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A Study of Composite Resonance in AC/DC
Converters
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Abstract—Control-system errors and imbalances in the ac
system may generate and magnify abnormal harmonics in the
ac-bus voltages and the dc current. In this paper, a technique
based on harmonic impedance matrices has been used to simulate
the steady-state response of ac/dc converters. The technique allows
the computation of converter impedances or admittances viewed
from the dc or ac bus. At any operating point, a linear circuit may
represent the converter and harmonic magnification factors are
calculated. High harmonic magnification indicates the possibility
of composite resonance. The impact of a small negative-sequence
imbalance in the ac system voltages is shown for a six-pulse
current-controlled converter.

Index Terms—AC/DC converters, harmonic interaction, reso-
nance.

I. INTRODUCTION

WAVEFORM distortion in ac/dc converters has been very
difficult to quantify and consequently, has not been well

understood. It has been observed that converters with low short-
circuit ratio experience high levels of waveform distortion. This
has been attributed to the high ac system impedance, whose in-
ductance may resonate with the capacitors and filters installed at
the converter’s ac terminals. Resonance of this nature may lead
to harmonic instability.

The ac/dc converter is the interconnection of the ac and dc
systems via the static converter. The ac system impedance in-
teracts through the converter characteristics to present entirely
different impedance to the dc side. This gives rise to resonance
frequencies, which depend on the ac system impedance, the dc
system impedance and the switching of the converter. The reso-
nance is “composite,” implying its dependence on all elements
of the ac/dc converter.

Several contributions have appeared in the literature on har-
monic instability but few have directly addressed the phenom-
enon of composite resonance. One of the earliest analyses of
harmonic instability is reported in [1]. Harmonic instability re-
lated to firing-angle imbalance has been identified in this contri-
bution and the concept of harmonic magnification is defined. In
another study [2], the linear relationships between integer har-
monics on both sides of the converter have been obtained nu-
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merically from the converter simulation. The converter control
system has been included in the simulation and the overall har-
monic impedances at both the ac and dc terminals are derived.
The harmonic impedance has been used to predict lightly or neg-
atively damped integer harmonics.

A technique based on the eigenvalue and frequency-domain
approach has been used in [3] to analyze the low order harmonic
instability. Approximate switching functions have been used in
[4] to derive the small-signal model and to study harmonic in-
teraction in a converter supplying an arc furnace. Transfer func-
tions for the current-control loop of a HVDC link have been
calculated in [5] and the stability of the system has been ana-
lyzed. Based on a simplified model of the commutation process,
transfer functions that convert ac voltage to dc voltage and dc
current to ac current have been derived in [6].

A frequency domain analysis has been used in [7] to obtain
a set of simultaneous equations, which, after considerable
manipulation, reduce to a matrix equation relating the ac and
dc harmonics. The converter impedance seen by the dc system
is derived from this equation. At this stage, the expression for
the composite impedance becomes complicated. An equiv-
alent RLC network is derived which matches the composite
impedance at its resonant frequency. Composite resonance
damping is taken to be identical to the damping factor of the
equivalent RLC circuit.

It becomes clear that the composite impedance is essentially a
matrix quantity. This is true for the composite impedances seen
on the ac and dc sides of the converter. Any single harmonic
component of current flowing into composite impedance pro-
duces a multitude of voltage harmonics. Some means for iden-
tifying the resonance frequencies becomes necessary. Amplifi-
cation factors have been used [8] to isolate the resonant frequen-
cies and these factors are defined as the transfer functions from
a fictitious voltage source placed in series with the converter to
the voltage across the dc filter.

In this paper, a technique based on the harmonic impedance
matrix is used to determine the steady-state responses of a cur-
rent-controlled six-pulse ac/dc converter. The simulation pro-
cedure is general and can include the frequency-dependence of
parameters. The linear equivalent circuit of the converter is de-
rived for each operating point and it has been used to compute
the impedance (admittance) presented by the converter at its dc
(ac) terminals. The impact of negative-sequence imbalance in
the ac system voltages on the ac-bus voltage harmonics and dc
current harmonics has been determined. All interactions have
been computed using full matrices. Therefore, cross-frequency
effects have been included.
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II. TIME-DOMAIN REPRESENTATION OFIMPEDANCES

Consider a periodic waveform of limited bandwidth. The
time-domain representation of this waveform is, the -vector
of equidistant samples over one period at the fundamental fre-
quency. The phasor-domain representation of the waveform is

(1)

where is the , symmetric, complex matrix associated
with the discrete Fourier transform [9].

