an equivalent way to the experimental re-
now possible to reconstruct the original kink soliton at eachsults in Fig. 11. These are shown in Fig. 12. Note that in both
instant of time at which the Fourier coefficients were eva|u-ﬁgures the kinks appear to interact with each other and/or the
ated. It is also possible to examine one or more of the hargap so that their separation as they pass the gap is not con-
monics to determine their relationship and see when and i§tant. As will be shown subsequently, groups of kinks, as in
“phase locking” of specific modes occurs. In order to exam-these figures, will show peaks in their Fourier spatial spectra.
ine this more easily, we look at the normalized FourierThe mode numbés) where the peals) occur will depend on
modes. That is, we assume each mode has unit amplitude bgfe number of kinks and their relative separation.
its phaseypy is that obtained from the Fourier decomposition. A similar comparison can be made in the case of lock-
Thus, thekth normalized Fourier-decomposed mode is ing. Figure 13 shows the 32 sample experimental measure-
ments of the slinky mode for locking while Fig. 14 gives the
results for an equivalent simulation.
One of the more interesting slinky-mode trajectories
wherelL is the distance around the torus. shows reflection from the gap followed by reversal of the
Figure 10 shows an overlay of the fundamental and therajectory followed by reversal, etc. Figure 15 displays the
first 16 harmonics at several separate times. Since the modegperimental results on the left with a corresponding simu-
are each normalized to unity, the representation of the slinkjation on the right. We conclude from this that the driving
mode is not correct in amplitude, but the phase locking of alterm continually acts in the same direction on the slinky
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FIG. 17. Overlay of the normalized sixth through the tenth harmonics for the computed kink trajectory shown on the left. Similar phase lockivgds obser
compared with the experimental results shown in Fig. 16.
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nonlinear and does not require the use of Fourier decompo-

sition of the slinky mode. It successfully demonstrates the
ooy 1 I conditions under which locking of the slinky mode can oc-
o ] L MU cur. In addition, we show that phase locking of spatial Fou-
rier modes can occur whenever a localized phenomenon such
orr 1 s as the slinky mode appears. Further applications of this tech-
£ el 1 £ nique can be used to explain the change in the experimen-
E § tally measured width of the slinky mode as the velocity of
3% 1 4 the mode changes.
§0.4- 1 & Although the SG model we have proposed appears to be
< g much simpler than previous formulations for slinky-mode
all dynamics, its derivation rests on two well-established facts
02 1 (1) magnetized cylindrical plasma columns support helical
modes and?2) toroidal geometry introduces a periodic poloi-
et TW ‘ﬂ T ﬂTT 1 ] dal dependence. These two general features lead directly to
T ‘?qu’ ?E?@Wq’? sj“’“’ I T the SG model. Given the variety of empirical evidence that
Harmonic Number distancs (arbitrary units) this model manages to simulate, we believe that the relative

FIG. 18. Spatial Fourier spectrum of four kinks showing a peak=at3. Slmp|IC|ty of the SG model should be considered a virtue.
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