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The focal point of this paper is a nonlinear model which describes localized magnetohydrodynamic
modes in reversed-field pinch experiments. To date, nearly all experimental and theoretical work in
this area have relied on the use of Fourier decomposition of spatial variations as a function of time.
Moreover, due to the complexity of this nonlinear problem, previous work is restricted to the
analysis of a relatively small number of modes. In contrast, the model studied in this paper, based
on the sine-Gordon equation, addresses the full nonlinearity, does not rely on Fourier decomposition
and does not require the range of the nonlinearity to be small. A specific consequence of working
with the full nonlinearity is the existence of solitary waves in dispersive media. These solitary
waves, a key part of the model, are used to describe the so-calledslinky-modepropagating in the
plasma. To this end, a remarkable resemblance is seen between the wave forms obtained from
experiments and the mathematical predictions of the model. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1763914#

I. INTRODUCTION

The focal point of this paper is a nonlinear model1 which
describes localized magnetohydrodynamic~MHD! modes in
reversed-field pinch~RFP! experiments. To date, nearly all
experimental and theoretical work involving these so-called
slinky modes2 has relied on the use of spatial Fourier decom-
position as a function of time. Moreover, due to the complex-
ity of this nonlinear problem, previous work has been re-
stricted to the analysis of a relatively small number of
Fourier components.3 In contrast, the model studied in this
paper, based on the sine-Gordon equation, addresses the full
nonlinearity, does not rely on Fourier decomposition, and
does not require the range of the nonlinearity to be small. A
specific consequence of working with the full nonlinearity is
the existence of solitary waves in dispersive media. These
solitary waves, a key part of the proposed model, are used to
describe the slinky mode propagating in the plasma. In this
regard, the motivation for this work is derived from the fact
that the use of linearized models in a dispersive medium
does not result in such solitary waves that sustain themselves
as they propagate. Support for the model is provided by data
obtained from the Madison symmetric torus~MST! reversed-
field pinch experiment operated at the University of
Wisconsin-Madison. To this end, a remarkable resemblance
is seen between the wave forms obtained from experiments
and the mathematical predictions of the model.

A. Previous work

Theoretical4–11 and experimental2,12–21 work involving
mode locking, magnetic field errors, and rotational control
through resonant magnetic perturbations has been performed

on several RFP and tokamak devices; among the RFP experi-
ments are the MST,2,14,21,22 the reversed field experiment
~RFX!,19 and the toroidal pinch experiment-RX
~TPE-RX!.15–17,23 In MST, the dynamo modes, which are
responsible for generating the reversed magnetic field, con-
tinually exhibit a sawtooth behavior as a function of time2 as
shown in Fig. 1. In many cases, the sawtooth-mode ampli-
tude gradually increases from small values until a critical
value is reached at which a rapid magnetic reconnection
event, termed a sawtooth crash, is triggered. After the crash,
the mode amplitudes return to their initial values, and the
process may repeat itself.

It should be noted that the dynamo action that maintains
the field reversal is only significant during sawtooth crashes,
and this is due to the large amplitude of the fluctuations.4,5

This intermittency of the MHD dynamo action is a common
feature of RFPs.4,5 This paper is concerned with the time
intervals between successive sawtooth crashes where the
slinky-mode dynamics may be carefully studied.

B. The slinky mode

It has been observed that during the sawtooth cycles,
well before a crash, the fluctuating MHD modes in a RFP
may become locked in phase to form a ‘‘slinky mode’’ which
is a toroidally localized, rotating magnetic perturbation.22,24

This then gives rise to a toroidally localized, rotating ‘‘hot
spot’’ induced on the surface of the conducting shell that
faces the plasma. Slinky modes have at times been observed
to lock to static error fields, and therefore stop rotating in the
laboratory frame.22,24 Unfortunately, when this occurs, the
associated ‘‘hot spot’’ also stops rotating and rapidly over-
heats the plasma-facing chamber surface at this point, lead-
ing to an influx of impurities into the plasma, and the even-a!Electronic mail: shohet@engr.wisc.edu
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tual termination of the discharge. The plasma current in the
RFX ~Ref. 4! experiment, for example, has been shown to be
limited as a direct consequence of the problems associated
with locked slinky modes.