The first element of is the dc component of . The
next elements are the phasors representing the “” harmonic
components of , where . The phasor compo-
nent at the highest frequency is , which is real if is a
vector of real-valued samples. The subsequentelements from

to are the conjugates of to in
reverse order [9]. The structure of is therefore

(2)

Impedances of linear network branches are represented in the
phasor-domain by -dimensional, complex, diagonal ma-
trices and the diagonal of complex harmonic impedances has
the same form as (2). Let be the complex impedance matrix
of a linear network branch. Let be the phasor-domain
(time-domain) representation of the periodic voltage and current
waveforms associated with the impedance. Then

(3)

From (3), we obtain

(4)

where is the impedance matrix in the time domain. It is a real,
full matrix having a circulant structure. The first column ofis
the inverse discrete Fourier transform of the diagonal of.

In contrast to the impedance matrix of a linear circuit, the
time-domain conductance matrix of a thyristor switch is diag-
onal and the elements on the diagonal are the equidistant sam-
ples of the thyristor’s conductance over a fundamental period.
Let be the diagonal conductance matrix of a thyristor switch
and let be the periodic voltage waveform across its terminals.
Then the thyristor current waveform is

(5)

From (5)

(6)

is the thyristor conductance matrix transformed to the phasor-
domain. It is a full matrix, with the off-diagonal elements repre-
senting the cross-frequency coupling admittances. The elements
on the diagonal are the harmonic self-admittances.

It should be noted that time-domain and phasor-domain con-
volutions are implicit in the construction of the matricesand

[9].

III. COMPOSITERESONANCE

The ac terminal of the converter is considered to be on
the source side of the transformer’s leakage reactance. The
converter presents a set of admittances at its ac terminal, which
depend on the dc system admittance, the transformer leakage
inductance, and the conduction periods of the individual
thyristors. These admittances are full complex matrices in the
phasor-domain. On the other hand, the ac system admittances
are complex diagonal matrices. The composite admittance at
the ac terminal is the sum of the ac system admittance and
the converter’s ac-side admittance. The diagonal elements
of the composite admittance matrix are the total harmonic
self-admittances. AC-side composite resonance occurs when
the imaginary part of a harmonic self-admittance vanishes.

The impedance presented by the converter at its dc terminal
depends on the ac system impedance including the transformer
leakage inductance, and the conduction periods of the thyristors.
The dc-side converter impedance is a full, complex matrix. The
dc system impedance is, however, a complex diagonal matrix.
The composite impedance at the dc terminal is the sum of the
dc system impedance and the converter’s impedance. The di-
agonal elements of the composite impedance are the total har-
monic self-impedances. DC-side composite resonance occurs
when the imaginary part of a harmonic self-impedance is zero.

IV. SIX-PULSE AC/DC CONVERTERANALYSIS

Fig. 1(a) shows a three-phase, six-pulse ac/dc converter. The
ac system consists of a source, its internal impedance, a shunt
capacitor connected to the ac-bus and the leakage inductance of
the transformer between the ac-bus and the input terminals of the
thyristor bridge. The current controller shown in Fig. 1(b) has
two parallel functions [10], a simple gain, and another response
function to provide a gain related to the rate of change of current.
The sum of the two functions is input to an integrator with gain,
which computes the firing angle.

Two-state resistors model the thyristors. When conducting, a
thyristor is assumed to have a resistance of 1 mand this value
jumps to 50 M in the nonconducting state.

There are four unknown voltage waveforms to be determined.
These are at the input and output terminals of
the thyristor bridge and the voltage of one of the thyristors.
The equations for the unknown variables are obtained by ap-
plying Kirchhoff’s current law at the nodes, and . The
fourth equation is obtained by equating the sum of the cur-
rents in the upper row of thyristors to the sum of the currents
in the lower row of thyristors. These equations are nonlinear,
since the thyristor conductance matrices depend on the unknown
voltages and the switching instants. They are solved iteratively
using the Newton–Raphson procedure. The computations in-
volved are listed below.

Compute the admittance matrices of the ac and dc
systems respectively and the short-circuit currents at the input
terminals of the thyristor bridge. The short-circuit currents are

for the phases , and . The matrix
includes the leakage inductance of the transformer.
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(a)

(b)

Fig. 1. (a) Three-phase ac/dc converter. (b) Current controller.

1. Assume the waveforms and . Then, the
thyristor voltages are

2. Calculate the dc current waveform

3. Using the waveform obtained in step 2 as input to the cur-
rent controller, the firing instants for the thyristors are deter-
mined as described in [10].

4. The thyristor voltages obtained in step 1 and the switching
instants calculated in step 3 permit the computation of the con-
duction periods and the diagonal conductance matrices of the
thyristors. These are .

5. Apply Kirchhoff’s current law as described previously.
Since the waveforms in step 1 are solution estimates, KCL will
not be satisfied but will give the residual currents

(7)

(8)

(9)

(10)

Note that (7)–(10) are matrix equations. These equations are
written in the form

(11)

Putting

the Jacobian matrix is given by

(12)

6. The corrections that should be
added to the assumed waveforms to minimize the residual cur-
rents are

(13)

7. Return to step 1 if the maximum norm of the residuals is
above a specified tolerance.

A. DC-Side Converter Impedance

Removing the ac and dc system excitations and substituting
the thyristors by their respective conductance matrices gives the
linear circuit representing the ac/dc converter at a given oper-
ating point. Let be a current injected into the dc terminals of
the converter after disconnecting the dc system. The voltage
developed at these terminals is obtained from

(14)

The matrix is obtained from by putting in its
elements. By elimination, (14) may be reduced to

(15)

where is the time-domain impedance matrix for the converter
at its DC terminals. Cross-frequency couplings are taken into ac-
count in this matrix. The corresponding harmonic domain ma-
trix is given by

(16)

The elements of are complex impedances.
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Fig. 2. AC-side representation of the converter.

B. DC-Side Harmonic Magnification Factors

Consider the converter at an operating point. The impact of a
small negative-sequence imbalance may be calculated by using
the linear converter circuit. It is assumed that the imbalance
in the ac system excitation will not affect the switching of the
thyristors.

Let be the short-circuit current at the dc terminals of
the linear circuit with the negative-sequence voltage as the
ac-system excitation. Let be the dc current when the dc
system is connected to the converter. The magnification factor
at the th harmonic is defined as the ratio of the amplitudes of
the th harmonic of to the corresponding amplitude of.
The magnification factor depends on the relative phase of the
negative-sequence voltage, which is random. Only the max-
imum magnification factor as the phase varies, is considered. A
high magnification factor implies the possibility of composite
resonance on the dc-side.

C. AC-Side Admittances

The transformer leakage inductances are usually included in
the converter admittances viewed from the ac-bus. Let voltages

be applied to the ac terminals of the converter, as
shown in Fig. 2. Using the linear circuit of the converter at the
operating point, the equations relating the converter currents and
voltages are

(17)

where is obtained from by putting in its elements.
Eliminating from (17)

(18)

Let be the impedance matrix for the transformer’s leakage
inductance. Then, from Fig. 2

(19)

From (18) and (19)

(20)

The matrices give the converter admittances
seen from the ac-bus.

The ac system is governed by

(21)

where is the admittance matrix per phase of the ac system
without the transformer’s leakage inductance. The total admit-
tance at the ac-bus is given by

(22)

D. AC-Side Harmonic Magnification Factors

Consider the linear circuit of the converter at an operating
point and let the excitation be the negative-sequence voltages of
amplitude . Let be the phasor representation of the
ac-bus voltage waveform of phase . The ac-side harmonic
magnification factors are defined as

(23)

Of particular interest is the fourth element of which is the
magnification factor for the third harmonic. High values of this
element indicate ac-side composite resonance at the third har-
monic.