Most notably, the dominant mode-coupling mechanism
in RFPs, being a consequence of nonlinear interaction, leads
to a number of problems involving different Fourier-
decomposed MHD modes inside the plasma.6 Since this kind
of coupling is difficult to analyze, in the past, in order to
make any progress, previous authors have limited the num-
ber of Fourier-decomposed modes that are taken into ac-
count. In the tokamak, which also exhibits MHD mode
locking,10 a set of nonlinear equations is used to describe the
amplitude and frequency of Fourier-decomposed tearing
modes and their related phase instabilities. This is based on
experimental measurements of amplitude- and phase-tuned
oscillating currents linked to the measured signals by a feed-
back loop.10

In most fusion plasmas, nonlinear interactions are central
to the determination of plasma behavior. In particular, we
argue that the well-known slinky mode itself is a manifesta-
tion of a fully nonlinear phenomenon. We now describe the
way in which Fourier decomposition has been used to ana-
lyze what are likely to be nonlinear phenomena in reversed-
field pinches.

In MST, three-wave nonlinear coupling of Fourier-
decomposed magnetic fluctuations in momentum space (k
space! was observed.21 It was found that during the
sawtooth-crash phase, the nonlinear coupling is strongly en-
hanced, with a simultaneous broadening of the mode
spectra.21 Phase-locked modes were almost always observed
to lock to the wall in close proximity to the poloidal gap.
~Reversed-field pinch devices have a characteristic set of in-
sulating intersecting gaps cutting the vacuum chamber in the
toroidal and poloidal directions.! In another RFP experiment
TPE-RX,16 it has been suggested that the locking phenom-
enon may be due16 to the braking effect of eddy currents
induced in the vacuum vessel by the growing, phase-locked
modes. In addition, it was also proposed that locking is en-
hanced by the presence of a ‘‘halo’’ current, which is the
current that flows through the plasma ‘‘scrape-off’’ layer into
the vacuum chamber at the locking location.17,23

Experiments that have been carried out on MST~Ref.
14! show that an externally applied magnetic perturbation,
produced by a set of eight coils at the toroidal gap, causes
locking of the dominant Fourier-decomposed magnetic

modes for a poloidal mode numberm51, and toroidal mode
numbersn55 through 10, when the perturbation is made
resonant with the Fourier-decomposed magnetic modes. A
perturbation which is not in poloidal resonance~for example,
m50 or 2! produces no locking.

In the RFX reversed-field pinch,19 experiments were per-
formed that involved producing an external rotating mag-
netic perturbation and locking it to an internal rotating
Fourier-decomposed MHD mode. It was found that in addi-
tion to changing the rotation of the targeted Fourier-
decomposed mode, modes of different helicities could be
made to rotate in such a way as to satisfy a three-wave non-
linear resonance condition.21

C. Consistency with the sine-Gordon model

A main objective of this paper is to demonstrate that our
model,1 based on the sine-Gordon equation, produces predic-
tions which are consistent with experimental observations.
For example, when we consider the analytical investigation
of mode locking,4 which involves damping due to electro-
magnetic torques acting in the vicinity of rational surfaces,
we include the effects of the helical eddy currents and other
damping by incorporating appropriate damping terms in the
model equation. Both the MST and RFX experiments are
constructed with conducting shells, but RFX also has an in-
ner toroidal resistive~lower-conductance! shell. There are
observed experimental differences in the rotation of dynamo
modes in MST and RFX. It was found that the vacuum-
vessel eddy currents in the resistive shell are the primary
cause of the observed lack of dynamo-mode rotation in RFX.
The corresponding eddy currents in MST were found to be
too weak to cause a similar problem.4 Theoretical models for
slinky mode locking have been developed8,13 in the presence
of a resistive vacuum vessel with a locking torque due to a
resonant error field. These models consist of a set of time-
phase evolution equations which describe the behavior of the
slinky mode in RFP under the influence of the braking torque
due to eddy currents which are excited in a resistive or per-
fectly conducting11 vacuum vessel. These models were de-
veloped with the utilization of a Fourier decomposition of
the slinky mode.

In the case of a perfectly conducting vacuum vessel,
which applies to the MST experiment, one analysis

FIG. 1. Illustration of a Sawtooth Crash. The quantity F is a measure of the level of field reversal. The more negative F is, the lower the energy of the
configuration.
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concludes11 that phase locking appears when the magnetic
energy of the Fourier-decomposed modesm51, n55 and
m51, n54 is maximized and that the phase locking contin-
ues as long as them51, n55 mode remains dominant. A
conclusion to be drawn from such analyses is that phase
locking of these modes is the cause of the localized slinky
mode formation. However, an alternate conclusion is that
when the slinky mode is formed, phase locking takes place
as a ‘‘marker’’ for the presence of the slinky mode. That is,
any disturbance which is localized in space will, as a conse-
quence, exhibit phase locking. We address this issue later on
in this work.

To summarize, nearly all of the experimental and theo-
retical work in this area has relied on the use of Fourier
decomposition of spatial variations as a function of time.
Nonlinear interactions between the Fourier-decomposed
modes are assumed, but due to the complexity of the prob-
lem, only a relatively small number of such modes are ana-
lyzed. For example, in Ref. 5 it is stated as follows.

‘‘The dominant mode coupling mechanism in RFPs is
that due to thenonlinear interaction of different Fou-
rier decomposed MHD modes inside the plasma. Un-
fortunately, this type of coupling is far more difficult to
analyze than the toroidal coupling that takes place in
tokamaks. In order to make any progress, it is neces-
sary to severely limitthe number of Fourier decom-
posed modes that are taken into account during the
analysis.’’

The limitations above are necessitated by the fact that
sinusoids arenot eigenfunctions of a nonlinear equation. As
a result, attempting to use sinusoids in such a representation
to find a solution to the nonlinear equation introduces addi-
tional mode creation and coupling between all of the com-
ponents, resulting in a significant increase in the complexity
of the problem.

Similar to theory, in experiments, spatial Fourier decom-
position is often performed as a function of time3 and the
evolution of the mode amplitudes and phases are then ana-
lyzed in order to predict the behavior of the system as a
function of time.

D. Limitations of Fourier decomposition

In view of the discussion above, we build upon existing
results for classes of systems for which linearization argu-
ably does not apply. To this end, we introduce a technique
that does not require mode analysis and thus is not limited to
the interaction of a small number of modes. We view this as
a critical point not only because our analysis does not require
Fourier decomposition, but also because modal analysis for
nonlinear systems is only valid for time and space restric-
tions which limit the range of nonlinearity to be small25 and
eliminates the emergence of fully nonlinear phenomena. Said
another way, such models, based on a linearizing assumption
or a restriction of the number of modes, imply that a linear or
small combination of mode amplitudes will adequately rep-
resent the solution to a nonlinear equation. The nonlinear
model studied here does not rely on this assumption, and as
a result, significant differences in the solutions can emerge.

With existing literature in mind, after development of the
model, we compare our theoretical predictions with experi-
mental measurements by carrying out a time-varying Fourier
spatial decomposition.

E. Nonlinearity in dispersive media

For solitary waves in dispersive media, use of linear
theory leads to periodic propagating disturbances in many
systems, corresponding to the elementary solutions exp(ikx
2ivt). For waves of moderately small amplitude in what
might be called ‘‘near-linear’’ or ‘‘quasi-harmonic’’ theory,
results are obtained by perturbation methods based on small
amplitude expansions and a Fourier analysis description. In
the full nonlinear theory, however, while the solutions are no
longer sinusoidal, the existence of periodic solutions in the
traveling wave variablez5kx2vt can nevertheless be es-
tablished in a number of cases. The main nonlinear effect is
not simply the difference in functional form; it is the appear-
ance of amplitude dependence in the dispersion relation. This
leads to new qualitative behaviors, which are not merely a
correction of linear formulas. For such nonlinear forms, su-
perposition of solutions~mode summation! is no longer
available to generate a complete solution.

A specific consequence of our nonlinear model is the
existence of solitary waves in dispersive media. While waves
with these profiles disperse in the linear theory, the inclusion
of nonlinear effects counterbalances the dispersion to pro-
duce waves of permanent shape; e.g., the slinky mode in
reversed-field pinches. Much previous theoretical work for
the slinky mode is based on plasma dynamics in cylindrical
geometry. Since the slinky mode is a spatially localized phe-
nomenon and the plasma is dispersive, nonlinearities need to
be introduced so as to cancel out the dispersive effect. It is
our hypothesis that by implementing the full nonlinear
theory in reversed-field pinches, including the effects of to-
riodicity, and recognizing the fact that magnetized plasmas
support helical waves, the sine-Gordon equation naturally
emerges. The sine-Gordon equation has an inherent balance
between nonlinearity and dispersion leading to solitary-wave
kink structures that emerge from highly nonlinear dynamics
in dispersive media but does not require the introduction of
any other nonlinearities.