V. RESULTS AND DISCUSSION

The six-pulse converter shown in Fig. 1(a) is used as the ex-
ample for investigation. In all cases, the requested dc current
for the controller is set at 60% of the current corresponding to

. The impact of 2% negative-sequence imbalance in the ac
system voltages on the dc current and ac-bus voltage harmonics
is the primary concern of this study.

The simulations used , which is convenient to use
with the fast Fourier transform (FFT). A larger sampling fre-
quency increases the solution time considerably. The simula-
tions presented in this study are limited by this sampling fre-
quency.

A. DC-Side Composite Resonance

Fig. 3 shows the 2nd harmonic magnification as a function of
the shunt capacitance and it indicates a high gain when the ca-
pacitance is 1.89F. The smoothing inductance has been fixed
at 0.6243 H. Fig. 4 confirms that the largest increase in the 2nd
harmonic content of the dc current occurs when the shunt ca-
pacitance is 1.89F. Fig. 5 compares the dc current waveforms
with and without the 2% negative-sequence imbalance.

As discussed in Section IV-A, the harmonic domain converter
impedance matrix seen at the dc-bus is a full matrix whereas
the dc system impedance matrix is a diagonal matrix. When the
two matrices are added together, there could be a significant can-
cellation of the imaginary parts of the elements on the diagonal.
Fig. 6 shows the real and imaginary parts of the converter’s 2nd
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Fig. 3. DC-side 2nd harmonic magnification factors.

Fig. 4. (Second harmonic/dc) ratio of the dc current.

Fig. 5. Impact of 2% negative-sequence imbalance on dc current waveform.

harmonic self-impedance as a function of the shunt
capacitance. This is the 3rd element on the diagonal of. The
same figure shows the constant reactance of the dc system.
Though a total cancellation of the reactive parts is not observed,
the total impedance at the 2nd harmonic is indeed a minimum
at 1.89 F.

The total impact of the negative-sequence imbalance is due
to the transfer of the negative-sequence voltage to the dc-side
as a 2nd harmonic voltage, as well as the cancellation of the re-
active part of the total 2nd harmonic impedance. The harmonic
magnification factor takes both effects into account.

Fig. 6. DC-side converter impedance.

Fig. 7. AC-side 3rd harmonic magnification factors.

Fig. 8. (3rd harmonic/fundamental) ratio for ac-bus voltages. (L = 0:6243

H).

B. AC-Side Composite Resonance

Fig. 7 shows the ac-side magnification factor at the 3rd har-
monic when the shunt capacitance is varied. Maximum magni-
fication is observed when the capacitance is 1.8F. Figs. 8 and
9 show the increase in the 3rd harmonic content of the ac-bus
voltages when either the shunt capacitance or the smoothing in-
ductance is varied. The impact of the 2% negative-sequence im-
balance is a maximum when the capacitance is 1.8F and the
inductance is 0.6243 H. Fig. 10 shows one of the ac-bus voltage
waveforms for these parameter values.

The total admittance of the converter at the ac-bus (22) is the
addition of four diagonal matrices representing the ac system to
four full matrices representing the converter admittances seen
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Fig. 9. (3rd harmonic/fundamental) ratio for ac-bus voltages. (C = 1:8 �F).

Fig. 10. Impact of 2% negative-sequence imbalance on ac-bus voltage
waveform.

at the ac-bus. When the shunt capacitance is 1.8F and the
smoothing inductance is 0.6243 H, the 3rd harmonic admit-
tance of the ac system in (22) is

. The corresponding 3rd harmonic self-admittances
for the converter are

When added together, the reactive parts nearly cancel, which is
partly the reason for the high 3rd harmonic magnification in the
ac-bus voltages.

VI. CONCLUSIONS

A technique based on harmonic impedances has been used to
determine the responses of six-pulse, current-controlled, ac/dc
converters. The technique enables the computation of the con-
verter’s impedance (admittance) at the dc (ac) terminals.

Harmonic magnification factors have been defined and com-
puted. High values of magnification imply the possibility of
composite resonance. These factors have been used to deter-

mine the maximum impact of negative-sequence imbalance on
the ac-bus voltage and dc current harmonics.
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