II. EXPERIMENTAL CONFIGURATION AND THE
NONLINEAR MODEL

This section reviews our nonlinear model1 which we
propose as a description of the motion of the slinky mode
that has been observed to travel in a helical path around the
reversed-field pinch experiment at the University of
Wisconsin-Madison, MST. In previous work,1 this model
was introduced to study the conditions for locking of the
MHD mode based on experimental results and the probabil-
ity of a discharge locking as a function of key variables. In
contrast to our previous results, this work solves the key
nonlinear partial differential equation numerically rather than
with a perturbation method. Use of the numerical technique
allows details of the shape and dynamics of the slinky mode
to be readily apparent, conveniently examines the dynamics
of multiple kinks, and permits spatial Fourier decomposition.
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The latter, which is a key objective of this work, provides a
means to consider this modelvis-a-visthe existing literature
on Fourier decomposition.

A. Experimental configuration

The MST experiment is a large reversed-field pinch with
a minor radius of 0.52 m and a major radius of 1.5 m. The
aluminum toroidal vacuum chamber wall is 0.05 m thick
except for two insulating gaps—one that cuts the vacuum
chamber toroidally and one that cuts the chamber poloidally.
Depending upon the values of various parameters, the prob-
ability of locking ~the mode becomes stationary and causes
the discharge to expel its energy! changes. A set of 32 mag-
netic fluctuation pickup coils are spaced uniformly around
the torus toroidally at a fixed poloidal angle that is used to
detect the presence and dynamics of the slinky mode.

B. Slinky mode and kink soliton

Based on the observed properties of the slinky mode
along with an analysis of the torques around the magnetic
axis acting on the mode, we argue that it behaves as a kink
soliton, which is a solution of the sine-Gordon equation.
Such solutions have been studied in the case of the propaga-
tion of a fluxon along a Josephson-junction transmission
line26–29 and we shall follow a similar analysis here.

In order to develop the sine-Gordon equation model, we
make the following physically reasonable plausibility as-
sumptions about the nature of the slinky mode: First, we
assume that the mode is generated by magnetic reconnection
and is an isolated magnetic island of finite length that wraps
around the magnetic axis of the torus as shown in Fig. 2.
Second, just as is the case in the main magnetic confinement
surfaces, we assume that there is a component of the current
in the island that flows poloidally around its magnetic sur-
faces producing magnetic moments along the length of the
island. The mode threads its way along the torus passing
both the poloidal and toroidal vacuum chamber gaps, and the
equation of motion for the slinky mode can be obtained by
summing torques6,7,9,20acting on the mode around the mag-
netic axis. In particular, these torques, which are proportional
to the confining magnetic fields, vary sinusoidally20 around
the mode trajectory due to the toroidal effect.

C. Derivation of the basic sine-Gordon model

We further assume that both the toroidal and poloidal
magnetic fields at the location of the island vary poloidally
and the variation is given by the following expression:

Bj5
B0 j

11L j~r !
r

R
cosf

>B0 j S 12L j~r !
r

R
cosf D ,

where, as shown in Fig. 2,r is the minor radius,R is the
major radius of the torus, andf is the poloidal angle that can
be used to locate the island at each position along its length.
j is eitherT for toroidal orP for poloidal. The termsL j (r )
are less than 1.LP is negative which ensures that the poloi-
dal field is larger on the outside of the torus.

The magnetic energy of the slinky mode in these fields
can be expressed as

Wmag5m•B5mPBP1mTBT .

A force in thef direction results from the“(m•B) force
acting on the magnetic moments of the island with a result-
ing torque around the magnetic axis of the torus given by

T5~LPmPB0P1LTmTB0T!S r

RD sinf5T0 sinf.

Thus the torque can be generated by both the toroidal and
poloidal fields. Nevertheless, we assume that the slinky-
mode poloidal cross section is such that it is not located
exactly at the toroidal-field reversal layer where the net
torque would be very small.

We assume that the island is long enough so that the
circulating current around its magnetic surfaces may be con-
sidered to be a solenoid; each incremental section of the
island is considered to be a circular loop around which cur-
rent flows. Since the magnetic forces on each loop act so as
to produce alignment of the loops, any twisting of the loops
will result in a springlike restoring torque which we model in
a finite-difference form as

Trestoring5K@f i 1122f i1f i 21#,

FIG. 2. A conceptual drawing of the slinky mode in the MST torus. The
mode threads its way along the torus passing both the poloidal and toroidal
vacuum chamber gaps.

FIG. 3. A kink solitonf(x,t) with no driving, damping or gap terms and
v50.5.
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whereK is the torsional spring constant andf i is the angular
displacement of thei th loop. Passing to the limit as the sepa-
ration between the loops tends to zero and summing torques
around the magnetic axis, we arrive at the sine-Gordon~SG!
equation

M
]2f

]t2 5K
]2f

]x2 2T0 sinf,

where M is the moment of inertia per unit length of the
slinky mode,T0 is the torque constant described above, and
x is the helical distance along the mode trajectory. In the
equation above, if the torque term is zero, we obtain a linear
wave equation with phase velocity

vphase5AK

M
,

which is, in this formulation, assumed to be the Alfve´n ve-
locity.

We now normalize the sine-Gordon equation above by
measuring distance in units of (K/T0)1/2 and time in units of
(M /T0)1/2. We obtain

]2f

]t2 5
]2f

]x2 2sinf

and note that an exact analytic solution to this equation is a
kink soliton30 of the form

f~x,t !54 tan21F6expS x2vt

A12v2D G
with parameterv denoting the velocity of the soliton, nor-
malized with respect to the Alfve´n velocity. This normalized
velocity can take any value between21 and11. The factor
v also determines the width of the soliton. It is customary to
call the ‘‘1’’ solution a kink and the ‘‘2’’ solution an anti-
kink.

Figure 3 shows a succession of plots off(x,t) corre-
sponding to increasing time along the vertical axis. Figure 4
shows a plot of the derivativef(x,t) with respect tox. We
shall use this derivative representation henceforth because
this plot shows interaction details more clearly, and also be-
cause as the kink passes a magnetic loop sensor, it introduces
a current pulse, whose integral with respect to time is similar
to what is shown in Fig. 4.

For the kink soliton, the solutionf(x,t) corresponds to
an angular displacement that changes from 0 to 2p radians

FIG. 4. The derivative of f(x,t) with respect to the distancex
with v50.5.

FIG. 5. A plot of a kink with driving and damping terms that passes a gap.
Simulation parameters aretmax56000, a50.04, b50, g520.02, v50.5,
ands57.075.

FIG. 6. A plot of a kink with driving and damping terms that cannot pass the
gap and locks there. Simulation parameters aretmax515 000, a50.01, b
50, g520.01, ands530.

FIG. 7. The trajectories of four kinks launched at separate positions toward
the gap. The conditions were set to achieve locking. Simulation parameters
are tmax510 000,a50.04, b50, g520.01, s530, andv50.5.
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centered about the point where its argument is zero as shown
in Fig. 3. This corresponds to the motion of a set of coupled
pendula.30 The analog of this trajectory as applied to a torus
is as follows. The axial trajectory is the path of the slinky
mode as it moves helically around the torus and the center of
the trajectory represents the toroidal magnetic axis. Without
damping or driving terms, the kink moves with its initial
velocity along its trajectory without change. This property is
the result of a balance between nonlinear and dispersive ef-
fects.

D. Extended model to include damping, driving, and
vacuum chamber gaps

We now turn our attention to the effects of damping,
driving terms, and the vacuum chamber gaps. To study these
effects, the sine-Gordon equation is modified as shown be-
low:

M
]2f

]t2 1D
]f

]t
2F

]3f

]t]x2 5K
]2f

]x2 2T sinf1G

1VGd~x2x0!sinf,

whereD andF are damping coefficients,G is a driving term,
and thed function at locationx5x0 represents the presence
of a ‘‘gap’’ in the vacuum chamber whose interaction
strength with the slinky mode isVG .

More specifically, the effect of the gap can be studied by
modeling the interaction of the slinky mode with the gap in
the following way. First, during RFP operation, a toroidal
image current is induced along the conducting shell. When
the current in the shell travels near the gap, continuity of the
current is made through an external set of windings that al-
lows the current to flow around the gap. As a result, the
current in the conducting shell becomes a poloidal surface
current that flows in opposite directions on each side of the
gap. The result is a magnetic field in the minor radial direc-
tion. Second, due to the same toroidal effects that cause the
toroidal magnetic field to vary poloidally, the poloidal sur-
face currents, and hence the radial magnetic field, exhibit a

FIG. 8. A time sequence of thirty-two separate sampling points spaced
uniformly around the torus. The gap is the solid horizontal line and the
vertical axis is toroidal angle.

FIG. 9. The fundamental and the first 16 harmonics of the 32 sampled signals for nine separate times. Time increases from left to right and then from top to
bottom.

3882 Phys. Plasmas, Vol. 11, No. 8, August 2004 Shohet et al.

Downloaded 22 Feb 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



similar sinf variation with poloidal angle as does the toroi-
dal magnetic field.

Finally, the radial magnetic field crossed with the toroi-
dal component of the current flowing in the slinky-mode
island produces a force in the poloidal direction~and hence a
torque about the RFP magnetic axis! which can be in the
same or opposite direction as the“(m•B) torque depending
on the direction of the toroidal current in the slinky mode
and/or the direction of the radial magnetic field produced by
the surface currents at the gap. Since this torque is localized
toroidally to the region at the gap, we model it with thed
function as shown in the preceding equation. Normalizing
the preceding equation we obtain

]2f

]t2 1a
]f

]t
2b

]3f

]t]x2

5
]2f

]x2 2sinf1g1s sinfd~x2x0!.

The coefficientsa andb above represent the coefficients of
normalized damping terms, the normalized driving term has
coefficientg and the normalized strength of the gap-slinky
mode interaction is denoted bys.

We assume that the damping is produced by plasma tur-
bulence and is proportional to the velocity of the kink. For
simplicity, we limit the damping terms to the coefficienta.
That is, we assumeb50. We also assume that the driving
term is proportional to the plasma currentI p and the inter-

action of the kink with the toroidal and poloidal gaps is
proportional to the proximity of the kink to the gap~s!.

We now turn to the combined effect of the driving and
damping terms. The driving termg will accelerate the kink.
Its velocity will increase until the deceleration produced by
the damping terma( ]f/]t) will just balance the accelera-
tion of the driving term. Then the kink will proceed at a
steady-state velocity which is generally not equal to the ini-
tial velocity that was used to set it in motion.

E. Simulation results

We solve the modified SG equation using a finite-
difference alogrithm.31 Figure 5 shows the effect of the driv-
ing and damping terms on a kink launched with an initial
value ofv50.5. In this case, the driving term accelerates the
kink until it reaches its ‘‘terminal’’ velocity as it approaches
the gap. The gap region is shown as a straight line in the
figure.

Next, we examine the effects of the gap. We view the
gap as the equivalent of a potential hill or potential well. A
positive value fors results in a potential hill for a kink and
a potential well for an antikink. Figure 5 also shows the
mode trajectory with the gap simulated by a potential hill of

FIG. 10. The overlay of the fundamental and the first 16 normalized har-
monics of the kink soliton shown in Fig. 5. The slowing up of the kink
soliton as it passes the gap is clearly evident.

FIG. 11. Thirty-two sampled magnetic pickup signals from the MST experi-
ment showing the slinky mode moving with a nearly constant velocity.

FIG. 12. Thirty-two sampled signals obtained after calculating the trajecto-
ries of four kinks passing the gap without locking. Simulation parameters
are given bytmax520 000, a50.04, b50, g520.01, s51.733, andv
50.5.

FIG. 13. Thirty-two sampled signals obtained from MST while the slinky
mode locks.
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strengths. At low values ofs, the kink slows down before it
reaches the potential hill~gap!, and after the kink passes the
potential hill, it then accelerates and again eventually reaches
its terminal velocity.

Figure 6 shows the results obtained for similar condi-
tions withs being increased. Now, the kink cannot overcome
the potential hill and is reflected. The kink turns around after
reflection because the driving term eventually overcomes the
effects of the reflection. Consequently, the kink returns to the
vicinity of the hill where it is reflected again. However, be-
cause damping is taking place, the reflected kink moves a
shorter distance away from the gap before the kink’s velocity
again reverses. This type of slinky-mode dynamics has, in
fact, been observed experimentally in MST. After a number
of these reflections, the kink becomes ‘‘locked’’ to a region
directly in front of the hill. For sufficiently high damping, the
kink does not reflect and it is locked immediately at the hill.

It is also possible to see these effects when more than
one kink is present. Figure 7 shows locking at the gap for a
set of four kinks, all launched with the same initial velocity

v50.5 but at different positions around the torus. It can be
seen that the kinks are preserved as separate entities and no
crossing of their trajectories is observed, even during reflec-
tions from the gap.

III. FOURIER DECOMPOSITION OF THE RESULTS

Experimental measurements of phenomena that occur in
toroidal geometry are typically Fourier decomposed in the
toroidal and poloidal directions. This has been used to deter-
mine which Fourier modes are ‘‘dominant’’ and the analysis
of the Fourier modes is often used to predict whether a par-
ticular phenomenon will occur. One of the main contentions
of this paper is that when such phenomena obey the sine-
Gordon equation, a Fourier analysis is not necessary and can
be replaced by the full nonlinear solution. Nonetheless, it is
of interest to make a comparison of the theoretical prediction
of the sine-Gordon equation with the classical Fourier analy-
sis in the literature.

For the experiment in question, MST, the slinky mode is
detected with an array of 32 magnetic field pickup coils
spaced uniformly around the torus at the same poloidal
angle. Accordingly, in our theoretical model, we also sample
the solutions obtained in the preceding section at 32 uni-
formly spaced points, where we assume that one complete
revolution around the torus is represented by the same hori-
zontal dimension in, for example, Figs. 5 and 6. Figure 8
shows the 32 sampled signals as a function of time for the
same conditions shown in Fig. 5. Note that in Fig. 8, consis-
tent with experimental data, time is on the horizontal axis
and distance around the torus is the vertical axis.

The set of these sampled signals can now be Fourier
decomposed in space at various times giving a sequence of
‘‘snapshots.’’ Figure 9 shows the spatial Fourier decomposi-
tion of the sampled signals of Fig. 8 for nine separate times.
Since only 32 sample points are used, only the fundamental
and the first 16 harmonics are meaningful. The apparent os-
cillations observed in the Fourier spectra are due to the fact
that the harmonics above the 16 were not obtained from the

FIG. 14. Thirty-two sampled signals obtained after calculating the trajecto-
ries of four kinks that lock just before crossing the gap. Simulation param-
eters aretmax515 000,a50.04, b50, g520.01, s56, andv50.5.

FIG. 15. Experimental vs theoretical comparison of multiple reflections of the slinky mode from the gap followed by reversal of the trajectory due to the
driving term.
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simulation. If a higher number of harmonics are obtained by
additional sampling, it is seen that the spectrum remains con-
stant throughout the simulation.

Using the Fourier coefficients obtained as above, it is
now possible to reconstruct the original kink soliton at each
instant of time at which the Fourier coefficients were evalu-
ated. It is also possible to examine one or more of the har-
monics to determine their relationship and see when and if
‘‘phase locking’’ of specific modes occurs. In order to exam-
ine this more easily, we look at the normalized Fourier
modes. That is, we assume each mode has unit amplitude but
its phasewk is that obtained from the Fourier decomposition.
Thus, thekth normalized Fourier-decomposed mode is

fnorm,k5cosFk
2px

L
1wkG

whereL is the distance around the torus.
Figure 10 shows an overlay of the fundamental and the

first 16 harmonics at several separate times. Since the modes
are each normalized to unity, the representation of the slinky
mode is not correct in amplitude, but the phase locking of all

of the modes is quite apparent, both before and after the
mode interacts with the gap. The calculation is made for the
same conditions as shown in Fig. 5.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

This section provides a comparison of the theoretical
work described above with measurements of the slinky mode
in the MST experiment. In MST, consistent with the theory
in Sec. III, we observe the slinky mode at the locations of the
32 toroidally spaced pickup coils that are placed at a fixed
poloidal angle around the MST toroidal conducting shell. We
investigate cases where the slinky mode locks and where it
does not lock.

Figure 11 shows an experimentally measured slinky
mode moving with constant velocity and viewed exactly in
the same format as for the theoretical calculations of Fig. 8.
We model the structure of the slinky mode shown in this
figure with a chain of multiple kinks, each one rotating about
the magnetic axis by 2p radians. To represent this, we use, as
an example, four kinks passing the gap that are represented
as 32 samples in an equivalent way to the experimental re-
sults in Fig. 11. These are shown in Fig. 12. Note that in both
figures the kinks appear to interact with each other and/or the
gap so that their separation as they pass the gap is not con-
stant. As will be shown subsequently, groups of kinks, as in
these figures, will show peaks in their Fourier spatial spectra.
The mode number~s! where the peak~s! occur will depend on
the number of kinks and their relative separation.

A similar comparison can be made in the case of lock-
ing. Figure 13 shows the 32 sample experimental measure-
ments of the slinky mode for locking while Fig. 14 gives the
results for an equivalent simulation.

One of the more interesting slinky-mode trajectories
shows reflection from the gap followed by reversal of the
trajectory followed by reversal, etc. Figure 15 displays the
experimental results on the left with a corresponding simu-
lation on the right. We conclude from this that the driving
term continually acts in the same direction on the slinky

FIG. 16. Overlay of the normalized sixth through the tenth harmonics~b! as
taken from the sampled experimental data shown on the left~a!. Phase
locking is evident.

FIG. 17. Overlay of the normalized sixth through the tenth harmonics for the computed kink trajectory shown on the left. Similar phase locking is observed
compared with the experimental results shown in Fig. 16.
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mode throughout the trajectory and is roughly constant.
We now examine the experimental Fourier decomposi-

tion of the slinky mode.3 The left side of Fig. 16 shows the
experimentally measured slinky mode. The right side of Fig.
16 shows the overlay of the sixth through the tenth normal-
ized modes of the sampled data on the left side of Fig. 16.
Phase locking is clearly evident at those locations where the
slinky mode appears. It should be mentioned that the experi-
mental Fourier decomposition was made only in the toroidal
direction because the slinky mode appears to have only a
single poloidal mode number,m51.

The experimental results in Fig. 16 are virtually identical
to the results obtained from the solution of the sine-Gordon
equation as shown in Fig. 17, including the appearance of
phase locking at the points where the kink soliton appears.
To make a more direct comparison, Fig. 16 shows the sum of
the normalized sixth through tenth harmonics on the right
compared with the computed kink trajectory on the left. The
resemblance to Fig. 16 is striking.

Finally, it has been reported in the literature that the
harmonic spectrum of the slinky mode in MST has a local
peak in the spectrum aroundn56.14 It is our view that such
a peak appears because, in MST, as has been seen in the
experimental data in this paper, the slinky mode is composed
of a series of kinks. To verify this, Fig. 18 displays the Fou-
rier decomposition of a series of four kinks. The kinks are
displayed on the right-hand side of the figure while the Fou-
rier spectrum is displayed on the left-hand side. Note that a
peak in the spectrum appears aroundn513. When the spac-
ing between the kinks is increased and/or the number of
kinks is increased, the peak in the spectrum shifts to lower
spatial frequencies and vice versa.

V. CONCLUSIONS

In this work, it was argued that the use of the sine-
Gordon~SG! equation as a model for the slinky mode in a
reversed field pinch device is an effective tool. It is fully

nonlinear and does not require the use of Fourier decompo-
sition of the slinky mode. It successfully demonstrates the
conditions under which locking of the slinky mode can oc-
cur. In addition, we show that phase locking of spatial Fou-
rier modes can occur whenever a localized phenomenon such
as the slinky mode appears. Further applications of this tech-
nique can be used to explain the change in the experimen-
tally measured width of the slinky mode as the velocity of
the mode changes.

Although the SG model we have proposed appears to be
much simpler than previous formulations for slinky-mode
dynamics, its derivation rests on two well-established facts
~1! magnetized cylindrical plasma columns support helical
modes and~2! toroidal geometry introduces a periodic poloi-
dal dependence. These two general features lead directly to
the SG model. Given the variety of empirical evidence that
this model manages to simulate, we believe that the relative
simplicity of the SG model should be considered a virtue.
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